课题
23.2相似图形
课时
1课时
上课时间
教学目标
1.知识与技能
(1)了解形状相同的图形是相似的图形.
(2)探索并确认相似图形的性质,知道相似多边形的对应角相等,对应边成比例.
(3)会利用相似多边形的特征解决一些简单的问题.
2.过程与方法
经历观察、操作、归纳、类比、反思、交流的过程,提高数学思维水平;分析、欣赏相似图形,提高审美意识,增强学习数学的兴趣和自信心.
3.情感、态度与价值观
通过渗透类比的思想方法,进一步体会数学内容之间的内在联系,初步认识特殊与一般的辩证关系;通过几何图形的变换发展空间观念;通过从直观发现到自觉说理的过渡,培养有条理的表达能力.
教学
重难点
重点:探索并确认相似图形的性质.
难点:利用相似多边形的特征解决一些简单的问题.
教学活动设计
二次设计
课堂导入
1.你还记得全等的图形吗?全等图形有什么性质?全等三角形呢?全等三角形有什么性质?能够完全 的图形叫做全等图形.全等图形的形状和大小都 .能够完全 的两个三角形是全等三角形.全等三角形的对应角 ,对应边 .
2.放映电影时,屏幕上的画面是由放映机把底片上的画面经过放大后投射得到的,底片上的画面与屏幕上的画面形状是否相同?
3.同一张底片洗出来的不同尺寸的照片中,人物的形状改变了吗?
探索新知
合作探究
自学指导
1.思考:
(1)观察下面各组图形,说说它们有什么共同的特点?
(2)你能给具有上述特点的图形起个名字吗?
像这样, 的图形是 .
2.操作:
正方形格点图中的△ABC与△A'B'C'形状相同吗?它们相似吗?仔细观察或度量,你还有什么发现吗?
合作探究
通过观察,可以得到两个相似多边形的特征:
(由同学回答,教师板书)对应边成比例,对应角相等.
实际上这两个特征,也是我们识别两个多边形是否相似的方法.即如果两个多边形的对应边都成比例,对应角都分别相等,那么这两个多边形相似.
识别两个多边形是否相似的标准有边数相同,对应边要成比例,对应角要都相等.
想一想:(1)两个三角形一定是相似图形吗?两个等腰三角形呢?两个等边三角形呢?两个等腰直角三角形呢?
(2)所有的菱形都相似吗?所有矩形呢?正方形呢?
教师指导
1.易错点:
识别两个多边形是否相似的前提是边数相同.
2.归纳小结:
(1)相似图形的概念;
(2)相似多边形的概念和性质.
3.方法规律:
判断相似多边形的标准:所有的边对应成比例,所有的角都相等.
当堂训练
1.课本第60页练习.
2.矩形ABCD与矩形A'B'C'D'中,已知AB=16 cm,AD=10 cm,A'D'=6 cm,矩形A'B'C'D'的面积为57 cm2,这两个矩形相似吗?为什么?
3.如图四边形ABCD与四边形A'B'C'D'是相似的,且C'D'⊥B'C',根据图中的条件,求出未知的边x,y及角α.
板书设计
相似图形
1.相似图形的概念
2.相似多边形的概念和性质
教学反思