高中数学(人教版A版必修一)配套课件、教案、同步练习题,补习复习资料:2.3幂函数

文档属性

名称 高中数学(人教版A版必修一)配套课件、教案、同步练习题,补习复习资料:2.3幂函数
格式 zip
文件大小 2.4MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-19 21:21:41

文档简介

§2.3 幂函数
一.教学目标:
1.知识技能
(1)理解幂函数的概念;
(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.
2.过程与方法
类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.
3.情感、态度、价值观
(1)进一步渗透数形结合与类比的思想方法;
(2)体会幂函数的变化规律及蕴含其中的对称性.
二.重点、难点
重点:从五个具体的幂函数中认识的概念和性质
难点:从幂函数的图象中概括其性质
5.学法与教具
(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质 ;
(2)教学用具:多媒体
三.教学过程:
引入新知
阅读教材P77的具体实例(1)~(5),思考下列问题.
(1)它们的对应法则分别是什么?
(2)以上问题中的函数有什么共同特征?
让学生独立思考后交流,引导学生概括出结论
答:1、(1)乘以1 (2)求平方 (3)求立方
(4)求算术平方根 (5)求-1次方
2、上述的问题涉及到的函数,都是形如:,其中是自变量,是常数.
探究新知
1.幂函数的定义
一般地,形如(R)的函数称为幂孙函数,其中是自变量,是常数.
如等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.
2.研究函数的图像
(1) (2) (3)
(4) (5)
一.提问:如何画出以上五个函数图像
引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像.
让学生通过观察图像,分组讨论,探究幂函数的性质和图像的变化规律,教师注意引导学生用类比研究指数函数,对函数的方法研究幂函数的性质.
通过观察图像,填P91探究中的表格
定义域
R
R
R
奇偶性



非奇非偶

在第Ⅰ象限单调增减性
在第Ⅰ象限单调递增
在第Ⅰ象限单调递增
在第Ⅰ象限单调递增
在第Ⅰ象限单调递增
在第Ⅰ象限单调递减
定点
(1,1)
(1,1)
(1,1)
(1,1)
(1,1)
3.幂函数性质
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:);
(2)>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升).
特别地,当>1,>1时,∈(0,1),的图象都在图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)
当∠α<1时,∈(0,1),的图象都在的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?)
(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.
在第一家限内,当向原点靠近时,图象在轴的右方无限逼近轴正半轴,当慢慢地变大时,图象在轴上方并无限逼近轴的正半轴.
例题:
1.证明幂函数上是增函数
证:任取<则

=
=
因<0,>0
所以,即上是增函数.
思考:
我们知道,若得,你能否用这种作比的方法来证明上是增函数,利用这种方法需要注意些什么?
2.利用函数的性质 ,判断下列两个值的大小
(1) (2) (3)
分析:利用幂函数的单调性来比较大小.
5.课堂练习
画出的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性.
6.归纳小结:提问方式
(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的?
(2)你能根据函数图象说出有关幂函数的性质吗?
作业:P79 习题 2.3 第2、3 题
课时提升作业(二十二)
幂 函 数
(25分钟 60分)
一、选择题(每小题5分,共25分)
1.下列函数中,是幂函数的是 (  )
A.y=2x B.y=2x3
C.y= D.y=2x2
【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.
【补偿训练】下列函数:①y=x2+1;②y=;③y=3x2-2x+1;④y=x-3;⑤y=+1.其中是幂函数的是 (  )
A.①⑤ B.①②③
C.②④ D.②③⑤
【解析】选C.由幂函数所具有的特征可知②④符合,而①③⑤中有常数项1,均不符合幂函数的特征.
2.(2018·长治高一检测)若幂函数y=(m2-3m+3)xm-2的图象不过原点,则m的取值范围为 (  )
A.1≤m≤2 B.m=1或m=2
C.m=2 D.m=1
【解析】选D.由题意得解得m=1.
3.函数y=x-2在区间上的最大值是 (  )
A. B. C.4 D.-4
【解析】选C.y=x-2在区间上单调递减,
所以x=时,取得最大值为4.
【延伸探究】若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?
【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.
4.在下列函数中,定义域为R的是 (  )
A.y= B.y=
C.y=2x D.y=x-1
【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).
【误区警示】本题在确定函数的定义域时易忽略指数是负数,从而自变量不能为0的情况,导致错选B或D.
【补偿训练】设α∈,则使函数y=xα的定义域为R且为奇函数的所有α的值为 (  )
A.1,3 B.-1,1 C.-1,3 D.-1,1,3
【解析】选A.函数y=x-1的定义域是,函数y=的定义域是[0,+∞),函数y=x和y=x3的定义域为R且为奇函数.
5.(2018·荆门高一检测)函数y=|x(n∈N,n>9)的图象可能是 (  )
【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.
二、填空题(每小题5分,共15分)
6.幂函数f(x)=xα过点,则f(x)的定义域是    .
【解析】因为幂函数f(x)过点,所以=2α,
所以α=-1,所以f(x)=x-1=,
所以函数f(x)的定义域是(-∞,0)∪(0,+∞).
答案:(-∞,0)∪(0,+∞)
7.(2018·铁岭高一检测)若y=a是幂函数,则该函数的值域是    .
【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).
答案:[0,+∞)
【补偿训练】(2014·济宁高一检测)当x∈(0,+∞)时,幂函数y=(m2-m-1)xm为减函数,则实数m的值为     .
【解析】由于函数y=(m2-m-1)xm为幂函数,
所以m2-m-1=1,解得m=-1或m=2.
当m=2时函数在(0,+∞)上递增,所以要舍去.
当m=-1时函数在(0,+∞)上递减,
所以m=-1符合题意,故填-1.
答案:-1
8.若函数f(x)是幂函数,且满足=3,则f的值等于    .
【解析】依题意设f(x)=xα,则有=3,得α=log23,
则f(x)=,于是f====.
答案:
三、解答题(每小题10分,共20分)
9.比较下列各组数的大小:
(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;
(3)0.20.3,0.30.3,0.30.2.
【解析】(1)由于函数y=x0.1在第一象限内单调递增,
又因为1.1<1.2,所以1.10.1<1.20.1.
(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.
(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.
再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.
所以0.20.3<0.30.3<0.30.2.
10.已知幂函数y=x3-p(p∈N*)的图象关于y轴对称,且在(0,+∞)上为增函数,求满足条件(a+1<(3-2a的实数a的取值范围.
【解析】因为幂函数y=x3-p(p∈N*)的图象关于y轴对称,所以函数y=x3-p是偶函数.
又y=x3-p在(0,+∞)上为增函数,
所以3-p是偶数且3-p>0.
因为p∈N*,所以p=1,
所以不等式(a+1<(3-2a化为:
(a+1<(3-2a.
因为函数y=是[0,+∞)上的增函数,
所以??-1≤a<,故实数a的取值范围为.
(20分钟 40分)
一、选择题(每小题5分,共10分)
1.(2018·沈阳高一检测)下列幂函数在(-∞,0)上为减函数的是 (  )
A.y= B.y=x2
C.y=x3 D.y=
【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数.
【补偿训练】下列幂函数中过点(0,0),(1,1)且为偶函数的是 (  )
A.y= B.y=x4
C.y=x-2 D.y=
【解析】选B.函数y=x4是过点(0,0),(1,1)的偶函数,故B正确;函数y=x-2不过点(0,0),故C不正确;函数y=,y=是奇函数,故A,D不正确.
2.在同一坐标系内,函数y=xa(a≠0)和y=ax-的图象可能是 (  )
【解析】选C.当a<0时,函数y=ax-在R上是减函数,此时y=xa在(0,+∞)上也是减函数,同时为减的只有D选项,而函数y=ax-与y轴相交于点,此点在y轴的正半轴上,故D选项不适合.当a>0时,函数y=ax-在R上是增函数,与y轴相交于点,此点在y轴的负半轴上,只有A,C适合,此时函数y=xa在(0,+∞)上是增函数,进一步判断只有C适合.
【补偿训练】函数y=xα与y=αx(α∈{-1,1,,2,3})的图象只可能是下面中的哪一个 (  )
【解析】选C.A中直线对应函数y=x,曲线对应函数为y=x-1,1≠-1,故A错;B中直线对应函数为y=2x,曲线对应函数为y=,2≠,故B错;C中直线对应函数为y=2x,曲线对应函数为y=x2,,22=2×2,故C对;D中直线对应函数为y=-x,曲线对应函数为y=x3,-1≠3.故D错.
二、填空题(每小题5分,共10分)
3.设a=,b=,c=,则a,b,c的大小关系是    .
【解析】因为y=在x∈(0,+∞)上递增,
所以>,即a>c,因为y=在x∈(-∞,+∞)上递减,所以>,即c>b,所以a>c>b.
答案:a>c>b
4.(2018·徐州高一检测)已知幂函数f=(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f的解析式是    .
【解题指南】由于函数的图象与x轴,y轴都无交点,所以m2-1<0,再根据图象关于原点对称,且m∈Z,确定m的值.
【解析】因为函数的图象与x轴,y轴都无交点,所以m2-1<0,解得-1答案:f=x-1
三、解答题(每小题10分,共20分)
5.(2018·广州高一检测)幂函数f的图象经过点(,2),点在幂函数g的图象上,
(1)求f,g的解析式.
(2)x为何值时f>g,x为何值时f【解析】(1)设f=xα,则()α=2,所以α=2,所以f=x2.设g=xβ,
则(-2)β=,所以β=-2,所以g=x-2(x≠0).
(2)从图象可知,当x>1或x<-1时,f>g;
当-16.(2018·秦皇岛高一检测)已知幂函数f(x)=(m2-m-1)·x-5m-3在(0,+∞)上是增函数,又g(x)=lo(a>1).
(1)求函数g(x)的解析式.
(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.
【解析】(1)因为f(x)是幂函数,且在(0,+∞)上是增函数,所以解得m=-1,
所以g(x)=loga.
(2)由>0可解得x<-1或x>1,
所以g(x)的定义域是(-∞,-1)∪(1,+∞).
又a>1,x∈(t,a),可得t≥1,
设x1,x2∈(1,+∞),且x10,x1-1>0,x2-1>0,
所以-=>0,
所以>.
由a>1,有loga>loga,即g(x)在(1,+∞)上是减函数.又g(x)的值域是(1,+∞),
所以得g(a)=loga=1,可化为=a,
解得a=1±,因为a>1,所以a=1+,
综上,a=1+,t=1.
【补偿训练】已知函数f(x)=xm-且f(4)=.
(1)求m的值.
(2)判定f(x)的奇偶性.
(3)判断f(x)在(0,+∞)上的单调性,并给予证明.
【解析】(1)因为f(4)=,所以4m-=,
所以m=1.
(2)由(1)知f(x)=x-,
因为f(x)的定义域为{x|x≠0},
又f(-x)=-x-=-=-f(x),
所以f(x)是奇函数.
(3)f(x)在(0,+∞)上单调递增.
设x1>x2>0,则f(x1)-f(x2)=x1--
=(x1-x2),
因为x1>x2>0,所以x1-x2>0,1+>0,
所以f(x1)>f(x2),
所以f(x)在(0,+∞)上为单调递增函数.
课件21张PPT。2.3 幂函数一、实例探究1、如果小红购买了每千克1元的水果x千克,那么她需要付的钱数y是2、如果正方形的边长为x,那么正方形的面积y为3、如果正方体的边长为x,那么正方体的体积y为4、如果正方形场地面积为x,那么正方形的边长y为5、如果小兰在x秒内骑车行进了1km,那么她骑车的速度y是1、幂函数的定义:一般的,函数 y = xα 叫做幂函数,
其中 x 是自变量,α 是常数。(2)(5)二、基础知识讲解关于幂函数,主要学习下列几种函数的图象与性质.二、基础知识讲解值 域:____________
奇偶性:________________
单调性:_________________二、基础知识讲解定义域:____________值 域:_____________
奇偶性:______________
单调性:_______________二、基础知识讲解定义域:_____________二、基础知识讲解定义域:_____________
值 域:_____________
奇偶性: _____________
单调性: _____________二、基础知识讲解二、基础知识讲解奇偶奇非奇非偶奇(1,1)(0,0)RRR{x|x≠0}[ 0,+∞)RR{y|y≠0}[ 0,+∞)[0,+∞)[0,+∞)↗
(- ∞,0) ↘↗↗↗几个幂函数的图象和性质(0,+∞) ↘
(- ∞,0)↘二、基础知识讲解规律:三、例题分析三、例题分析例3、用所学的图象和性质,比较下列各组值的大小:三、例题分析例3、用所学的图象和性质,比较下列各组值的大小:三、例题分析四、练习巩固2、注意
区分幂函数与指数函数的概念及其表达式1、定义:一般地,函数 f(x)=x? 叫做幂函数,其中 x 是自变量, ? 是常数。 五、课堂小结3、幂函数 f(x)=x?的性质:1.?>0时,(1)图象都经过点(0,0)和 (1,1);
(2)函数在( 0,+∞)上是增函数。
2.?<0时,(1)图象都经过点(1,1);
(2)函数在( 0,+∞)上是减函数,且向右无限接
近x轴,向上无限接近y轴。作业(1)在同一个坐标系中,画出本节学习的5个幂函数图象。注意标出关键点和坐标轴。
(2)
完成练习册相关内容①求定义域④”同增异减”下结论②确定内外函数,求中间量范围③分析内外函数单调性课题:§2.3幂函数
教学目标:
知识与技能 通过具体实例了解幂函数的图象和性质,并能进行简单的应用.
过程与方法 能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.
情感、态度、价值观 体会幂函数的变化规律及蕴含其中的对称性.
教学重点:
重点 从五个具体幂函数中认识幂函数的一些性质.
难点 画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.
教学程序与环节设计:

教学过程与操作设计:
环节
教学内容设计
师生双边互动




阅读教材P90的具体实例(1)~(5),思考下列问题:
1.它们的对应法则分别是什么?
2.以上问题中的函数有什么共同特征?
(答案)
1.(1)乘以1;(2)求平方;(3)求立方;(4)开方;(5)取倒数(或求-1次方).
2.上述问题中涉及到的函数,都是形如的函数,其中是自变量,是常数.
生:独立思考完成引例.
师:引导学生分析归纳概括得出结论.
师生:共同辨析这种新函数与指数函数的异同.




材料一:幂函数定义及其图象.
一般地,形如
的函数称为幂函数,其中为常数.
下面我们举例学习这类函数的一些性质.
作出下列函数的图象:
(1);(2);(3);
(4);(5).
[解]  列表(略)
 图象
师:说明:
幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析.
生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.
师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.
师生共同分析,强调画图象易犯的错误.
环节
教学内容设计
师生双边互动




材料二:幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);
(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.
师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律.
生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,并展示各自的结论进行交流评析,并填表.
材料三:观察与思考
观察图象,总结填写下表:
定义域
值域
奇偶性
单调性
定点
材料五:例题
[例1]
(教材P92例题)
[例2]
比较下列两个代数值的大小:
(1),
(2),
[例3] 讨论函数的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.
师:引导学生回顾讨论函数性质的方法,规范解题格式与步骤.
并指出函数单调性是判别大小的重要工具,幂函数的图象可以在单调性、奇偶性基础上较快描出.
生:独立思考,给出解答,共同讨论、评析.
环节
呈现教学材料
师生互动设计




1.利用幂函数的性质,比较下列各题中两个幂的值的大小:
(1),;
(2),;
(3),;
(4),.
2.作出函数的图象,根据图象讨论这个函数有哪些性质,并给出证明.
3.作出函数和函数的图象,求这两个函数的定义域和单调区间.
4.用图象法解方程:
(1); (2).





1.如图所示,曲线是幂函数在第一象限内的图象,已知分别取四个值,则相应图象依次为: .
2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?
(1)和;
(2)和.
规律1:在第一象限,作直线,它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.
规律2:幂指数互为倒数的幂函数在第一象限内的图象关于直线对称.
作业回馈
1.在函数中,幂函数的个数为:
A.0 B.1 C.2 D.3
环节
呈现教学材料
师生互动设计
2.已知幂函数的图象过点,试求出这个函数的解析式.
3.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R与管道半径r的四次方成正比.
(1)写出函数解析式;
(2)若气体在半径为3cm的管道中,流量速率为400cm3/s,求该气体通过半径为r的管道时,其流量速率R的表达式;
(3)已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率.
4.1992年底世界人口达到54.8亿,若人口的平均增长率为x%,2008年底世界人口数为y(亿),写出:
(1)1993年底、1994年底、2000年底的世界人口数;
(2)2008年底的世界人口数y与x的函数解析式.




利用图形计算器探索一般幂函数的图象随的变化规律.





1.谈谈五个基本幂函数的定义域与对应幂函数的奇偶性、单调性之间的关系?
2.幂函数与指数函数的不同点主要表现在哪些方面?
课件25张PPT。2.3 幂函数第二章  基本初等函数 (Ⅰ)1.理解幂函数的概念;
2.学会以简单的幂函数为例研究函数性质的方法;
3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数有关问题.问题导学题型探究达标检测学习目标问题导学     新知探究 点点落实知识点一 幂函数的概念答案 底数为x,指数为常数.答案一般地, 叫做幂函数,其中x是自变量,α是常数.函数y=xα知识点二 幂函数的图象与性质思考 如图在同一坐标系内作出函数(1)y=x; (3)y=x2;(4)y=x-1;(5)y=x3的图象.答案填写下表:RRR[0,+∞){x|x≠0}[0,+∞)RR[0,+∞){y|y≠0}奇偶奇非奇非偶奇增减增增减减根据上表,可以归纳一般幂函数特征:
(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点 ;
(2)α>0时,幂函数的图象通过 ,并且在区间[0,+∞)上是 函数.特别地,当α>1时,幂函数的图象 ;当0<α<1时,幂函数的图象 ;
(3) 时,幂函数的图象在区间(0,+∞)上是减函数;
(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y=x对称;
(5)在第一象限,作直线x=a(a>1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从 到  的顺序排列.答案(1,1)原点增下凸上凸α<0小大返回题型探究     重点难点 个个击破类型一 幂函数的概念例1 已知             是幂函数,求m,n的值.解析答案反思与感悟解析答案A.0 B.1 C.2 D.3y=2x2由于出现系数2,因此不是幂函数;
y=x2+x是两项和的形式,不是幂函数;y=1=x0(x≠0),可以看出,常函数y=1的图象比幂函数y=x0的图象多了一个点(0,1),
所以常函数y=1不是幂函数.B类型二 幂函数的图象及应用解析答案反思与感悟则f(x)=x2.同理可求得g(x)=x-2.
在同一坐标系里作出函数f(x)=x2和g(x)=x-2的图象(如图所示),
观察图象可得:(1)当x>1或x<-1时,f(x)>g(x);
(2)当x=1或x=-1时,f(x)=g(x);
(3)当-1A.1 B.2 C.3 D.无法确定∴αβ=1.故选A.A类型三 幂函数性质的综合应用例3 (1)探讨函数 的单调性.解析答案解 的定义域为(0,+∞).任取x1,x2∈(0,+∞),且x1x1>0,所以x1-x2<0,所以 在区间(0,+∞)内是减函数.解析答案(2)若 则a的取值范围是________.解析 由(1)知 在区间(0,+∞)内是减函数.反思与感悟本例第(2)问是核心问题,第(1)问是铺垫,很多时候,我们会直接面对没有第(1)问的第(2)问,这个时候需要我们主动构造函数,并针对解题需要研究某方面的性质.解析答案跟踪训练3 已知幂函数
(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;解 ∵m∈N*,
∴m2+m=m×(m+1)为偶数.∴定义域为[0,+∞),在[0,+∞)上f(x)为增函数.解析答案返回解 ∴m2+m=2,
解得m=1或m=-2(舍去),由(1)知f(x)在定义域[0,+∞)上为增函数.
∴f(2-a)>f(a-1)等价于2-a>a-1≥0,123达标检测     45解析答案C12345答案D12345A.1,3 B.-1,1
C.-1,3 D.-1,1,3答案A123454.下列是 的图象的是(  )答案B123455.以下结论正确的是(  )
A.当α=0时,函数y=xα的图象是一条直线
B.幂函数的图象都经过(0,0),(1,1)两点
C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大
而增大
D.幂函数的图象不可能在第四象限,但可能在第二象限答案D1.幂函数y=xα(α∈R),其中α为常数,其本质特征是以幂的底x为自变量,指数α为常数,这是判断一个函数是不是幂函数的重要依据和唯一标准.
2.幂函数y=xα的图象与性质由于α的值不同而比较复杂,一般从两个方面考查:(1)α>0时,图象过(0,0),(1,1)在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立.(2)曲线在第一象限的凹凸性α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸.返回§2.3 幂函数
课时目标 1.通过具体问题,了解幂函数的概念.2.从描点作图入手,画出y=x,y=x2,y=x3,y=,y=x-1的图象,总结出幂函数的共性,巩固并会加以应用.
1.一般地,______________叫做幂函数,其中x是自变量,α是常数.
2.在同一平面直角坐标系中,画出幂函数y=x,y=x2,y=x3,y=,y=x-1的图象.
3.结合2中图象,填空.
(1)所有的幂函数图象都过点________,在(0,+∞)上都有定义.
(2)若α>0时,幂函数图象过点____________,且在第一象限内______;当0<α<1时,图象上凸,当α>1时,图象______.
(3)若α<0,则幂函数图象过点________,并且在第一象限内单调______,在第一象限内,当x从+∞趋向于原点时,函数在y轴右方无限地逼近于y轴,当x趋于+∞时,图象在x轴上方无限逼近x轴.
(4)当α为奇数时,幂函数图象关于______对称;当α为偶数时,幂函数图象关于______对称.
(5)幂函数在第____象限无图象.
一、选择题
1.下列函数中不是幂函数的是(  )
A.y=B.y=x3
C.y=2xD.y=x-1
2.幂函数f(x)的图象过点(4,),那么f(8)的值为(  )
A.B.64
C.2D.
3.下列是y=的图象的是(  )
4.图中曲线是幂函数y=xn在第一象限的图象,已知n取±2,±四个值,则相应于曲线C1,C2,C3,C4的n依次为(  )
A.-2,-,,2
B.2,,-,-2
C.-,-2,2,
D.2,,-2,-
5.设a=,b=,c=,则a,b,c的大小关系是(  )
A.a>c>bB.a>b>c
C.c>a>bD.b>c>a
6.函数f(x)=xα,x∈(-1,0)∪(0,1),若不等式f(x)>|x|成立,则在α∈{-2,-1,0,1,2}的条件下,α可以取值的个数是(  )
A.0B.2
C.3D.4
题 号
1
2
3
4
5
6
答 案
二、填空题
7.给出以下结论:
①当α=0时,函数y=xα的图象是一条直线;
②幂函数的图象都经过(0,0),(1,1)两点;
③若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大;
④幂函数的图象不可能在第四象限,但可能在第二象限.
则正确结论的序号为________.
8.函数y=+x-1的定义域是____________.
9.已知函数y=x-2m-3的图象过原点,则实数m的取值范围是____________________.
三、解答题
10.比较1.、、的大小,并说明理由.
11.如图,幂函数y=x3m-7(m∈N)的图象关于y轴对称,且与x轴、y轴均无交点,求此函数的解析式.
能力提升
12.已知函数f(x)=(m2+2m)·,m为何值时,函数f(x)是:(1)正比例函数;
(2)反比例函数;(3)二次函数;(4)幂函数.
13.点(,2)在幂函数f(x)的图象上,点(-2,)在幂函数g(x)的图象上,问当x为何值时,有:(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)1.幂函数在第一象限内指数变化规律:
在第一象限内直线x=1的右侧,图象从上到下,相应的指数由大变小;在直线x=1的左侧,图象从下到上,相应的指数由大变小.
2.求幂函数的定义域时要看指数的正负和指数中的m是否为偶数;判断幂函数的奇偶性时要看指数中的m、n是奇数还是偶数.y=xα,当α=(m、n∈N*,m、
n互质)时,有:
n
m
y=的奇偶性
定义域
奇数
偶数
非奇非偶函数
[0,+∞)
偶数
奇数
偶函数
(-∞,+∞)
奇数
奇数
奇函数
(-∞,+∞)
3.幂函数y=的单调性,在(0,+∞)上,>0时为增函数,<0时为减函数.
§2.3 幂函数
知识梳理
1.函数y=xα 3.(1)(1,1) (2)(0,0),(1,1) 递增 下凸
(3)(1,1) 递减 (4)原点 y轴 (5)四
作业设计
1.C [根据幂函数的定义:形如y=xα的函数称为幂函数,选项C中自变量x的系数是2,不符合幂函数的定义,所以C不是幂函数.]
2.A [设幂函数为y=xα,依题意,=4α,
即22α=2-1,∴α=-.
∴幂函数为y=,∴f(8)====.]
3.B [y==,∴x∈R,y≥0,f(-x)==
=f(x),即y=是偶函数,又∵<1,∴图象上凸.]
4.B [作直线x=t(t>1)与各个图象相交,则交点自上而下的排列顺序恰好是按幂指数的降幂排列的.]
5.A [根据幂函数与指数函数的单调性直接可以判断出来,y=在x>0时是增函数,所以a>c;y=()x在x>0时是减函数,所以c>b.]
6.B [因为x∈(-1,0)∪(0,1),所以0<|x|<1.
要使f(x)=xα>|x|,xα在(-1,0)∪(0,1)上应大于0,
所以α=-1,1显然是不成立的.
当α=0时,f(x)=1>|x|;
当α=2时,f(x)=x2=|x|2<|x|;
当α=-2时,f(x)=x-2=|x|-2>1>|x|.
综上,α的可能取值为0或-2,共2个.]
7.④
解析 当α=0时,函数y=xα的定义域为{x|x≠0,x∈R},故①不正确;当α<0时,函数y=xα的图象不过(0,0)点,故②不正确;幂函数y=x-1的图象关于原点对称,但其在定义域内不是增函数,故③不正确.④正确.
8.(0,+∞)
解析 y=的定义域是[0,+∞),y=x-1的定义域是(-∞,0)∪(0,+∞),再取交集.
9.m<-
解析 由幂函数的性质知-2m-3>0,
故m<-.
10.解 考查函数y=1.1x,∵1.1>1,
∴它在(0,+∞)上是增函数.
又∵>,∴>.
再考查函数y=,∵>0,
∴它在(0,+∞)上是增函数.
又∵1.4>1.1,∴>,
∴>>.
11.解 由题意,得3m-7<0.
∴m<.
∵m∈N,∴m=0,1或2,
∵幂函数的图象关于y轴对称,
∴3m-7为偶数.
∵m=0时,3m-7=-7,
m=1时,3m-7=-4,
m=2时,3m-7=-1.
故当m=1时,y=x-4符合题意.即y=x-4.
12.解 (1)若f(x)为正比例函数,
则?m=1.
(2)若f(x)为反比例函数,
则?m=-1.
(3)若f(x)为二次函数,则
?m=.
(4)若f(x)为幂函数,则m2+2m=1,
∴m=-1±.
13.解 设f(x)=xα,则由题意,得
2=()α,∴α=2,即f(x)=x2.
设g(x)=xβ,由题意,得=(-2)β,
∴β=-2,即g(x)=x-2.
在同一平面直角坐标系中作出f(x)与g(x)的图象,如图所示.
由图象可知:
(1)当x>1或x<-1时,
f(x)>g(x);
(2)当x=±1时,f(x)=g(x);
(3)当-1