倒数的认识的教学设计
教学内容
新课标六年级上册课本P28页的例1,做一做,第29页的练习六。
教学目标:
使学生理解倒数的意义,掌握求倒数的方法。
能比较熟练地写出一个数的倒数。
教学重点:倒数的意义与求法。
教学难点:理解“互为”的意义,明确倒数只是表示两个数间的关系。
教学过程:
(引入)先让我们先来看看语文中有趣的“倒数”现象(课件显示)
如汉字“吴——吞”,“杏——呆”“土—干”“上—下”很有趣吧!
接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客 ”, 这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。
后来民间有人对出了绝妙的下联:僧游云隐寺,寺隐云游僧。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。
这是语文方面的倒数现象,数学方面把一个数倒一下会有什么现象,你们想知道吗?好,这节课我们一起来学习,有关数学的倒数问题,请看屏幕。
复习旧知
口算下列各题。
× × 5 × × 12
二.探索新知
(一).教学例1。
1..先计算,再观察,你有什么发现?
生:(1)乘积是1。
(2)相乘的两个数的分子,分母正好颠倒了位置。
你能不能举一两个这样的例子?
学生举例,教师板书。
(3)归纳倒数的意义。
师:像这样乘积是1的两个数,互为倒数。
板书:倒数的认识
乘积是1的两个数互为倒数
(4)说一说你对倒数意义的理解。
强调:(1)乘积是1。
(2)两个数。
(3)互为倒数
(二)教学例1
下面哪两个数互为倒数?
6 1 0
(1)学生回答,教师板书表示。
(2)你是怎样找一个数的倒数的?
学生回答,教师板书
分子、分母交换位置 的倒数是。
师:真分数的倒数是什么数?(假分数)
分子、分母交换位置 的倒数是。
师:假分数(大于1)的倒数是什么数?(真分数)
6= 分子、分母交换位置 6的倒数是
师:(非0)整数的倒数是什么?
分子是1的倒数是什么? (整数)
(3)想一想,1的倒数是多少?0有倒数吗?
先让学生说出自己的看法。
全班交流,教师简要说明。
师: 1的倒数是1,0没有倒数。
(三)尝试练习。
完成课文的“做一做”。
学生独立完成,然后与同伴交流。
全班反馈。
出示:的倒数是多少?0.75的倒数是多少?
学生四人小组讨论。
学生回答,老师板书:
小结:求小数的倒数的方法:小数 分数 倒数。
求带分数的倒数的方法:带分数 假分数 倒数。
三.巩固练习 完成练习六。
计算下面各题。
× × 39 — +
互说倒数。
下面的说法对不对?为什么?
(1) 与的乘积为1,所以 和互为倒数。( )
(2) × × =1,所以 、、互为倒数。
(3)0的倒数还是0。( )
(4)一个数的倒数一定比这个数小。( )
4. 将互为倒数的两个数用线连起来。(略)
四.提高练习。
填一填。
1.( )×5=( )×6=( )×7= ×( )=1
2. ×( )=( )×9=( )×=×( )
五.全课小结。
理解倒数是两个数之间的关系,知道求一个数的倒数就是把这个数的分子和分母交换位置。所有真分数的倒数都是假分数。大于1的假分数的倒数都是真分数。1的倒数是1。0没有倒数 。分数的分子是1的倒数都是整数。
六.作业。P29 练习六
七.板书设计
倒数的认识
乘积是1的两个数互为倒数。
分子、分母交换位置 的倒数是。
分子、分母交换位置 的倒数是。
6= 分子、分母交换位置 6的倒数是。
1的倒数是1,0没有倒数
求小数的倒数的方法:小数 分数 倒数。
求带分数的倒数的方法:带分数 假分数 倒数。