人教版 物理 选修3—5 17.2 光的粒子性(共28张ppt)

文档属性

名称 人教版 物理 选修3—5 17.2 光的粒子性(共28张ppt)
格式 zip
文件大小 668.6KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2019-07-12 10:49:46

图片预览

文档简介

课件28张PPT。2019-7-26冶金工业的发展及对恒星研究的需要促进了对黑体辐射问题的研究用经典理论对黑体辐射实验的解释难以解决的矛盾普朗克能量子假设数学推理与实验事实的对照1、黑体与黑体辐射热辐射 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。固体在温度升高时颜色的变化能量量子化:物理学的新纪元 能全部吸收各种波长的辐射能而不发生反射,折射和透射的物体称为绝对黑体。简称黑体 不透明的材料制成带小孔的的空腔,可近似看作黑体。黑体模型 研究黑体辐射的规律是了解一般物体热辐射性质的基础。2. 黑体辐射实验规律能量量子化:物理学的新纪元0 1 2 3 4 5 6λ(μm)1700K1500K1300K1100K实验结果能量量子化:物理学的新纪元实验值紫外难维恩瑞利、金斯普朗克能量量子化:物理学的新纪元3.能量子 超越牛顿的发现ε=hν辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1 ε, 2 ε, 3 ε, ... n ε. n为正整数,称为量子数。能量量子经典h=6.626×10-34J.s能量量子化:物理学的新纪元λ(μm)1 2 3 5 6 8 947普朗克实验值2019-7-26光电效应实验规律的研究用经典光的电磁理论解释实验规律难以解决的矛盾爱因斯坦光量子的假设数学推理与实验事实的对照17世纪明确形成了两大对立学说牛顿惠更斯微粒说波动说19世纪初证明了波动说的正确性由于波动说没有数学基础以及牛顿的威望使得微粒说一直占上风19世纪末光电效应现象使得爱因斯坦在20世纪初提出了光子说:光具有粒子性对光学的研究从很早就开始了… …1.光电效应 当光线(包括不可见光)照射在金属表面时,金属中有电子逸出的现象,称为光电效应。逸出的电子称为光电子。一.光电效应的实验规律光电子定向移动形成的电流叫光电流 2.光电效应的实验规律(1)存在饱和电流光照不变,增大UAK,G表中电流达到某一值后不再增大,即达到饱和值。因为光照条件一定时,K发射的电子数目一定。实验表明:
入射光越强,饱和电流越大,
单位时间内发射的光电子数越多。思考:为什么要加正向电压?不加正向电压电路中有电流吗?分析解答:光束照在阴极K上会发生光电效应现象,但只有极少的电子能到达阳极A,电路中电流很小。加了正向电压后,大量的电子在电场力的作用下向阳极运动,形成较大电流。(加正向电压的目的是放大实验效果,增强实验“可见性”)。思考:保持光照条件不变,逐渐加大两极之间的电压,大家分析光电流会怎样变化?:使光电流减小到零的反向电压-+ + + + + + 一 一 一 一 一 一v加反向电压,如右图所示:光电子所受电场力方向与光电子速度方向相反,光电子作减速运动。若最大的初动能U=0时,I≠0,因为电子有初速度则I=0,式中UC为遏止电压(2)存在遏止电压和截止频率a.存在遏止电压UCUKA实验表明:对于一定颜色(频率)的光, 无论光的强弱如何,遏止电压是一样的. 光的频率 ν改变时,遏止电压也会改变。(2)存在遏止电压和截止频率a.存在遏止电压UC光电子的能量只与入射光的频率有关,与入射光的强弱无关。思考:对刚才的实验,加了遏止电压后,如果再增大入射光的强度,电路中会有光电流吗?减弱光的强度,遏止电压会减小吗?b.存在截止频率νc对于每种金属,都相应确定的截止频率ν c 。 当入射光频率ν > ν c 时,电子才能逸出金属表面;当入射光频率ν < ν c时,无论光强多大也无电子逸出金属表面。(2)存在遏止电压和截止频率实验结果:即使入射光的强度非常微弱,只要入射光频率大于被照金属的极限频率,电流表指针也几乎是随着入射光照射就立即偏转。更精确的研究推知,光电子发射所经过的时间不超过10-9 秒(这个现象一般称作“光电子的瞬时发射”)。光电效应在极短的时间内完成 (3)具有瞬时性猜测:电子是怎样吸收入射光的能量的呢?当年爱因斯坦等大量科学家也在做这样类似的猜测。思考:如果入射光的频率超过截至频率,做两次实验,第一次用很弱的光照射,第二次用很强的光照射,请问那一次光电子从锌板跑出来的时间长些?勒纳德等人通过实验得出以下结论: ①对于任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能发生光电效应,低于这个频率就不能发生光电效应;
② 当入射光的频率大于极限频率时,入射光越强,饱和电流越大;
③光电子的最大初动能与入射光的强度无关,只随着入射光的频率增大而增大;
④入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9秒.
以上三个结论都与实验结果相矛盾的,所以无法用经典的波动理论来解释光电效应。逸出功W0使电子脱离某种金属所做功的最小值,叫做这种金属的逸出功。光越强,逸出的电子数越多,光电流也就越大。①光越强,光电子的初动能应该越大,所以遏止电压UC应与光的强弱有关。②不管光的频率如何,只要光足够强,电子都可获得足够能量从而逸出表面,不应存在截止频率。③如果光很弱,按经典电磁理论估算,电子需几分钟到十几分钟的时间才能获得逸出表面所需的能量,这个时间远远大于10 -9 S。√实验表明:对于一定颜色(频率)的光, 无论光的强弱如何,遏止电压是一样的.温度不很高时,电子不能大量逸出,是由于受到金属表面层的引力作用,电子要从金属中挣脱出来,必须克服这个引力做功。二.光电效应解释中的疑难 1.光子:光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν。这些能量子后来被称为光子。爱因斯坦的光子说爱因斯坦从普朗克的能量子说中得到了启发,他提出:三.爱因斯坦的光电效应方程2.爱因斯坦的光电效应方程或——光电子最大初动能 ——金属的逸出功 W0一个电子吸收一个光子的能量hν后,一部分能量用来克服金属的逸出功W0,剩下的表现为逸出后电子的初动能Ek,即:3.光子说对光电效应的解释①爱因斯坦方程表明,光电子的初动能Ek与入射光的频率成线性关系,与光强无关。只有当hν>W0时,才有光电子逸出, 就是光电效应的截止频率。②电子一次性吸收光子的全部能量,不需要积累能量的时间,光电流自然几乎是瞬时发生的。③光强较大时,包含的光子数较多,照射金属时产生的光电子多,因而饱和电流大。由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。 爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。4.光电效应理论的验证 美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦方程,h 的值与理论值完全一致,又一次证明了“光量子”理论的正确。爱因斯坦由于对光电效应的理论解释和对理论物理学的贡献获得1921年诺贝尔物理学奖密立根由于研究基本电荷和光电效应,特别是通过著名的油滴实验,证明电荷有最小单位。获得1923年诺贝尔物理学奖。1.光的散射光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射2.康普顿效应 1923年康普顿在做 X 射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。康普顿效应康普顿,1927年获诺贝尔物理学奖康普顿散射曲线的特点: 1.除原波长?0外出现了移向长波方向的新的散射波长? 。 2.新波长? 随散射角的增大而增大。 散射中出现 ?≠?0 的现象,称为康普顿散射。波长的偏移为康普顿效应光子理论对康普顿效应的解释 康普顿效应是光子和电子作弹性碰撞的结果,具体解释如下: 2. 若光子和束缚很紧的内层电子相碰撞,光子将与整个原子交换能量,由于光子质量远小于原子质量,根据碰撞理论, 碰撞前后光子能量几乎不变,波长不变。
因为碰撞中交换的能量和碰撞的角度有关,所以波长改变和散射角有关。1. 若光子和外层电子相碰撞,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长。 康普顿散射实验的意义(1)有力地支持了爱因斯坦“光量子”假设; (2)首次在实验上证实了“光子具有动量”
的假设;(3)证实了在微观世界的单个碰撞事件中,
动量和能量守恒定律仍然是成立的。康普顿的成功也不是一帆风顺的,在他早期的
几篇论文中,一直认为散射光频率的改变是由于
“混进来了某种荧光辐射”;在计算中起先只
考虑能量守恒,后来才认识到还要用动量守恒。康普顿于1927年获诺贝尔物理奖。康普顿效应光子的能量和动量光子的能量由于光子的质量光子的动量光子的动量动量、能量是描述粒子的,频率和波长则是用来描述波的。光具有粒子性也具有波动,称为光的波粒二象性。