七年级数学上册第3章整式及其加减教案(8份打包)(新版)北师大版

文档属性

名称 七年级数学上册第3章整式及其加减教案(8份打包)(新版)北师大版
格式 zip
文件大小 1.3MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2019-07-13 09:48:53

文档简介

3.1 字母表示数




1.知道现实情境中字母表示数的意义,初步形成符号感.
2.会用字母表示一些简单问题情境中的数量关系和变化规律.
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.                   

一、情境导入
我们不少同学都是唱着儿歌长大的,朗朗上口、童趣横生的儿歌有的至今难以忘怀.其中有一首名叫《数蛤蟆》的儿歌,你想起来了吗?
一只青蛙一张嘴,两只眼睛四条腿,一声扑通跳下水;两只青蛙两张嘴,四只眼睛八条腿,两声扑通跳下水;三只青蛙三张嘴,六只眼睛……;a只青蛙a张嘴,2a只眼睛4a条腿.由此看出a是一个字母,它代表“很多只”的数量.用字母a可以清楚地表示出青蛙、嘴、眼睛、腿和跳水声之间的数量关系.
今天我们就学习用字母表示数.
二、合作探究
探究点一:用字母表示实际问题中的数量关系
用字母表示下列问题中的数量关系:
(1)为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为     元;
(2)在运动会中,一班总成绩为m分,二班比一班总成绩的还多5分,则二班的总成绩为    ;
(3)某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格为       元.
解析:(1)用购买m个篮球的总价加上n个排球的总价表示.所以购买这些篮球和排球的总费用为(80m+60n)元;(2)二班的总成绩为m+5;(3)根据题意得:m(1+50%)(1-30%)(1-10%)=0.945m(元).
  方法总结:像这样的实际问题要先找出各个量之间的关系.要抓住关键词语,明确它们之间的意义及它们之间的关系,如和、差、积、商、大、小、多、少、倍、分等,注意数量关系的运算顺序,正确使用运算符号及括号.






探究点二:用字母表示几何图形中的数量关系
用字母表示图中阴影部分的面积:
  
  (1)      (2)
  解析:(1)图中阴影部分的面积是正方形中挖去一个圆后剩下的部分,且正方形的边长是a,圆的直径也是a,则圆的半径是;(2)图中阴影部分是长方形中挖去4个小正方形后剩下的部分,且长方形的长为a,宽为b,小正方形的边长为x.
  解:(1)S=a2-π·()2;(2)S=ab-4x2.
  方法总结:将不规则图形的面积转化为规则图形(如长方形、圆、三角形等)的面积的和或差是解决求阴影部分面积问题的关键.
探究点三:用字母表示图形规律
(娄底中考)如图是一组有规律的图案,第一个图案由4个▲组成,第二个图案由7个▲组成,第三个图案由10个▲组成,第四个图案由13个▲组成,……,则第n(n为正整数)个图案由    个▲组成.

解析:第一个图案由4个▲组成,即4=3×1+1;第二个图案由7个▲组成,即7=3×2+1;第三个图案由10个▲组成,即10=3×3+1,……,由此可知,第n个图案由(3n+1)个▲组成.故填(3n+1).
  方法总结:规律的探索往往要经历从特殊(具体实例)到一般(用字母表示)再到特殊(验证)的过程.
三、板书设计

通过本课时的教学要让学生经历在实际问题中用字母表示数,初步理解用字母表示数的意义及目的,让学生循序渐进的学习本部分内容,可以先用数,后用字母来表示.让学生在现实情境中去理解、感悟、体会字母能够代替数,发展学生的符号感.在数学教学中,让学生逐步学会用代数的思想方法分析和解决问题,体会其优越性,让学生体验成就感.









PAGE



3



3.2 代数式
第1课时 代数式




1.在具体情境中,进一步理解字母表示数的意义.
2.能解释一些简单代数式的实际背景或几何意义.               

一、情境导入
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

1.思考:(1)若正方形的边长为a,则正方形的面积是    ,体积是    W.
(2)设n表示一个数,则它的相反数是    ;
(3)铅笔的单价是x元,钢笔的单价是铅笔单价的2.5倍,则钢笔的单价是    元.
(4)一辆汽车的速度是v千米/时,行驶t小时所走过的路程为    千米.
2.观察所列代数式包含哪些运算,有何共同的运算特征.
二、合作探究
探究点一:代数式的识别
有下列式子:x2,m-n>1,p+q,ab,s=πR2,2016,代数式有(  )
A.3个 B.4个 C.5个 D.6个
  解析:代数式是用运算符号把数和字母连接而成的式子,m-n>1是用不等号“>”连接而成的式子、s=πR2是用等号“=”连接而成的式子,它们都不是代数式.而x2,p+q,ab,2016都是代数式.故选B.
  方法总结:明确代数式的意义是正确识别代数式的前提.式子中有关系符号(如等号或不等号)的都不是代数式.
探究点二:列代数式
用代数式表示:(1)x与2的平方和;(2)x与2的和的平方;(3)x的平方与2的和;(4)x与2的平方的和.
  解析:这四个小题,都有关键词“平方”和“和”,但这两个词在四个小题中的语序不一样.(1)中是先平方再求和,即x2+22;(2)中是先求和再平方,即(x+2)2;(3)中是先x的平方再求和,即x2+2;(4)中是先2的平方再求和,即x+22.
解:(1)x2+4;(2)(x+2)2;(3)x2+2;(4)x+4.
  方法总结:用代数式表示数量关系时,一般要将句子分层,逐层分析,一步步列出代数式.
探究点三:代数式的意义
下列代数式可以表示什么?
(1)2a-b;(2)2(a-b).
解析:解释代数式的意义,可以从两个方面入手,一是从字母表示数的角度考虑;二是可以联系生活实际来举例说明.不管采用哪种方式,一定要注意运算形式和运算顺序.
解:(1)2a与b的差;或a的2倍与b的差;或用a表示一本作业本的价格,用b表示一只铅笔的价格,则2a-b表示买两本作业本比买一支铅笔多的钱数;(2)2与a-b的积;或a与b的差的2倍.
  方法总结:描述一个代数式的意义,可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中字母一定的实际意义加以描述.
探究点四:根据实际问题列代数式
用代数式表示下列各式:
(1)王明同学买2本练习册花了n元,那么买m本练习册要花多少元?
(2)正方体的棱长为a,那么它的表面积是多少?体积呢?
解析:(1)根据买2本练习册花了n元,得出买1本
练习册花元,再根据买了m本练习册,即可列出算式.(2)根据正方体的棱长为a和表面积公式、体积公式列出式子.
解:(1)∵买2本练习册花了n元,∴买1本练习册花元,∴买m本练习册要花mn元;
(2)∵正方体的棱长为a,∴它的表面积是6a2;它的体积是a3.
  方法总结:此题考查了列代数式,用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键.
三、板书设计


教学过程中,应拓展学生的思维,培养他们观察、分析及抽象思维能力、语言能力、创造能力和类比联想能力.









PAGE



3



第2课时 代数式的求值




1.会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法.
2.会利用代数式求值推断代数式反映的规律.
3.能解释代数式求值的实际应用.                  

一、情境导入
谁说数学学不好,这不,先前数学成绩很差的小胡,经过不断努力,不但成绩直线上升,而且现在还能设计程序计算呢!如图就是小胡设计的一个程序.当输入x的值为3时,你能求出输出的值吗?

二、合作探究
探究点一:直接代入法求代数式的值
当a=,b=3时,求代数式2a2+6b-3ab的值.
  解析:直接将a=,b=3代入2a2+6b-3ab中即可求得.
解:原式=2×()2+6×3-3××3=+18-=14.
  方法总结:(1)代入时要“对号入座”,避免代错字母;(2)代入后要恢复省略的乘号;(3)分数的立方、平方运算,要用括号括起来.
探究点二:利用程序图求代数式的值
有一数值转换器,原理如图所示.若开始输入的x的值是5,则发现第1次输出的结果是8,第2次输出的结果是4,…,则第2016次输出的结果是    W.

解析:按如图所示的程序,当输入x=5时,第1次输出5+3=8;当输入x=8时,第2次输出×8=4;当输入x=4时,第3次输出×4=2;当输入x=2时,第4次输出×2=1;当输入x=1时,第5次输出1+3=4;则第6次输出×4=2,第7次输出×2=1,……,不难看出,从第2次开始,其运算结果按4,2,1三个数为一周期循环出现.因为(2016-1)÷3=671…2,所以第2016次输出的结果为2.
  方法总结:这种程序运算的特点是程序有多个分支,要先对输入的数据进行判断,再选择适当的某个分支按照指明的程序进行运算.
探究点三:整体代入法求值
(湘西州中考)已知x-2y=3,则代数式6-2x+4y的值为(  )
A.0 B.-1 C.-3 D.3
  解析:此题无法直接求出x、y的值,这时,我们就要考虑特殊的求值方法.根据已知x-2y=3及所求6-2x+4y,只要把6-2x+4y变形后,再整体代入即可求解.因为x-2y=3,所以6-2x+4y=6-2(x-2y)=6-2×3=0.故选A.
  方法总结:整体代入法是数学中一种重要的方法,同学们应加以关注.
探究点四:代数式在实际问题中的应用
如图所示,某水渠的横断面为梯形,如果水渠的上口宽为am,水渠的下口宽和深都为bm.

(1)请你用代数式表示水渠的横断面面积;
(2)计算当a=3,b=1时,水渠的横断面面积.
解析:(1)根据梯形面积=(上底+下底)×高,即可用含有a、b的代数式表示水渠横断面面积;(2)把a=3、b=1带入到(1)中求出的代数式中,其结果即为水渠的横断面面积.
解:(1)∵梯形面积=(上底+下底)×高,∴水渠的横断面面积为:(a+b)b(m2);
(2)当a=3,b=1时水渠的横断面面积为(3+1)×1=2(m2).
  方法总结:解答本题时需搞清下列几个问题:(1)题目中给出的是什么图形?(2)这种图形的面积公式是什么?(3)根据公式求图形的面积需要知道哪几个量?(4)这些量是否已知或能求出?搞清楚了这些问题,求解就水到渠成.
三、板书设计


教学过程中,应通过活动使学生感知代数式运算在判断和推理上的意义,增强学生学习数学的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.










PAGE



3



3.3 整式




1.理解单项式、多项式及整式的概念,会判断单项式及整式.
2.掌握单项式的系数与次数、多项式的次数与项的概念,明确它们之间的关系,并能灵活运用.                   

一、情境导入

方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),现在方方和圆圆想算出窗帘的装饰物的面积分别是多少?窗户能射进阳光的面积分别是多少(窗框面积不计)?要解决这些问题,我们来学习下面的内容,就会知道答案.
二、合作探究
探究点一:单项式、多项式与整式的识别
指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?
x2+y2,-x,,10,6xy+1,,m2n,2x2-x-5,,a7.
解析:根据整式、单项式、多项式的概念和区别来进行判断.
解:,的分母中含有字母,既不是单项式,也不是多项式,更不是整式.
单项式有:-x,10,m2n,a7;
多项式有:x2+y2,,6xy+1,2x2-x-5;
整式有:x2+y2,-x,,10,6xy+1,m2n,2x2-x-5,a7.
  方法总结:(1)分母中含有字母的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.
探究点二:单项式与多项式
【类型一】 确定单项式的系数和次数
分别写出下列单项式的系数和次数.
(1)-ab2;(2);(3).
解析:单项式的系数就是单项式中的数字因数;单项式的次数就是单项式中所有字母指数的和,只要将这些字母的指数相加即可.
解:(1)单项式的系数是-1,次数是3;
(2)单项式的系数是,次数是6;
(3)单项式的系数是,次数是3.
  方法总结:(1)当单项式的系数是1或-1时,“1”通常省略不写;单项式的系数是带分数时,通常写成假分数.单项式的系数包括前面的符号.(2)我们把常数项的次数看做0.确定单项式的次数时,单项式中单独一个字母的指数1不能忽略,如-3x3y,它的指数是4而不是3.(3)π是圆周率,是一个确定的数,不是字母.
【类型二】 确定多项式的项和次数
写出下列各多项式的项数和次数,并指出是几次几项式.
(1)x2-3x+5;
(2)a+b+c-d;
(3)-a2+a2b+2a2b2.
解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.
解:(1)x2-3x+5的项数为3,次数为2,是二次三项式;
(2)a+b+c-d的项数为4,次数为1,是一次四项式;
(3)-a2+a2b+2a2b2的项数为3,次数为4,是四次三项式.
  方法总结:(1)多项式的项包括它的符号;(2)多项式的次数是多项式里次数最高的项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.
探究点三:与多项式有关的探究性问题
【类型一】 根据次数确定未知字母的值
已知-5xm+104xm-4xmy2是关于x、y的六次多项式,求m的值,并写出该多项式.
解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m+2=6,解得m=4,进而可得此多项式.
解:由题意得m+2=6,
解得m=4,
此多项式是-5x4+104x4-4x4y2.
  方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.
【类型二】 根据不含某项确定未知字母的值
若关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,求m、n的值.
解析:多项式不含二次项和一次项,则二次项和一次项系数为0.
解:∵关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,
∴m=0,n-1=0,则m=0,n=1.
  方法总结:多项式不含哪一项,则哪一项的系数为0.
探究点四:多项式的应用
如图,某居民小区有一块宽为2a米,长为b米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?

解析:四个角围成一个半径为a米的圆,阴影部分面积是长方形面积减去一个圆面积.
解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.
  方法总结:用式子表示实际问题中的数量关系时,首先要分清语言叙述中关键词的含义,理清它们之间的数量关系和运算顺序.
探究点五:规律探究问题
如图所示,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是    W.

解析:第(1)个图形的周长为3,;第(2)个图形的周长为4=3+1;第(3)个图形的周长为5=3+1×2;第(4)个图形的周长为6=3+1×3.故第(n)个图形的周长为3+1(n-1)=2+n.
  方法总结:解答此类问题应采用比较归纳的方法和由特殊到一般的方法.通过探究特例,从中发现一些基本规律,然后推广到一般情况.
三、板书设计


教学过程中,应通过丰富的现实情景,使学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,发展“用数学”的信心,培养学生认识从特殊与一般的辩证关系.










PAGE



4



3.4 整式的加减
第1课时 合并同类项




1.理解同类项的概念.
2.了解合并同类项的法则,能进行同类项的合并,解决一些实际问题.                

一、情境导入
浆糊的好朋友万事通学习成绩非常优秀,他也陪浆糊来到了整式王国.当他看到几个排好队的单项式后,竟将多项式合并为二项式.其过程如下:
5x2-6xy+x2-3xy-8x2=5x2+x2-8x2-6xy-3xy=(5x2+x2-8x2)+(-6xy-3xy)=-2x2-9xy.
你知道万事通是如何合并的吗?
二、合作探究
探究点一:同类项
【类型一】 同类项的识别
下列各组单项式中,不是同类项的是(  )
A.3a与-4a B.x2y3与-x3y2
C.8nm与-5nm D.π与2016
解析:B项中虽然x2y3与-x3y2所含的字母相同,但不满足相同字母的指数相同,所以它们不是同类项.故选B.
  方法总结:判定几个单项式是同类项需要满足两个条件:(1)所含字母相同;(2)相同字母的指数分别相同.
【类型二】 已知两个单项式是同类项,求字母指数的值
若-5x2ym与xny是同类项,则m+n的值为(  )
A.1   B.2   C.3   D.4
解析:∵-5x2ym和xny是同类项,∴n=2,m=1,∴m+n=1+2=3,故选C.
  方法总结:注意掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.
探究点二:合并同类项
将下列各式合并同类项.
(1)-x-x-x;
(2)2x2y-3x2y+5x2y;
(3)2a2-3ab+4b2-5ab-6b2;
(4)-ab3+2a3b+3ab3-4a3b.
解析:利用乘法的分配律,再根据合并同类项的法则“把同类项的系数相加,所得结果作为系数,字母和字母的指数不变”进行计算.
解:(1)-x-x-x=(-1-1-1)x=-3x;
(2)2x2y-3x2y+5x2y=(2-3+5)x2y=4x2y;
(3)2a2-3ab+4b2-5ab-6b2
=2a2+(4-6)b2+(-3-5)ab
=2a2-2b2-8ab;
(4)-ab3+2a3b+3ab3-4a3b
=(-1+3)ab3+(2-4)a3b
=2ab3-2a3b.
  方法总结:合并同类项的时候,为了不漏项,可用不同的符号(如直线、曲线、圆圈)标记不同的同类项.
探究点三:化简求值
化简求值:2a2b-2ab+3-3a2b+4ab,其中a=-2,b=.
解析:原式合并同类项得到最简结果,把a与b的值代入计算即可求出值.
解:2a2b-2ab+3-3a2b+4ab
=(2-3)a2b+(-2+4)ab+3
=-a2b+2ab+3.
将a=-2,b=代入得:
原式=-(-2)2×+2×(-2)×+3=-1.
  方法总结:对多项式化简求值时,一般先化简,即先合并同类项,再代入值计算结果,在算式中代入负数时,要注意添加负号.
探究点四:合并同类项的应用
一天,王村的小明奶奶提着一篮子土豆去换苹果,双方商定的结果是:1千克土豆换0.5千克苹果.当称完带篮子的土豆重量后,摊主对小明奶奶说:“别称篮子的重量了,称苹果时也带篮子称,这样既省事又互不吃亏.”你认为摊主的话有道理吗?请你用所学的有关数学知识加以判定.
解析:要看摊主说得有没有道理,只要按称篮子和不称篮子两种方式分别求出所得苹果的重量,比较即可.
解:设土豆重a千克,篮子重b千克,则应换苹果0.5a千克.若不称篮子,则实换苹果为0.5a+0.5b-b=(0.5a-0.5b)千克,很明显小明奶奶少得苹果0.5b千克.所以摊主说得没有道理,这样做小明奶奶吃亏了.
  方法总结:体现了数学在生活中的运用.解决问题的关键是读懂题意,找到所求的量之间的关系.
三、板书设计


数学教学要紧密联系学生的生活实际,本节课从实际问题入手,引出合并同类项的概念.通过独立思考、讨论交流等方式归纳出合并同类项的法则,通过例题教学、练习等方式巩固相关知识.教学中应激发学生主动参与学习的积极性,培养学生思维的灵活性.









PAGE



3



第2课时 去括号




1.在具体情境中体会去括号的必要性,能运用运算律去括号.
2.总结去括号的法则,并能利用法则解决简单的问题.                   

一、情境导入

二、合作探究
探究点一:去括号,合并同类项
化简:
(1)-(a-b)+(4a-2b-c);
(2)2(2x-3y+z)-3(4x+y).
解析:应用去括号法则,先去括号,然后合并同类项.
  解:(1)原式=-a+b+4a-2b-c=3a-b-c;
(2)原式=4x-6y+2z-12x-3y=-8x-9y+2z.
  方法总结:用去括号法则时应注意:括号外的因数是正数时,去掉括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数时,去括号后式子各项的符号与原括号内式子相应各项的符号相反.
探究点二:含括号的整式的化简求值
先化简,再求值:已知x=-4,y=,求5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.
解析:将原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.
解:原式=5xy2-3xy2+4xy2-2x2y+2x2y-xy2=5xy2,
当x=-4,y=时,原式=5×(-4)×()2=-5.
  方法总结:解决本题时要注意去括号,去括号要注意顺序,先去小括号,再去中括号,最后去大括号.负数代入求值时,要加上括号.
探究点三:与绝对值、数轴相结合,代表式的化简
有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|a+b+c|-|a-b|+|b+c|.

解析:根据数轴上的数,右边的数总是大于左边的数,即可确定a,b,c的符号,进而确定式子中绝对值内的式子的符号,根据正数的绝对值是它本身,负数的绝对值是它的相反数,即可去掉绝对值符号对式子进行化简.
解:由图可知:a>0,b<0,c<0,|a|<|b|<|c|,∴a+c<0,a+b+c<0,a-b>0,b+c<0,∴原式=-(a+c)-(a+b+c)-(a-b)-(b+c)=-3a-b-3c.
  方法总结:本题考查了利用数轴,比较数的大小关系,对于含有绝对值的式子的化简,要根据绝对值内的式子的正负,去掉绝对值符号.
探究点四:含括号的整式的化简应用
某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压,调整为按售价的80%出售,又销售了60件.
(1)销售100件这种商品的总售价为多少元?
(2)销售100件这种商品共盈利多少元?
解析:(1)求出前40件的售价与后60件的售价即可确定出总售价;(2)由“利润=售价-成本”列出关系式即可得到结果.
解:(1)根据题意得:40(a+b)+60(a+b)×80%=88a+88b(元),则销售100件这种商品的总售价为(88a+88b)元;
(2)根据题意得:88a+88b-100a=-12a+88b(元),则销售100件这种商品共盈利(-12a+88b)元.
  方法总结:解决此类题目的关键是熟记去括号法则和熟练运用合并同类项的法则.

三、板书设计


本节课从已有的知识出发,借助情境导入使学生自然地体会去括号的必要性,并从过去熟悉的运算律入手归纳出去括号的法则.通过组织教学,让学生体验只有用科学的方法和态度才能学好数学.








PAGE



2



第3课时 整式的加减




1.会进行整式的加减运算,并能说明其中的道理.                   

一、情境导入

这年头,爱美的可真不少.这不,整式也要去瘦身,那我们就到整式王国的“减肥中心”去转转吧!
二、合作探究
探究点一:整式的加减运算
化简:3(2x2-y2)-2(3y2-2x2).
解析:先运用去括号法则去括号,然后合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.
解:3(2x2-y2)-2(3y2-2x2)=6x2-3y2-6y2+4x2=10x2-9y2.
  方法总结:去括号:①不要漏乘;②括号前面是“-”号时,去括号后括号里面的各项都要变号.
探究点二:整式的化简求值
【类型一】 整式的化简求值
化简求值:a-2(a-b2)-(a+b2)+1,其中a=2,b=-.
解析:原式去括号合并同类项得到最简结果,把a与b的值代入计算即可求出值.
解:原式=a-2a+b2-a-b2+1=-3a+b2+1,当a=2,b=-时,原式=-3×2+×(-)2+1=-6++1=-4.
  方法总结:化简求值时,一般先将整式进行化简,当代入求值时,要适当添上括号,否则容易发生计算错误,同时还要注意代数式中同一字母必须用同一数值代替,代数式中原有的数字和运算符号都不改变.
【类型二】 利用“无关”进行说理或求值
有这样一道题“当a=2,b=-2时,求多项式3a3b3-a2b+b-(4a3b3-a2b-b2)+(a3b3+a2b)-2b2+3的值”,马小虎做题时把a=2错抄成a=-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.
解析:先通过去括号、合并同类项对多项式进行化简,然后代入a,b的值进行计算.
解:原式=(3-4+1)a3b3+(-++)a2b+(1-2)b2+b+3=b-b2+3.因为它不含字母a,所以代数式的值与a的取值无关.
  方法总结:解答此类题的思路就是把原式化简,得到一个不含指定字母的结果,便可说明该式与指定字母的取值无关.
三、板书设计
整式的加减→实质是去括号、合并同类项

教学过程中,强调学生自主探索和合作交流,在探索的过程中,发展有条理地思考及语言表达能力,获得成功的体验,增强学数学的信心.









PAGE



2



3.5 探索与表达规律




1.探索运用符号表示数字规律和图形规律的方法.
2.提高观察图形、探索规律的能力,培养创新意识.                  

一、情境导入
今天我们来做游戏:数学活动小组的n位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报(+1),第2位同学报(+1),…,请问第n位同学报的数是什么?这样得到的n个数的积又是多少呢?
二、合作探究
探究点一:数字规律问题
观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这组数的第n个数是    W.
解析:观察这组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,故这组数的第n个数为.
  方法总结:解答此类问题要从所给的一些特殊数字中找出其中的变化规律,进而根据规律归纳总结出一般性的结论.
探究点二:数阵(表)规律问题

如图所示是一个按规律排列的数表,请用含n的代数式(n为正整数)表示数表中第n行第n列的数    .
解析:观察数表可知:第一行第一列至第四行第四列的数依次为1,3,7,13,对这些数字作分解、组合如下:
第一行第一列:1=0×1+1;
第二行第二列:3=1×2+1;
第三行第三列:7=2×3+1;
第四行第四列:13=3×4+1;
  …      …
由此可以发现,所分解的式子乘积中的第1个因数为行(列)数减1,第2个因数恰为行(或列)数.所以第n行第n列的数是(n-1)n+1.
  方法总结:在认真观察、分析的基础上,将数或式中的有关数字进行分解、组合变形,从中探索变化规律是解决此类问题的关键.
探究点三:图形规律问题
观察下列图形:

(1)依照此规律,第20个图形共有几个五角星?
(2)摆成第n个图形需要几个五角星?
(3)摆成第2015个图形需要几个五角星?
解析:通过观察已知图形可得:每个图形都比其前一个图形多3个五角星,根据此规律即可解答.
  解:(1)根据题意得,第1个图中,五角星有3个(3×1);第2个图中,五角星有6个(3×2);第3个图中,五角星有9个(3×3);第4个图中,五角星有12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.(2)摆成第n个图形需要五角星3n个.(3)摆成第2015个图形需要6045个五角星.
  方法总结:此题首先要结合图形具体数出几个值,注意由特殊到一般的分析方法.此题的规律为摆成第n个图形需要3n个五角星.

三、板书设计


教学过程中,强调学生自主探索和合作交流,经历观察、操作、验证、归纳、分析、猜想、抽象、积累、类比、转化等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感态度和价值观.









PAGE



3