圆锥曲线基本题型总结:
提纲:
定义的应用:
定义法求标准方程:
涉及到曲线上的点到焦点距离的问题:
焦点三角形问题:
圆锥曲线的标准方程:
对方程的理解
求圆锥曲线方程(已经性质求方程)
各种圆锥曲线系的应用:
圆锥曲线的性质:
已知方程求性质:
求离心率的取值或取值范围
涉及性质的问题:
直线与圆锥曲线的关系:
位置关系的判定:
弦长公式的应用:
弦的中点问题:
韦达定理的应用:
定义的应用:
定义法求标准方程:
(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)
1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是( )
A.椭圆 B.直线
C.圆 D.线段 【注:2a>|F1 F2|是椭圆,2a=|F1 F2|是线段】
2.设B?-4,0),C?4,0),且△ABC的周长等于18,则动点A的轨迹方程为? )
A.+=1 ?y≠0) B.+=1 ?y≠0)
C.+=1 ?y≠0) D.+=1 ?y≠0) 【注:检验去点】
3.已知A?0,-5)、B?0,5),|PA|-|PB|=2a,当a=3或5时,P点的轨迹为? )
A.双曲线或一条直线
B.双曲线或两条直线
C.双曲线一支或一条直线
D.双曲线一支或一条射线 【注:2a<|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】
4.已知两定点F1?-3,0),F2?3,0),在满足下列条件的平面内动点P的轨迹中,是双曲线的是? )
A.||PF1|-|PF2||=5
B.||PF1|-|PF2||=6
C.||PF1|-|PF2||=7
D.||PF1|-|PF2||=0 【注:2a<|F1 F2|是双曲线】
5.平面内有两个定点F1?-5,0)和F2?5,0),动点P满足|PF1|-|PF2|=6,则动点P的轨迹方程是? )
A.-=1?x≤-4) B.-=1?x≤-3)
C.-=1?x≥4) D.-=1?x≥3) 【注:双曲线的一支】
6.如图,P为圆B:?x+2)2+y2=36上一动点,点A坐标为?2,0),线段AP的垂直平分线交直线BP于点Q,求点Q的轨迹方程.
/
7.已知点A(0,)和圆O1:x2+(y+)2=16,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程.
(2)涉及圆的相切问题中的圆锥曲线:
8.已知圆A:?x+3)2+y2=100,圆A内一定点B?3,0),圆P过B且与圆A内切,求圆心P的轨迹方程.
已知动圆M过定点B?-4,0),且和定圆?x-4)2+y2=16相切,则动圆圆心M的轨迹方程为? )
A.-=1 ?x>0) B.-=1 ?x<0)
C.-=1 D.-=1 【注:由题目判断是双曲线的一支还是两支】
9.若动圆P过点N?-2,0),且与另一圆M:?x-2)2+y2=8相外切,求动圆P的圆心的轨迹方程.
【注:双曲线的一支,注意与上题区分】
10.如图,已知定圆F1:x2+y2+10x+24=0,定圆F2:x2+y2-10x+9=0,动圆M与定圆F1、F2都外切,求动圆圆心M的轨迹方程.
/
11.若动圆与圆?x-2)2+y2=1相外切,又与直线x+1=0相切,则动圆圆心的轨迹是? )
A.椭圆 B.双曲线 C.双曲线的一支 D.抛物线
12.已知动圆M经过点A?3,0),且与直线l:x=-3相切,求动圆圆心M的轨迹方程.
【注:同上题做比较,说法不一样,本质相同】
13.已知点A?3,2),点M到F的距离比它到y轴的距离大.(M的横坐标非负)
?1)求点M的轨迹方程; 【注:体现抛物线定义的灵活应用】
?2)是否存在M,使|MA|+|MF|取得最小值?若存在,求此时点M的坐标;若不存在,请说明理由.
【注:抛物线定义的应用,涉及抛物线上的点到焦点的距离转化成到准线的距离】
(3)其他问题中的圆锥曲线:
14.已知A,B两地相距2 000 m,在A地听到炮弹爆炸声比在B地晚4 s,且声速为340 m/s,求炮弹爆炸点的轨迹方程. 【注:双曲线的一支】
15.如图所示,在正方体ABCD—A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与到直线C1D1的距离相等,则动点P的轨迹所在的曲线是( )
A.直线 B.圆
双曲线 D.抛物线
/ 【注:体现抛物线定义的灵活应用】
2.涉及到曲线上的点到焦点距离的问题:
16.设椭圆+=1 (m>1)上一点P到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )
A. B. C. D.
17.椭圆+=1的左右焦点为F1,F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为( )
A.32 B.16 C.8 D.4
18.已知双曲线的方程为-=1,点A,B在双曲线的右支上,线段AB经过双曲线的右焦点F2,|AB|=m,F1为另一焦点,则△ABF1的周长为( )
A.2a+2m B.4a+2m C.a+m D.2a+4m
19.若双曲线x2-4y2=4的左、右焦点分别是F1、F2,过F2的直线交右支于A、B两点,若|AB|=5,则△AF1B的周长为________.
20.设F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,且P到两个焦点的距离之差为2,则△PF1F2是( )
A.钝角三角形 B.锐角三角形 C.斜三角形 D.直角三角形
21.椭圆+=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|=________,∠F1PF2的大小为________.
【注:椭圆上的点到焦点的距离,最小是a-c,最大是a+c】
22.已知P是双曲线-=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为________.
【注:注意结果的取舍,双曲线上的点到焦点的距离最小为c-a】
23.已知双曲线的方程是-=1,点P在双曲线上,且到其中一个焦点F1的距离为10,点N是PF1的中点,求|ON|的大小?O为坐标原点). 【注:O是两焦点的中点,注意中位线的体现】
24.设F1、F2分别是双曲线-=1的左、右焦点.若点P在双曲线上,且·=0,则|+|等于( ) A.3 B.6 C.1 D.2
25.已知点P是抛物线y2=2x上的一个动点,则点P到点?0,2)的距离与点P到该抛物线准线的距离之和的最小值是? ) A. B.3 C. D.
【注:抛物线定义的应用,将抛物线上的点到焦点的距离转化成到准线的距离】
26.已知抛物线y2=4x上的点P到抛物线的准线的距离为d1,到直线3x-4y+9=0的距离为d2,则d1+d2的最小值是( ) A. B. C.2 D.
【注:抛物线定义的应用,将抛物线上的点到准线的距离转化成到焦点的距离】
27.设点A为抛物线y2=4x上一点,点B(1,0),且|AB|=1,则A的横坐标的值为( )
A.-2 B.0 C.-2或0 D.-2或2
【注:抛物线的焦半径,即定义的应用】
3.焦点三角形问题:
椭圆的焦点三角形周长
椭圆的焦点三角形面积:
推导过程:
双曲线的焦点三角形面积:
28.设P为椭圆+=1上一点,F1、F2是其焦点,若∠F1PF2=,求△F1PF2的面积.
【注:小题中可以直接套用公式。S=】
29.已知双曲线-=1的左、右焦点分别是F1、F2,若双曲线上一点P使得∠F1PF2=60°,求△F1PF2的面积.
【注:小题中可以直接套用公式。】
30.已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=12,求双曲线的标准方程.
31.已知点P(3,4)是椭圆+=1 (a>b>0)上的一点,F1、F2为椭圆的两焦点,若PF1⊥PF2,试求:
(1)椭圆的方程;
(2)△PF1F2的面积.
二、圆锥曲线的标准方程:
对方程的理解
32.方程+=1表示焦点在x轴上的椭圆,则实数a的取值范围是( )
A.(-3,-1) B.(-3,-2) C.(1,+∞) D.(-3,1)
33.若k>1,则关于x,y的方程?1-k)x2+y2=k2-1所表示的曲线是? )
A.焦点在x轴上的椭圆 B.焦点在y轴上的椭圆
C.焦点在y轴上的双曲线 D.焦点在x轴上的双曲线 【注:先化为标准方程形式】
34.对于曲线C:+=1,给出下面四个命题:
①曲线C不可能表示椭圆;
②当1③若曲线C表示双曲线,则k<1或k>4;
④若曲线C表示焦点在x轴上的椭圆,则135.已知椭圆x2sin α-y2cos α=1 (0≤α<2π)的焦点在y轴上,则α的取值范围是( )
A. B. C. D.
36.双曲线 -=1的一个焦点到中心的距离为3,求m的值. 【注:要根据焦点位置分情况讨论】
2.求曲线方程(已经性质求方程)
37.以-=-1的焦点为顶点,顶点为焦点的椭圆方程为( )
A.+=1 B.+=1 C.+=1 D.+=1
38.根据下列条件,求椭圆的标准方程.
(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10;
(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点. 【注:定义的应用】
39.已知椭圆的中心在原点,焦点在x轴上,离心率为,且过点P(-5,4),则椭圆的方程为______________.
40.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )
A.+=1 B.+=1 C.+=1 D.+=1
41.设椭圆+=1 (m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为( )
A.+=1 B.+=1 C.+=1 D.+=1
42.已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F1(-,0),且右顶点为D(2,0).设点A的坐标是.
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程.【注:相关点法求曲线方程】
43.双曲线的实轴长与虚轴长之和等于其焦距的倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )
A.-=1 B.-=1 C.-=1 D.-=1
44.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为( )
A.-=1 B.-=1 C.-=1 D.-=1
45.求与双曲线-=1有公共焦点,且过点?3,2)的双曲线方程.
46.双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.
47.根据下列条件写出抛物线的标准方程:
?1)经过点?-3,-1);
?2)焦点为直线3x-4y-12=0与坐标轴的交点.
48.抛物线y2=2px ?p>0)上一点M的纵坐标为-4,这点到准线的距离为6,则抛物线方程为________.
【注:定义的应用,焦半径】
三、圆锥曲线的性质:
1.已知方程求性质:
49.椭圆2x2+3y2=1的焦点坐标是( )
A. B.(0,±1) C.(±1,0) D. 【注:焦点位置】
50.椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是( )
A.5,3, B.10,6, C.5,3, D.10,6,
51.设a≠0,a∈R,则抛物线y=ax2的焦点坐标为( )
A. B. C. D.
【注:先化为抛物线的标准方程,此处最容易出错】
2.求离心率的取值或取值范围
52.直线x+2y-2=0经过椭圆+=1 (a>b>0)的一个焦点和一个顶点,则该椭圆的离心率等于______.
53.以等腰直角△ABC的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为____________.
54.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )
A. B. C. D.
【注:寻找a,b,c的等量关系,遇b换成a、c,整理成关于a、c的方程】
55.椭圆的两个焦点为F1、F2,短轴的一个端点为A,且三角形F1AF2是顶角为120°的等腰三角形,则此椭圆的离心率为________.
56.设椭圆+=1 (a>b>0)的左、右焦点分别是F1、F2,线段F1F2被点分成3∶1的两段,则此椭圆的离心率为________.
57.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )
A. B. C. D.
58.双曲线-=1的两条渐近线互相垂直,那么该双曲线的离心率是? )
A.2 B. C. D.
59.已知双曲线-=1 (a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )
A.(1,2] B.(1,2)
C.[2,+∞) D.(2,+∞)
四、直线与圆锥曲线的关系:
位置关系的判定:
60.已知抛物线的方程为y2=4x,直线l过定点P?-2,1),斜率为k.k为何值时,直线l与抛物线y2=4x:只有一个公共点;有两个公共点;没有公共点?
【注:双曲线和抛物线中,都有相交只有一个交点的情况,这是二次项系数为0的时候,因此相离、相切、相交有两个交点,需要用⊿判断时,必须要加上二次项系数不为0的条件】
61.已知抛物线y=4x2上一点到直线y=4x-5的距离最短,则该点坐标为? )
A.?1,2) B.?0,0) C. D.?1,4)
2.弦长公式的应用:
62.已知斜率为1的直线l过椭圆+y2=1的右焦点F交椭圆于A、B两点,求弦AB的长.
63.直线y=kx-2交抛物线y2=8x于A、B两点,若线段AB中点的横坐标等于2,求弦AB的长.
64.已知顶点在原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求抛物线的方程.
65.已知椭圆C:+=1 ?a>b>0)的离心率为,短轴一个端点到右焦点的距离为.
?1)求椭圆C的方程;
?2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.
66.已知过抛物线y2=2px(p>0)的焦点的直线交抛物线于A、B两点,且|AB|=p,求AB所在的直线方程.
弦的中点问题:
67.椭圆E:+=1内有一点P(2,1),则经过P并且以P为中点的弦所在直线方程为____________.
68.点P(8,1)平分双曲线x2-4y2=4的一条弦,则这条弦所在直线的方程是______________.
【注:双曲线中,可能求出来的弦并不存在,因此需要注意检验⊿>0】
69.若直线y=kx-2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k等于( )
A.2或-1 B.-1
C.2 D.1±
【注:涉及弦的中点问题,可以使用点差法,但仍需要注意带回检验⊿>0】
70.已知抛物线y2=6x,过点P?4,1)引一条弦P1P2使它恰好被点P平分,求这条弦所在的直线方程及|P1P2|.
4、韦达定理的应用:(综合题型)
71.已知直线y=ax+1与双曲线3x2-y2=1交于A,B两点.
(1)求a的取值范围;
(2)若以AB为直径的圆过坐标原点,求实数a的值.
72.如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.
(1)求x1x2与y1y2的值;(2)求证:OM⊥ON.
/
73.已知F1、F2为椭圆x2+=1的上、下两个焦点,AB是过焦点F1的一条动弦,求△ABF2面积的最大值.
【注:这是个焦点落在y轴的椭圆,以F1F2为底边,将三角形分成上下两部分,而高就是AB点横向的距离,
即|xA-xB|】
74.已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线y=x2的焦点,离心率为.
(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于点M,若=m,=n,求m+n的值.