3.2.2 函数模型的应用实例(一)
(一)教学目标
1.知识与技能:初步掌握一次和二次函数模型的应用,会解决较简单的实际应用问题.
2.过程与方法:经历运用一次和二次函数模型解决实际问题,提高学生的数学建模能力.
3.情感、态度与价值观:了解数学知识来源于生活,又服务于实际,从而培养学生的应用意识,提高学习数学的兴趣.
(二)教学重点、难点
一次和二次函数模型的应用是本节的重点,数学建模是本节的难点.
(三)教学方法
本节内容主要是例题教学,因此采用学生探究解题方法,总结解题规律,教师启发诱导的方法进行教学.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
复习引入 回顾一次函数和二次函数的有关知识. 教师提出问题,学生回答.师:一次函数、二次函数的解析式及图象与性质.生:回答上述问题. 以旧引新,激发兴趣.
应用举例 1.一次函数模型的应用例1 某列火车从北京西站开往石家庄,全程277km.火车出发10min开出13km后,以120km/h的速度匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系,并求火车离开北京2h内行驶的路程. 教师提出问题,让学生读题,找关键字句,联想学过的函数模型,求出函数关系式.学生根据要求,完成例1的解答.例1 解:因为火车匀速运动的时间为(200 – 13)÷120 = (h),所以.因为火车匀速行驶时间t h所行驶路程为120t,所以,火车运行总路程S与匀速行驶时间t之间的关系是2h内火车行驶的路程=233(km). 通过此问题背景,让学生恰当选择相应一次函数模型解决问题,加深对函数概念本质的认识和理解.让学生体验解决实际问题的过程和方法.
解题方法:1.读题,找关键点;2.抽象成数学模型;3.求出数学模型的解;4.做答. 学生总结,教师完善. 培养学生分析归纳、概括能力.从而初步体验解应用题的规律和方法.
2.二次函数模型的应用例2 某农家旅游公司有客房300间,每间日房租20元,每天都客满.公司欲提高档次,并提高租金.如果每间客房每日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高? 让学生自己读题,并回答下列问题:①题目求什么,应怎样设未知量;②每天客房的租金收入与每间客房的租金、客房的出租数有怎样的关系;③学生完成题目.法一:用列表法求解.此法可作为学生探求思路的方法,但由于运算比较繁琐,一般不用,应以法二求解为重点.对法二让学生读题,回答问题.教师指导,学生自己动手解题.师生合作由实际问题建模,让学生尝试解答.例2 解答:方法一 依题意可列表如下:x y 0 300×20 = 6000 1 (300 – 10×1)(20 + 2×1) = 6380 2 (300 – 10×2)(20 + 2×2) = 6720 3 (300 – 10×3)(20 + 2×3) = 7020 4 (300 – 10×4)(20 + 2×4) = 7280 5 (300 – 10×5)(20 + 2×5) = 7500 6 (300 – 10×6)(20 + 2×6) = 7680 7 (300 – 10×7)(20 + 2×7) = 7820 8 (300 – 10×8)(20 + 2×8) =7920 9 (300 – 10×9)(20 + 2×9) = 7980 10 (300 – 10×10)(20 + 2×10) = 8000 11 (300 – 10×11)(20 + 2×11) = 7980 12 (300 – 10×12)(20 + 2×12) = 7920 13 (300 – 10×13)(20 + 2×13) = 7820 … …
由上表容易得到,当x = 10,即每天租金为40元时,能出租客房200间,此时每天总租金最高,为8000元.再提高租金,总收入就要小于8000元了.方法二 设客房租金每间提高x个2元,则将有10x间客房空出,客房租金的总收入为y = (20 + 2x) (300 – 10x ) = –20x2 + 600x – 200x + 6000 = –20(x2 – 20x + 100 – 100) + 6000 = –20(x – 10)2 + 8000.由此得到,当x = 10时,ymax = 8000.即每间租金为20 + 10×2 = 40(元)时,客房租金的总收入最高,每天为8000元. 解应用题首先要读懂题意,设计出问题指导学生审题,建立正确的数学模型.同时,培养学生独立解决问题的能力.
3.分将函数模型的应用例3 一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数skm与时间th的函数解析式,并作出相应的图象. 生:解答:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.阴影部分的面积表示汽车在这5小时内行驶的路程为360km.(2)根据图,有这个函数的图象如图所示. 实际应用用问题解决的一般步骤:理解问题简化假设数学建模解答模型检验模型评价与应用的进一步深体.
巩固练习 课堂练习习题1.如果一辆汽车匀速行驶,1.5h行驶路程为90km,求这辆汽车行驶路程与时间之间的函数关系,以及汽车3h所行驶的路程.习题2.已知某食品5kg价格为40元,求该食品价格与重量之间的函数关系,并求8kg食品的价格是多少元.习题3.有300m长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块矩形菜地,问矩形的长、宽各为多少时,这块菜地的面积最大?习题4.某市一种出租车标价为1.20元/km,但事实上的收费标准如下:最开始4km内不管车行驶路程多少,均收费10元(即起步费),4km后到15km之间,每公里收费1.20元,15km后每公里再加收50%,即每公里1.80元.试写出付费总数f与打车路程x之间的函数关系. 学生练习,师生点评. 1.设汽车行驶的时间为t h,则汽车行驶的路程Skm与时间t h之间的函数关系为S = vt. 当t = 1.5时,S = 90,则v = 60. 因此所求的函数关系为S=60t, 当t = 3时,S = 180, 所以汽车3h所行驶的路程为180km. 2.设食品的重量为xkg,则食品的价格y元与重量xkg之间的函数关系式为y=8x,当x = 8时,y = 64, 所以当8kg食品的价格为64元. 3.设矩形菜地与墙相对的一边长为xcm,则另一组对边的长为m,从而矩形菜地的面积为: 当x = 150时,Smax = 11250. 即当矩形的长为150m,宽为75m时,菜地的面积最大. 4.解:所求函数的关系式为 学生动手实践、体验所学方法,从而提升解应用题的技能.
归纳小结 课堂小结 解决应用用问题的步骤: 读题—列式—解答. 学生总结,师生完善 使学生养成归纳总结的好习惯.让学生初步掌握数学建模的基本过程.
布置作业 习题2—3B第1、3题: 教材第71页“思考与讨论”. 学生练习 使学生巩固本节所学知识与方法.
备选例题
例1 某游艺场每天的盈利额y元与售出的门票数x张之间的关系如图所示,试问盈利额为750元时,当天售出的门票数为多少?
【解析】根据题意,每天的盈利额y元与售出的门票数x张之间的函数关系是:
(1)当0≤x≤400时,由3.75x=750,得x=200.
(2)当400≤x≤600时,由1.25x + 1000 = 750,得x = – 200 (舍去).
综合(1)和(2),盈利额为750元时,当天售出的门票数为200张.
答:当天售出的门票数为200张时盈利额为750元.
例2 某个经营者把开始六个月试销A、B两种商品的逐月投资与所获纯利润列成下表:
投资A种商品金额(万元) 1 2 3 4 5 6
获纯利润 (万元) 0.65 1.39 1.85 2 1.84 1.40
投资B种商品金额(万元) 1 2 3 4 5 6
获纯利润 (万元) 0.25 0.49 0.76 1 1.26 1.51
该经营者准备下月投入12万元经营这两种产品,但不知投入A、B两种商品各多少才最合算. 请你帮助制定一个资金投入方案,使得该经营者获得最大的利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).
【解析】以投资额为横坐标,纯利润为纵坐标,在直角坐标系中画出散点图:
据此,可考虑用下列函数分别描述上述两组数据之间的对应关系.
y = – a (x – 4)2 + 2 (a>0) ①
y = bx ②
把x = 1,y = 0.65代入①式,得
0.65 = – a (1 – 4)2 + 2,
解得a = 0.15.
故前六个月所获纯利润关于月投资A商品的金额的函数关系式可近似地用y = – 0.15(x – 4)2 + 2表示,再把x = 4,y = 1代入②式,得b = 0.25,故前六个月所获利润关于月投资B种商品的金额的函数关系可近似地用y = 0.25x表示.
设下月投资A种商品x万元,
则投资B种商品为(12 – x)万元,可获纯利润
y = – 0.15 (x – 4)2 + 2 + 0.25 (12 – x)
= – 0.15x2 + 0.95x + 2.6,
当≈3.2时,
≈4.1.
故下月分别投资A、B两种商品3.2万元和8.8万元,可获最大纯利润4.1万元.
【评析】幂函数模型的应用题经常以二次函数的形式出现,要注意y = x2变换到y = a (x – m)2 + b后发生的变化.
3.2.2 函数模型的应用实例(二)
(一)教学目标
1.知识与技能
掌握应用指数型,拟合型函数模型解答实际应用问题的题型特征,提升学生解决简单的实际应用问题的能力.
2.过程与方法
经历实际应用问题的求解过程,体验指数函数模型、拟合函数模型的题型特征,学会运用函数知识解决实际问题.
3.情感、态度与价值观
了解数学知识来源于生活,又服务于实际,从而培养学生的数学应用意识,提高学生学习数学的兴趣.
(二)教学重点与难点
重点:指数函数模型、拟合函数模型的应用
难点:依据题设情境,建立函数模型.
(三)教学方法
师生合作探究解题方法,总结解题规律.老师启发诱导,学生动手尝试相结合.从而形式应用指数函数模型,似合函数模型解决实际问题的技能.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
复习引入 例1 某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如表所示:销售单价/元 6 7 8 9 日均销售量/桶 480 440 400 360 销售单价/元 10 11 12 日均销售量/桶 320 280 240 请据以上数据作出分析,这个经营部怎样定价才能获得最大利润? 师生合作回顾一元一次函数,一元二次函数.分段函数建模实际问题的求解思路“审、建、解、检”生:尝试解答例1解:根据表,销售单价每增加1元,日均销售量就减少40桶.设在进价基础上增加x元后,日均销售利润为y 元,而在此情况下的日均销售量就为480–40(x–1)=520–40x(桶) 由于x>0且520–40x>0,即0<x<13,于是可得y=(520–40x)x–200 = –40x2+520x–200,0<x<13易知,当x=6.5时,y有最大值.所以,只需将销售单价定为11.5元,就可获得最大的利润.师:帮助课本剖析解答过程,回顾反思上节课的学习成果 以旧引新激发兴趣,再现应用技能.
应用举例 4.指数型函数模型的应用例1 人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型:y=y0ert,其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:年份 1950 1951 1952 1953 1954 人数/万人 55196 56300 57482 58796 60266 年份 1955 1956 1957 1958 1959 人数/万人 61456 62828 64563 65994 67207 (1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?例2 某地区不同身高的未成年男性的体重平均值如表身高/cm 60 70 80 90 100 110 体重/kg 6.13 7.90 9.90 12.15 15.02 17.50 身高/cm 120 130 140 150 160 170 体重/kg 20.92 26.86 31.11 38.85 47.25 55.05 (1)根据表提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重ykg与身高xcm的函数关系?试写出这个函数模型的解析式.(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?例2 解答:(1)以身高为横坐标,体重为纵坐标,画出散点图.根据点的分布特征,可考虑以y=a·bx作为刻画这个地区未成年男性的体重与身高关系的函数模型.如果取其中的两组数据(70,7.90),(160,47.25),代入y=a·bx得:,用计算器算得a≈2,b≈1.02.这样,我们就得到一个函数模型:y=2×1.02x.将已知数据代入上述函数解析式,或作出上述函数的图象,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高的关系.(2)将x=175代入y=2×1.02x得y=2×1.02175,由计算器算得y≈63.98.由于78÷63.98≈1.22>1.2,所以,这个男生偏胖.归纳总结:通过建立函数模型,解决实际实际问题的基本过程: 师:形如y=bacx函数为指数型函数,生产生活中以此函数构建模型的实例很多(如例1)生:在老师的引导下审题、建模、求解、检验、尝试完成此例师生合作总结解答思路及题型特征师生:共同完成例1 解答:(1)设1951~1959年的人口增长率分别为r1,r2,…,r9.由55196(1 + r1) = 56300,可得1951年的人口增长率r1≈0.0200.同理可得,r2≈0.0210,r3≈0.0229,r4≈0.0250,r5≈0.0197,r6≈0.0223,r7≈0.0276,r8≈0.0222,r9≈0.0184.于是,1951~1959年期间,我国人口的年均增长率为r(r1+r2+…+r9)÷9≈0.0221.令y?0=55196,则我国在1950~1959年期间的人口增长模型为y=55196e0.0221t,t∈N.根据表中的数据作出散点图并作出函数y=55196e0.0221t (t∈N)的图象由图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.(2)将y=130000代入y=55196e0.0221t,由计算器可得t≈38.76.所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力. 通过实例求解,提炼方法整合思路提升能力.
巩固练习 练习1已知1650年世界人口为5亿,当时人口的年增长率为0.3%;1970年世界人口为36亿,当时人口的年增长率为2.1%. (1)用马尔萨斯人口模型计算,什么时候世界人口是1650年的2倍?什么时候世界人口是1970年的2倍? (2)实际上,1850年以前世界人口就超过了10亿;而2003年世界人口还没有达到72亿.你对同样的模型得出的两个结果有何看法? 解答:(1)已知人口模型为y = y0en, 其中y0表示t = 0时的人口数,r表示人口的年增长率. 若按1650年世界人口5亿,年增长率为0.3%估计,有y = 5e0.003t. 当y = 10时,解得t≈231. 所以,1881年世界人口约为1650年的2倍. 同理可知,2003年世界人口数约为1970年的2倍. (2)由此看出,此模型不太适宜估计跨度时间非常大的人口增长情况. 固化能力强化技巧
应用举例 4.拟合函数模型 例3 某皮鞋厂从今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双,1.3万双,1.37万双.由于产品质量好,款式新颖,前几个月的销售情况良好.为了推销员在推销产品时,接受定单不至于过多或过少,需要估计以后几个月的产量.厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人.假如你是厂长,就月份x,产量y 给出四种函数模型:y=ax+b,y=ax2+bx+c,,y=abx+c,你将利用哪一种模型去估算以后几个月的产量? 归纳总结: 所以y= –0.8×0.54+1.4=1.35 本题是对数据进行函数模拟,选择最符合的模拟函数.一般思路要画出散点图,然后作出模拟函数的图象,选择适合的几种函数类型后,再加以验证.函数模型的建立是最大的难点,另外运算量较大,必须借助计算机进行数据处理,函数模型的可靠性与合理性既需要数据检验,又必须与具体实际结合起来. 生:动手实践解题此例学生四个代表分别板书四种函数模型. 师:点评学生解答,总结,回答问题 解析:本题是通过数据验证,确定系数,然后分析确定函数的变化情况,最终找出与实际最接近的函数模型. 由题知A(1,1),B(2,1.2),C?(3,1.3),D(4,1.37). (1)设模拟函数为y=ax+b,将B、C两点的坐标代入函数式,有 所以得y = 0.1x + 1. (2)设y=ax2+bx+c,将A,B,C三点代入,有 所以y= –0.05x2+0.35x+0.7. (3)设,将A,B两点的坐标代入,有 所以 (4)设y=abx+c,将A,B,C三点的坐标代入,得 用已学函数模型综合求解问题,提升综合应用模型的能力.
巩固练习 练习2 某地区今年1月,2月,3月患某种传染病的人数分别为52,61,68.为了预测以后各月的患病人数,甲选择了模型y=ax2+bx+c,乙选择了模型y=pqx+r,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数.结果4月,5月,6月份的患病人分别为74,78,83,你认为谁选择的模型较好? 学生口述解题思路 老师借助电脑解答问题 (1)列表 (2)画散点图. (3)确定函数模型. 甲:y1= –x2 +12x+41, 乙:y2 = –52.07×0.778x + 92.5 (4)做出函数图象进行比较. 计算x = 6时,y1 = 77,y2 = 80.9. 可见,乙选择的模型较好. 固化解题技巧
归纳总结 1.数学模型 所谓数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表述的一种数学结构.数学模型剔除了事物中一切与研究目标无本质联系的各种属性,在纯粹状态下研究数量关系和空间形式,函数就是最重要的数学模型,用函数解决方程问题,使求解变得容易进行,这是数学模型间的相互转换在发挥作用.而用函数解决实际问题,则体现了数学模型是联系数学与现实世界的桥梁. 2.关于数学建模中的假设 就一般的数学建模来说,是离不开假设的,如果在问题的原始状态下不作任何假设,将所有的变化因素全部考虑进去,对于稍复杂一点的问题就无法下手了.假设的作用主要表现在以下几个方面:(1)进一步明确模型中需要考虑的因素和它们在问题中的作用.通常,初步接触一个问题,会觉得围绕它的因素非常多,经仔细分析筛查,发现有的因素并无实质联系,有的因素是无关紧要的,排除这些因素,问题则越发清晰明朗.在假设时就可以设这些因素不需考虑. (2)降低解题难度.由于每一个解题者的能力不同,经过适当的假设就可以有能力建立数学模型,并且得到相应的解. 一般情况下,是先在最简单的情形下组建模型,然后通过不断地调整假设使模型尽可能地接近实际,得到更满意的解. 师生合作交流归纳知识,整合解题体会 整合理论培养学习能力
课后练习 3.2 第四课时 习案 学生独立完成 固化知识提高能力