立体几何复习
【基础知识】
一、平面
1.平面的概念:平面是没有厚薄的,可以无限延伸,这是平面最基本的属性
2.平面的画法及其表示方法:①常用平行四边形表示平面通常把平行四边形的锐角画成,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画
②一般用一个希腊字母、、……来表示,还可用平行四边形的对角顶点的字母来表示如平面等
3.空间图形是由点、线、面组成的点、线、面的基本位置关系如下表所示:
图 形
符号语言
文字语言(读法)
点在直线上
点不在直线上
点在平面内
点不在平面内
直线、交于点
直线在平面内
直线与平面无公共点
直线与平面交于点
平面、相交于直线
(平面外的直线)表示或
4平面的基本性质
公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内
推理模式:. 如图示:
应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面.
公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.
公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线
推理模式:且且唯一如图示:
应用:①确定两相交平面的交线位置;②判定点在直线上
公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.
公理3 经过不在同一条直线上的三点,有且只有一个平面
推理模式:不共线存在唯一的平面,使得
应用:①确定平面;②证明两个平面重合 “有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.
推论1 经过一条直线和直线外的一点有且只有一个平面
推理模式:存在唯一的平面,使得,
推论2 经过两条相交直线有且只有一个平面
推理模式:存在唯一的平面,使得
推论3 经过两条平行直线有且只有一个平面
推理模式:存在唯一的平面,使得
5平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形
二、空间直线
1 空间两直线的位置关系 (1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点;
2公理4 :平行于同一条直线的两条直线互相平行推理模式:.
3等角定理如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等
4等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等
5空间两条异面直线的画法
6.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:与是异面直线
7.异面直线所成的角:已知两条异面直线,经过空间任一点作直线,所成的角的大小与点的选择无关,把所成的锐角(或直角)叫异面直线所成的角(或夹角).为了简便,点通常取在异面直线的一条上 异面直线所成的角的范围:
8.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线 垂直,记作.
9.求异面直线所成的角的方法:
几何法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线;(2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求
向量法:用向量的夹角公式
10两条异面直线的公垂线、距离
和两条异面直线都垂直相交的直线,我们称之为异面直线的公垂线
理解:因为两条异面直线互相垂直时,它们不一定相交,所以公垂线的定义要注意“相交”的含义.
两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.
两条异面直线的公垂线有且只有一条
计算方法:①几何法;②向量法
三、直线与平面平行和平面与平面平行
1.直线和平面的位置关系
(1)直线在平面内(无数个公共点);符号表示为:,
(2)直线和平面相交(有且只有一个公共点);符号表示为: ,(3)直线和平面平行(没有公共点)——用两分法进行两次分类.符号表示为: .
2.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.
推理模式:.
3 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.
推理模式:.
4.平行平面:如果两个平面没有公共点,那么这两个平面互相平行.
5.图形表示:画两个平面平行时,通常把表示这两个平面的平行四边形的相邻两边分别画成平行的.
6.平行平面的判定定理: 如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行.推理模式::,,,,.
7平行平面的判定定理推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行.
推理模式:.
8.平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.
推理模式:.
9面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.推理模式:.
四、直线与平面垂直和平面与平面垂直
1 线面垂直定义:
如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直其中直线叫做平面的垂线,平面叫做直线的垂面交点叫做垂足 直线与平面垂直简称线面垂直,记作:a⊥α
2直线与平面垂直的判定定理: 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面
3 直线和平面垂直的性质定理: 如果两条直线同垂直于一个平面,那麽这两条直线平行
4 三垂线定理
在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直
说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系;
(2)推理模式:
5.三垂线定理的逆定理:
在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直
推理模式: .
注意:⑴三垂线指PA,PO,AO都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 ⑵要考虑a的位置,并注意两定理交替使用
6 两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面
7.两平面垂直的判定定理:
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 推理模式:,.
8.两平面垂直的性质定理: 若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面
推理模式:
9向量法证明直线与平面、平面与平面垂直的方法:
①证明直线与平面垂直的方法:直线的方向向量与平面的法向量平行;②证明平面与平面垂直的方法:两平面的法向量垂直
五、空间向量及其运算
1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量
⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示
2.空间向量的运算
空间向量的加法、减法与数乘向量运算:
;;
运算律:⑴加法交换律:⑵加法结合律: ⑶数乘分配律:
3 平面向量共线定理
方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量.向量与非零向量共线的充要条件是有且只有一个实数λ,使=λ
4 共线向量
如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.平行于记作.
当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线.
5. 共线向量定理:空间任意两个向量、(≠),//的充要条件是存在实数λ,使=λ
推论:如果为经过已知点A且平行于已知非零向量的直线,那么对于任意一点O,点P在直线上的充要条件是存在实数t满足等式
.其中向量叫做直线的方向向量
6空间直线的向量参数表示式:或,中点公式.
7.向量与平面平行:已知平面和向量,作,如果直线平行于或在内,那么我们说向量平行于平面,记作:.通常我们把平行于同一平面的向量,叫做共面向量
说明:空间任意的两向量都是共面的
8.共面向量定理:如果两个向量不共线,与向量共面的充要条件是存在实数使
推论:空间一点位于平面内的充分必要条件是存在有序实数对,使 ①
或对空间任一点,有② 或 ③
上面①式叫做平面的向量表达式
9 空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使 若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底
推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使
10 空间向量的夹角及其表示:已知两非零向量,在空间任取一点,作,则叫做向量与的夹角,记作;且规定,显然有;若,则称与互相垂直,记作:
11.向量的模:设,则有向线段的长度叫做向量的长度或模,记作:
12.向量的数量积:已知向量,则叫做的数量积,记作,即.
已知向量和轴,是上与同方向的单位向量,作点在上的射影,作点在上的射影,则叫做向量在轴上或在上的正射影 的长度.
13.空间向量数量积的性质:
(1).(2).(3).
14.空间向量数量积运算律:
(1).(2)(交换律).(3)(分配律)
六、空间向量的坐标运算
1 空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示;
(2)在空间选定一点和一个单位正交基底,以点为原点,分别以的方向为正方向建立三条数轴:轴、轴、轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系,点叫原点,向量 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为平面,平面,平面;
2.空间直角坐标系中的坐标:
在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标.
3.空间向量的直角坐标运算律:
(1)若,, 则,,
,, ,
. (2)若,,则.
一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标
4 模长公式:若,,则,.
5.夹角公式:.
6.两点间的距离公式:若,,
则,或
七、空间角
1.异面直线所成的角:已知两条异面直线,经过空间任一点作直线,所成的角的大小与点的选择无关,把所成的锐角(或直角)叫异面直线所成的角(或夹角).为了简便,点通常取在异面直线的一条上异面直线所成的角的范围:
2.求异面直线所成的角的方法:(1)几何法;(2)向量法
3.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角 一直线垂直于平面,所成的角是直角 一直线平行于平面或在平面内,所成角为0(角 直线和平面所成角范围: (0,(
(2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角
4.公式:平面(的斜线a与(内一直线b相交成θ角,且a与(相交成(1角,a在(上的射影c与b相交成(2角,则有
5 二面角:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为,两个面分别为的二面角记为;
6.二面角的平面角: (1)过二面角的棱上的一点分别在两个半平面内作棱的两条垂线,则叫做二面角的平面角 (2)一个平面垂直于二面角的棱,且与两半平面交线分别为为垂足,则也是的平面角说明:①二面角的平面角范围是;②二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直
7.二面角的求法:⑴几何法;⑵向量法
8求二面角的射影公式:,其中各个符号的含义是:是二面角的一个面内图形F的面积,是图形F在二面角的另一个面内的射影,是二面角的大小
9.三种空间角的向量法计算公式: ⑴异面直线所成的角:;⑵直线与平面(法向量)所成的角:;⑶锐二面角:,其中为两个面的法向量
八、空间距离
1点到平面的距离:已知点是平面外的任意一点,过点作,垂足为,则唯一,则是点到平面的距离
即 一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离
结论:连结平面外一点与内一点所得的线段中,垂线段最短
2 异面直线的公垂线:和两条异面直线都垂直相交的直线叫做异面直线的公垂线.
3.公垂线唯一:任意两条异面直线有且只有一条公垂线
4.两条异面直线的公垂线段:两条异面直线的公垂线夹在异面直线间的部分,叫做两条异面直线的公垂线段;
5.公垂线段最短:两条异面直线的公垂线段是分别连结两条异面直线上两点的线段中最短的一条;
6.两条异面直线的距离:两条异面直线的公垂线段的长度
说明:两条异面直线的距离即为直线到平面的距离即两条异面直线的距离等于其中一条直线到过另一条直线且与这条直线平行的平面的距离
7直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离,叫做这条直线到平面的距离(转化为点面距离)
8.两个平行平面的公垂线、公垂线段:
(1)两个平面的公垂线:和两个平行平面同时垂直的直线,叫做两个平面的公垂线
(2)两个平面的公垂线段:公垂线夹在平行平面间的的部分,叫做两个平面的公垂线段
(3)两个平行平面的公垂线段都相等
(4)公垂线段小于或等于任一条夹在这两个平行平面间的线段长
9.两个平行平面的距离:两个平行平面的公垂线段的长度叫做两个平行平面的距离
10.七种距离:点与点、点到直线、两条平行直线、两条异面直线、点到平面、平行于平面的直线与该平面、两个平行平面之间的距离,其中点与点、点与直线、点到平面的距离是基础,求其它几种距离一般化归为求这三种距离,点到平面的距离有时用“体积法”来求
10用向量法求距离的公式:
⑴异面直线之间的距离:,其中 ⑵直线与平面之间的距离:,其中是平面的法向量 ⑶两平行平面之间的距离:,其中是平面的法向量
⑷点A到平面的距离:,其中,是平面的法向量 另法:点平面则 ⑸点A到直线的距离:,其中,是直线的方向向量
⑹两平行直线之间的距离:,其中,是的方向向量
九、棱柱
1 多面体的概念:由若干个多边形围成的空间图形叫多面体;每个多边形叫多面体的面,两个面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连结不在同一面上的两个顶点的线段叫多面体的对角线
2.凸多面体:把多面体的任一个面展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫凸多面体.如图的多面体则不是凸多面体
3.凸多面体的分类:多面体至少有四个面,按照它的面数分别叫四面体、五面体、六面体等
4.棱柱的概念:有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱两个互相平行的面叫棱柱的底面(简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱;两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高)
5.棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱侧棱垂直于底面的棱柱叫直棱柱 底面的是正多边形的直棱柱叫正棱柱棱柱的底面可以是三角形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱……
6.棱柱的性质
(1)棱柱的侧棱相等,侧面都是平行四边形;直棱柱侧面都是矩形;正棱柱侧面都是全等的矩形;
(2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等的多边形;
(3)过棱柱不相邻的两条侧棱的截面都是平行四边形
7 平行六面体、长方体、正方体:底面是平行四边形的四棱柱是平行六面体.侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体长方体,棱长都相等的长方体叫正方体.
8.平行六面体、长方体的性质
(1)平行六面体的对角线交于一点且互相平分.
(2)长方体的一条对角线长的平方等于一个顶点上的三条棱长的平方和特别地,正方体的一条对角线长等于棱长的倍。
十、棱锥
1 棱锥的概念:有一个面是多边形,其余各面是有一个公共顶点的三角形,这样的多面体叫棱锥其中有公共顶点的三角形叫棱锥的侧面;多边形叫棱锥的底面或底;各侧面的公共顶点,叫棱锥的顶点,顶点到底面所在平面的垂线段,叫棱锥的高(垂线段的长也简称高).
2.棱锥的表示:棱锥用顶点和底面各顶点的字母,或用顶点和底面一条对角线端点的字母来表示
如图棱锥可表示为,或.
3.棱锥的分类:(按底面多边形的边数)
分别称底面是三角形,四边形,五边形……的棱锥为三棱锥,四棱锥,五棱锥……(如图)
4.棱锥的性质:
定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积比等于顶点到截面的距离与棱锥高的平方比.
中截面:经过棱锥高的中点且平行于底面的截面,叫棱锥的中截面
5.正棱锥:底面是正多边形,顶点在底面上的射影是底面的中心的棱锥叫正棱锥.
(1)正棱锥的各侧棱相等,各侧面是全等的等腰三角形,各等腰三角形底边上的高相等(叫正棱锥的斜高).
(2)正棱锥的高、斜高、斜高在底面上的射影组成一个直角三角形;正棱锥的高、侧棱、侧棱在底面上的射影也组成一个直角三角形
十一、简单的多面体与球
1.简单多面体:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它就会连续(不破裂)变形,最后可变为一个球面如图:象这样,表面经过连续变形可变为球面的多面体,叫做简单多面体
说明:棱柱、棱锥、正多面体等一切凸多面体都是简单多面体
2.五种正多面体的顶点数、面数及棱数:
正多面体
顶点数
面数
棱数
正四面体
4
4
6
正六面体
8
6
12
正八面体
6
8
12
正十二面体
20
12
30
正二十面体
12
20
30
3.球的概念:
与定点距离等于或小于定长的点的集合,叫做球体,简称球定点叫球心,定长叫球的半径与定点距离等于定长的点的集合叫做球面一个球或球面用表示它的球心的字母表示,例如球
4.球的截面:
用一平面去截一个球,设是平面的垂线段,为垂足,且,所得的截面是以球心在截面内的射影为圆心,以为半径的一个圆,截面是一个圆面
球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做小圆
5.经度、纬度:
经线:球面上从北极到南极的半个大圆
纬线:与赤道平面平行的平面截球面所得的小圆
经度:某地的经度就是经过这点的经线与地轴确定的半平面与经线及轴确定的半平面所成的二面角的度数
纬度:某地的纬度就是指过这点的球半径与赤道平面所成角的度数
6.两点的球面距离:球面上两点之间的最短距离,就是经过两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离 (为球心角的弧度数)
7 半球的底面: 已知半径为的球,用过球心的平面去截球,球被截面分成大小相等的两个半球,截面圆(包含它内部的点),叫做所得半球的底面
8.球的体积公式: 9.球的面积公式:S=4πR2
10其它:
①在应用球体积公式时要注意公式中给出的是球半径R,而在实际问题中常给出球的外径(直径)
②球与其它几何体的切接问题,要仔细观察、分析、弄清相关元素的位置关系和数量关系,选择最佳角度作出截面,以使空间问题平面化
【基础练习】
一、位置关系
1.有如下三个命题:①分别在两个平面内的两条直线一定是异面直线;②垂直于同一个平面的两条直线是平行直线;③过平面的一条斜线有一个平面与平面垂直.
其中正确命题的个数为( )
A.0 B.1 C.2 D.3
2.给出以下四个命题:
①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;
②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;
③如果两条直线都平行于一个平面,那么这两条直线互相平行;
④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直.
其中真命题的个数是( )
A.4 B.3 C.2 D.1
3.已知直线及平面,下列命题中的假命题是 ( )
A.若,,则. B.若,,则.
C.若,,则. D.若,,则.
4.已知是直线,是平面,给出下列命题:
①若;②若;
③若;④若与异面,且相交;
⑤若与异面,则至多有一条直线与和都垂直.
其中真命题的个数是( )
A.1 B.2 C.3 D.4
5.给出下列四个命题:
①垂直于同一直线的两条直线互相平行;②垂直于同一平面的两个平面互相平行;
③若直线与同一平面所成的角相等,则互相平行;
④若直线是异面直线,则与都相交的两条直线是异面直线.
其中假命题的个数是( )
A.1 B.2 C.3 D.4
6.关于直线、与平面、,有下列四个命题:
①且,则; ②且,则;
③且,则; ④且,则.
其中真命题的序号是:( )
A. ①、② B. ③、④ C. ①、④ D. ②、③
7.已知、是两条不重合的直线,是三个两两不重合的平面,给出下列四个命题:①若; ②若;
③若;
④若、是异面直线,.
其中真命题是( )
A.①和② B.①和③ C.③和④ D.①和④
8.设为平面,为直线,则的一个充分条件是( )
A. B.
C. D.
9.已知平面和直线,给出条件:①;②;③;④;⑤. 1)当满足条件 时,有;2)当满足条件 时,有.
10.对于平面和共面的直线、下列命题中真命题是 ( )
A.若则 B.若则
C.若则 D.若、与所成的角相等,则
11.已知平面外不共线的三点到的距离都相等,则正确的结论是 ( )
A.平面ABC必不垂直于 B.平面ABC必平行于
C.平面ABC必与相交 D.存在的一条中位线平行于或在内
12.对于任意的直线与平面,在平面内必有直线,使与 ( )
A.平行 B.相交 C.垂直 D.互为异面直线
13.设、是两条不同的直线,、是两个不同的平面.考查下列命题,其中正确的命题是( )
A. B.
C. D.
14.在正方体ABCD—A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形.
②四边形BFD′E有可能是正方形.
③四边形BFD′E在底面ABCD内的投影一定是正方形.
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为 .(写出所有正确结论的编号)
15.下面是关于三棱锥的四个命题:
①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.
②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.
④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.
其中,真命题的编号是 (写出所有真命题的编号)
二、度量关系
(1)角度:
16.已知二面角的大小为,为异面直线,且,则所成
的角为( )
A. B. C. D.
17.PA⊥平面ABC,∠ACB=90°且PA=AC=BC=1,则异面直线PB与AC所成角的正切值为____ _ .
18.长方体ABCD—A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角是( )
A. B. C. D.
19.已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的 中点,则直线AD 与 平面B1DC所成角的正弦值为 .
20.三棱锥P—ABC中,PA=PB=PC=BC,且,则PA与底面ABC所成角为 .
21.在三棱锥中,三条棱两两互相垂直,且是边的中点,则与平面所成角的大小是_ ___(用反三角函数表示)
22.若一条直线与一个正四棱柱各个面所成的角都为,则=______.
23.已知球的半径是,三点都在球面上,两点和两点的球面距离都是,两点的球面距离是,则二面角的大小是( )
A. B. C. D.
24.已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于_ .
(2)距离:
25.正方体ABCD-A1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,则O到平面AB C1D1的距离为( )
A. B. C. D.
26.在正三棱柱中,.若二面角的大小为,则点到平面的距离为___________.
27.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和,过A、B分别作两平面交线的垂线,垂足为A′、B′,则AB∶A′B′为( )
A.2∶1 B.3∶1 C.3∶2 D.4∶3
28.在直三棱柱ABC-A1B1C1中,底面为直角三角形,(ACB=90(,
AC=6,BC=CC1=,P是BC1上一动点,则CP+PA1的最小值是_______.
29.不共面的四个定点到平面的距离都相等,这样的平面共有( )
A.3个 B.4个 C.6个 D.7个
30.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶
点A在平面内,其余顶点在的同侧,正方体上与顶点A相邻的三个顶点到
的距离分别为1,2和4,P是正方体的其余四个顶点中的一个,则P到平面的距离可能是:
①3; ②4; ③5; ④6; ⑤7
以上结论正确的为__________。(写出所有正确结论的编号)
(3)表面积和体积
31.正四棱锥底面边长为4,侧棱长为3,则其体积为 .
32.已知正方体外接球的体积是,那么正方体的棱长等于( )
A. B. C. D.
33.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )
A. B. C. D.
34.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面,则图中三角形(正四面体的截面)的面积是 ( )
A. B. C. D.
35.一个与球心距离为1的平面截球所得的圆面面积为,则球的表面积为( )
A.8 B.8 C.4 D.4
36.已知三点在球心为,半径为的球面上,,且,那么两点的球面距离为__ __,球心到平面的距离为__ __.
三、综合题
37. 已知四棱锥P-ABCD中,底面ABCD是矩形,PA平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(I) 求证:AF//平面PEC;
(II) 求PC与平面ABCD所成角的大小;
(III)求二面角P-EC-D的大小.
38.如图,在底面为平行四边形的四棱锥中,,
平面,且,点是的中点.
(Ⅰ)求证:;
(Ⅱ)求证:平面;
(Ⅲ)求二面角的大小.
39.如图所示,在四面体P—ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=.F是线段PB上一点,,点E在线段AB上,且EF⊥PB.(Ⅰ)证明:PB⊥平面CEF;(Ⅱ)求二面角B—CE—F的大小.
40.如图,在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动. (1)证明:D1E⊥A1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1—EC—D的大小为.
41.如图,直三棱柱ABC-A1B1C1中,AB=AC=,,D为棱的中点,(I)证明:面;
(II)求异面直线所成的角;
(III)求平面与平面ABC所成二面角的大小(仅考虑锐角的情况).
42.如图,直三棱柱-中,=2,.、分别为棱、的中点.
(Ⅰ)求点B到平面A1C1CA的距离;
(Ⅱ)求二面角——的大小 ;
(Ⅲ)在线段上是否存在一点F,使得?若存在,确定其位置并证明结论;若不存在,说明理由.
43.已知正方形.、分别是、的中点,将ΔADE沿折起,如图所示,记二面角的大小为.
(I) 证明平面;
(II)若ΔACD为正三角形,试判断点在平面内的射影是否在直线上,证明你的结论,并求角的余弦值.