首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标A版
必修1
第三章 函数的应用
本章复习与测试
高中数学(人教版A版必修一)配套课件2份、教案、同步练习题,补习复习资料:第三章 函数的应用 章末复习课
文档属性
名称
高中数学(人教版A版必修一)配套课件2份、教案、同步练习题,补习复习资料:第三章 函数的应用 章末复习课
格式
zip
文件大小
2.5MB
资源类型
教案
版本资源
人教新课标A版
科目
数学
更新时间
2019-07-19 21:26:14
点击下载
文档简介
专题强化训练(三)
基本初等函数(Ⅰ)
(30分钟 50分)
一、选择题(每小题3分,共18分)
1.(2018·赣州高一检测)已知集合A={y|y=log3x,x>1},B={y|y=3x,x>0},则A∩B= ( )
A. B.{y|y>0}
C. D.{y|y>1}
【解析】选D.因为x>1得log3x>log31=0,
所以A={y|y>0}.因为x>0得3x>30=1,
所以B={y|y>1},所以A∩B={y|y>1}.
2.函数f(x)=-的定义域为 ( )
A.[-3,0] B.(-3,0]
C.[-3,0) D.(-3,0)
【解析】选B.由题意可得解得-3
【补偿训练】函数f(x)=的定义域为 ( )
A.(0,9) B.[0,9)
C.[0,9] D.(0,9]
【解析】选D.由题意可得解得0
3.(2018·益阳高一检测)若xy≠0,那么等式=-2xy成立的条件是
( )
A.x>0,y>0 B.x>0,y<0
C.x<0,y>0 D.x<0,y<0
【解析】选C.因为4x2y3≥0且xy≠0,所以y>0.又因为=2|x|y=-2xy,所以x<0,故选C.
4.已知f(x3)=lgx,则f(10)等于 ( )
A. B. C.-3 D.-
【解析】选A.因为f(x3)=lgx,令t=x3,则x=,所以f(t)=lg=lgt,故f(x)=lgx,所以f(10)=.
5.(2018·鄂州高一检测)若0
A.0
C.0
1
【解析】选D.当b>1时,logba<1=logbb,所以a
1成立.当0
【补偿训练】已知a=212,b=,c=2log52,则a,b,c的大小关系为 ( )
A.c
C.b
【解析】选A.因为a=212,b=,c=log54,
所以1
b>c,所以选A.
6.若f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=ex,
则有 ( )
A.f(2)
C.f(2)
【解题指南】利用函数的奇偶性以及f(x)-g(x)=ex,分别求出f(x),g(x)的函数解析式,判断出函数f(x)的单调性即可比较出大小.
【解析】选D.用-x代x,f(-x)-g(-x)=e-x,即-f(x)-g(x)=e-x,结合f(x)-g(x)=ex,可得f(x)=,g(x)=-.所以f(x)为R上的增函数,且f(0)=0,g(0)=-1,所以f(3)>f(2)>f(0)>g(0),故选D.
二.填空题(每小题4分,共12分)
7.(2018·三亚高一检测)计算÷10= .
【解析】÷10=lg÷10
=-2÷=-20.
答案:-20
8.(2018·许昌高一检测)设f(x)=则f(f(1))= .
【解析】因为f(1)=2e1-1=2e0=2,所以
f(2)=log3(22-1)=1.
答案:1
9.若lg(x-y)+lg(x+2y)=lg2+lgx+lgy,则= .
【解析】由已知可得lg[(x-y)(x+2y)]=lg2xy,则有所以
所以x=2y,即=2.
答案:2
三、解答题(每小题10分,共20分)
10.(2018·梅州高一检测)已知a=log32,用a来表示log38-2log36.
【解析】因为log38-2log36=log323-2log3(2×3)
=3log32-2(log32+log33)
=3log32-2(log32+1)=log32-2=a-2.
所以log38-2log36=a-2.
11.已知函数f(x)=a-在R上是奇函数,
(1)求a的值.
(2)判断并证明f(x)在R上的单调性.
【解析】(1)方法一:因为f(x)=a-在R上是奇函数,所以f(0)=0,即a-=0,
所以a=1,此时f(x)=1-.
经检验,当a=1时,f(-x)=-f(x),即函数f(x)为奇函数,所以a=1.
方法二:因为f(x)=a-在R上是奇函数,
所以f(-x)=-f(x),所以a-=-,
整理得a(ex+1)=ex+1,所以a=1.
(2)因为f(x)=1-,
任取x1,x2∈R,且x1
f(x1)-f(x2)=,
因为x1
0,
所以f(x1)-f(x2)<0,即f(x1)
所以f(x)在R上是增函数.
专题强化训练(四)
函数的应用
(30分钟 50分)
一、选择题(每小题3分,共18分)
1.(2018·衡水高一检测)函数f(x)=2x+7的零点为 ( )
A.7 B. C.- D.-7
【解析】选C.令2x+7=0得,x=-.
【补偿训练】函数f(x)=x3-16x的零点为 ( )
A.(0,0) B.0,4
C.(-4,0),(0,0),(4,0) D.-4,0,4
【解析】选D.由f(x)=x3-16x=x(x+4)(x-4)=0,
解得零点为-4,0,4.
2.偶函数f(x)在区间[0,a](a>0)上是单调函数,且f(0)·f(a)<0,则方程f(x)=0在区间[-a,a]内根的个数是 ( )
A.3 B.2 C.1 D.0
【解析】选B.由二分法和函数的单调性可知:函数在区间[0,a]上有且只有一个零点,设为x0,
因为函数是偶函数,
所以f(-x0)=f(x0)=0,
故其在对称区间[-a,0]上也有唯一零点,
即函数在区间[-a,a]上存在两个零点.
3.为了改善某地的生态环境,政府决心绿化荒山,计划第一年先植树0.5万亩,以后每年比上年增加1万亩,结果第x年植树亩数y(万亩)是时间x(年数)的一次函数,这个函数的图象是 ( )
【解析】选A.当x=1时,y=0.5,且为递增函数.
【补偿训练】等腰三角形的周长是20,底边长y是一腰长x的函数,则y等于
( )
A.20-2x(0
C.20-2x(5≤x≤10) D.20-2x(5
【解析】选D.由已知得y+2x=20,
所以y=20-2x,
由得
所以5
4.(2018·长春高一检测)方程x-=0的一个实数解的存在区间为 ( )
A.(0,1) B.(0,2)
C.(1,2) D.(-1,1)
【解析】选B.x-=0的解为x=1或x=-1.
5.某方程在区间D=(2,4)内有一无理根,若用二分法求此根的近似值,且使所得近似值的精确度为0.1,则应将D至少等分 ( )
A.2次 B.3次 C.4次 D.5次
【解析】选D.等分1次,区间长度为1,等分2次,区间长度为0.5,…,等分4次,区间长度为0.125,等分5次,区间长度为0.0625<0.1.
6.方程|x2-2|=lgx的实数根的个数是 ( )
A.1 B.2 C.3 D.4
【解题指南】本题关键是将方程的根的个数转化为两个函数图象交点的个数.
【解析】选B.作出函数y=|x2-2|与y=lgx的图象如图所示,由图可见两个函数的图象有两个公共点,所以方程|x2-2|=lgx有两个实数根.
二、填空题(每小题4分,共12分)
7.(2018·承德高一检测)设函数y=f(x)的图象在[a,b]上连续,若满足 ,方程f(x)=0在[a,b]上有实根.
【解析】由根的存在性定理可得f(a)f(b)<0.
答案:f(a)f(b)<0
8.马先生于两年前购买了一部手机,现在这款手机的价格已降为1000元,设这种手机每年降价20%,那么两年前这部手机的价格为 .
【解析】设这部手机两年前的价格为a元,则有a(1-0.2)2=1000,解得a=1562.5.
答案:1562.5元
9.若函数f(x)=mx2-x-2只有一个零点,则实数m的值为 .
【解析】当m=0时,f(x)=-x-2有唯一零点-2.
当m≠0时,f(x)=mx2-x-2有一个零点.
则方程mx2-x-2=0有两个相等的实根,
故Δ=(-1)2-4×m×(-2)=0,解得m=-.
综上知m=0或-.
答案:0或-
【误区警示】本题易忽视对m是否为零的讨论,而直接认为Δ=0,导致漏解.
【补偿训练】函数f(x)=2(m+1)x2+4mx+2m-1的一个零点在原点,则m的值为 .
【解析】f(0)=2m-1=0得m=.
答案:
三、解答题(每小题10分,共20分)
10.某投资公司投资甲乙两个项目所获得的利润分别是M(亿元)和N(亿元),它们与投资额t(亿元)的关系有经验公式:M=,N=t,今该公司将3亿元投资这两个项目,若设甲项目投资x亿元,投资这两个项目所获得的总利润为y亿元.
(1)写出y关于x的函数表达式.
(2)求总利润y的最大值.
【解析】(1)y=+(3-x),x∈[0,3].
(2)令u=,则u∈[0,],
y=u+(3-u2)=-u2+u+
=-(u-1)2+,
所以当u=1即x=1时,ymax=.
11.已知二次函数f(x)=x2+(2a-1)x+1-2a.
(1)判断命题:“对于任意的a∈R,方程f(x)=1必有实数根”的真假,并写出判断过程.
(2)若y=f(x)在区间(-1,0)及内各有一个零点,求实数a的范围.
【解析】(1)“对于任意的a∈R,方程f(x)=1必有实数根”是真命题.
依题意:f(x)=1有实根,即x2+(2a-1)x-2a=0有实根,
因为Δ=(2a-1)2+8a=(2a+1)2≥0对于任意的a∈R恒成立,
即x2+(2a-1)x-2a=0必有实根,从而f(x)=1必有实根.
(2)依题意:要使y=f(x)在区间(-1,0)及内各有一个零点,
只须即
解得:
故实数a的取值范围为.
章末检测(A)
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1.函数y=1+的零点是( )
A.(-1,0) B.-1
C.1 D.0
2.设函数y=x3与y=()x-2的图象的交点为(x0,y0),则x0所在的区间是( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
3.某企业2010年12月份的产值是这年1月份产值的P倍,则该企业2010年度产值的月平均增长率为( )
A. B.-1
C. D.
4.如图所示的函数图象与x轴均有交点,其中不能用二分法求图中交点横坐标的是( )
A.①③ B.②④
C.①② D.③④
5.如图1,直角梯形OABC中,AB∥OC,AB=1,OC=BC=2,直线l∶x=t截此梯形所得位于l左方图形面积为S,则函数S=f(t)的图象大致为图中的( )
图1
6.已知在x克a%的盐水中,加入y克b%的盐水,浓度变为c%,将y表示成x的函数关系式为( )
A.y=x B.y=x
C.y=x D.y=x
7.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是( )
(下列数据仅供参考:=1.41,=1.73,=1.44,=1.38)
A.38% B.41%
C.44% D.73%
8.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R是单位产量Q的函数:R(Q)=4Q-Q2,则总利润L(Q)的最大值是________万元,这时产品的生产数量为________.(总利润=总收入-成本)( )
A.250 300 B.200 300
C.250 350 D.200 350
9.在一次数学实验中,运用图形计算器采集到如下一组数据:
x
-2.0
-1.0
0
1.00
2.00
3.00
y
0.24
0.51
1
2.02
3.98
8.02
则x、y的函数关系与下列哪类函数最接近?(其中a、b为待定系数)( )
A.y=a+bx B.y=a+bx
C.y=ax2+b D.y=a+
10.根据统计资料,我国能源生产自1986年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨,有关专家预测,到2001年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的?( )
A.一次函数 B.二次函数
C.指数函数 D.对数函数
11.用二分法判断方程2x3+3x-3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421875,0.6253=0.24414)( )
A.0.25 B.0.375
C.0.635 D.0.825
12.有浓度为90%的溶液100g,从中倒出10g后再倒入10g水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg2=0.3010,lg3=0.4771)( )
A.19 B.20
C.21 D.22
二、填空题(本大题共4小题,每小题5分,共20分)
13.用二分法研究函数f(x)=x3+2x-1的零点,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次计算的f(x)的值为f(________).
14.若函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围为________.
15.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为________________万元.
16.函数f(x)=x2-2x+b的零点均是正数,则实数b的取值范围是________.
三、解答题(本大题共6小题,共70分)
17.(10分)华侨公园停车场预计“十·一”国庆节这天停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.
(1)写出国庆这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出x的取值范围.
(2)如果国庆这天停放的小车占停车总辆数的65%~85%,请你估计国庆这天该停车场收费金额的范围.
18.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a,通过x块玻璃后强度为y.
(1)写出y关于x的函数关系式;
(2)通过多少块玻璃后,光线强度减弱到原来的以下?(lg3≈0.4771)
19.(12分)某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y(微克)与服药的时间t(小时)之间近似满足如图所示的曲线,其中OA是线段,曲线AB是函数y=kat(t≥1,a>0,且k,a是常数)的图象.
(1)写出服药后y关于t的函数关系式;
(2)据测定,每毫升血液中的含药量不少于2微克时治疗疾病有效.假设某人第一次服药为早上6∶00,为保持疗效,第二次服药最迟应当在当天几点钟?
(3)若按(2)中的最迟时间服用第二次药,则第二次服药后3小时,该病人每毫升血液中的含药量为多少微克(精确到0.1微克)?
20.(12分)已知一次函数f(x)满足:f(1)=2,f(2)=3,
(1)求f(x)的解析式;
(2)判断函数g(x)=-1+lgf2(x)在区间[0,9]上零点的个数.
21.(12分)截止到2009年底,我国人口约为13.56亿,若今后能将人口平均增长率控制在1%,经过x年后,我国人口为y亿.
(1)求y与x的函数关系式y=f(x);
(2)求函数y=f(x)的定义域;
(3)判断函数f(x)是增函数还是减函数?并指出函数增减的实际意义.
22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
章末检测(A)
1.B [由1+=0,得=-1,∴x=-1.]
2.B [由题意x0为方程x3=()x-2的根,
令f(x)=x3-22-x,
∵f(0)=-4<0,f(1)=-1<0,f(2)=7>0,
∴x0∈(1,2).]
3.B [设1月份产值为a,增长率为x,则aP=a(1+x)11,
∴x=-1.]
4.A [对于①③在函数零点两侧函数值的符号相同,故不能用二分法求.]
5.C [解析式为S=f(t)
=
=
∴在[0,1]上为抛物线的一段,在(1,2]上为线段.]
6.B [根据配制前后溶质不变,有等式a%x+b%y=c%(x+y),即ax+by=cx+cy,故y=x.]
7.B [设职工原工资为p,平均增长率为x,
则p(1+x)6=8p,x=-1=-1=41%.]
8.A [L(Q)=4Q-Q2-Q-200=-(Q-300)2+250,故总利润L(Q)的最大值是250万元,
这时产品的生产数量为300.]
9.B [∵x=0时,无意义,∴D不成立.
由对应数据显示该函数是增函数,且增幅越来越快,
∴A不成立.
∵C是偶函数,
∴x=±1的值应该相等,故C不成立.
对于B,当x=0时,y=1,
∴a+1=1,a=0;
当x=1时,y=b=2.02,经验证它与各数据比较接近.]
10.B [可把每5年段的时间视为一个整体,将点(1,8.6),(2,10.4),(3,12.9)描出,通过拟合易知它符合二次函数模型.]
11.C [令f(x)=2x3+3x-3,f(0)<0,f(1)>0,f(0.5)<0,f(0.75)>0,f(0.625)<0,
∴方程2x3+3x-3=0的根在区间(0.625,0.75)内,
∵0.75-0.625=0.125<0.25,
∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.]
12.C [操作次数为n时的浓度为()n+1,由()n+1<10%,得n+1>=≈21.8,
∴n≥21.]
13.(0,0.5) 0.25
解析 根据函数零点的存在性定理.
∵f(0)<0,f(0.5)>0,
∴在(0,0.5)存在一个零点,第二次计算找中点,
即=0.25.
14.(1,+∞)
解析 函数f(x)的零点的个数就是函数y=ax与函数y=x+a交点的个数,如下图,由函数的图象可知a>1时两函数图象有两个交点,0
1.
15.a(1-b%)n
解析 第一年后这批设备的价值为a(1-b%);
第二年后这批设备的价值为a(1-b%)-a(1-b%)·b%=a(1-b%)2;
故第n年后这批设备的价值为a(1-b%)n.
16.(0,1]
解析 设x1,x2是函数f(x)的零点,则x1,x2为方程x2-2x+b=0的两正根,
则有,即.
解得0
17.解 (1)依题意得y=5x+10(1200-x)
=-5x+12000,0≤x≤1200.
(2)∵1200×65%≤x≤1200×85%,
解得780≤x≤1020,
而y=-5x+12000在[780,1 020]上为减函数,
∴-5×1020+12000≤y≤-5×780+12000.
即6900≤y≤8100,
∴国庆这天停车场收费的金额范围为[6 900,8 100].
18.解 (1)依题意:y=a·0.9x,x∈N*.
(2)依题意:y≤a,
即:a·0.9x≤,0.9x≤=,
得x≥log0.9=≈-≈10.42.
答 通过至少11块玻璃后,光线强度减弱到原来的以下.
19.解 (1)当0≤t<1时,y=8t;
当t≥1时,∴
∴y=
(2)令8·()t≥2,解得t≤5.
∴第一次服药5小时后,即第二次服药最迟应当在当天上午11时服药.
(3)第二次服药后3小时,每毫升血液中含第一次所服药的药量为y1=8×()8=(微克);含第二次服药后药量为y2=8×()3=4(微克),y1+y2=+4≈4.7(微克).
故第二次服药再过3小时,
该病人每毫升血液中含药量为4.7微克.
20.解 (1)令f(x)=ax+b,由已知条件得
,解得a=b=1,
所以f(x)=x+1(x∈R).
(2)∵g(x)=-1+lgf2(x)=-1+lg (x+1)2在区间[0,9]上为增函数,且g(0)=-1<0,
g(9)=-1+lg102=1>0,
∴函数g(x)在区间[0,9]上零点的个数为1个.
21.解 (1)2009年底人口数:13.56亿.
经过1年,2010年底人口数:
13.56+13.56×1%=13.56×(1+1%)(亿).
经过2年,2011年底人口数:
13.56×(1+1%)+13.56×(1+1%)×1%
=13.56×(1+1%)2(亿).
经过3年,2012年底人口数:
13.56×(1+1%)2+13.56×(1+1%)2×1%
=13.56×(1+1%)3(亿).
∴经过的年数与(1+1%)的指数相同.
∴经过x年后人口数为13.56×(1+1%)x(亿).
∴y=f(x)=13.56×(1+1%)x.
(2)理论上指数函数定义域为R.
∵此问题以年作为时间单位.
∴此函数的定义域是{x|x∈N*}.
(3)y=f(x)=13.56×(1+1%)x.
∵1+1%>1,13.56>0,
∴y=f(x)=13.56×(1+1%)x是增函数,
即只要递增率为正数,随着时间的推移,人口的总数总在增长.
22.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则x0=100+=550.
因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.
(2)当0
当100
当x≥550时,P=51.
所以P=f(x)=(x∈N).
(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,
则L=(P-40)x=(x∈N).
当x=500时,L=6000;
当x=1000时,L=11000.
因此,当销售商一次订购500个零件时,
该厂获得的利润是6000元;
如果订购1000个,利润是11000元.
章末检测(B)
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1.设方程|x2-3|=a的解的个数为m,则m不可能等于( )
A.1 B.2
C.3 D.4
2.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为( )
A.每个110元 B.每个105元
C.每个100元 D.每个95元
3.今有一组实验数据如下表,现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )
t
1.99
3.0
4.0
5.1
6.12
y
1.5
4.04
7.5
12
18.01
A.y=log2t B.y=
C.y= D.y=2t-2
4.某商场对顾客实行购物优惠活动,规定一次购物付款总额:
(1)如果不超过200元,则不给予优惠;
(2)如果超过200元但不超过500元,则按标价给予9折优惠;
(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.
某人两次去购物,分别付款168元和423元,假设他去一次购买上述同样的商品,则应付款是( )
A.413.7元 B.513.7元
C.548.7元 D.546.6元
5.方程x2+ax-2=0在区间[1,5]上有解,则实数a的取值范围为( )
A.(-,+∞) B.(1,+∞)
C.[-,1] D.(-∞,-]
6.设f(x)是区间[a,b]上的单调函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]( )
A.至少有一实根 B.至多有一实根
C.没有实根 D.必有唯一实根
7.方程x2-(2-a)x+5-a=0的两根都大于2,则实数a的取值范围是( )
A.a<-2 B.-5
C.-5
4或a<-4
8.四人赛跑,其跑过的路程f(x)和时间x的关系分别是:f1(x)=,f2(x)=x,f3(x)=log2(x+1),f4(x)=log8(x+1),如果他们一直跑下去,最终跑到最前面的人所具有的函数关系是( )
A.f1(x)= B.f2(x)=x
C.f3(x)=log2(x+1) D.f4(x)=log8(x+1)
9.函数f(x)=lnx-的零点所在的大致区间是( )
A.(1,2) B.(2,3)
C.(e,3) D.(e,+∞)
10.已知f(x)=(x-a)(x-b)-2的两个零点分别为α,β,则( )
A.a<α
C.a<α<β
11.设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(2x)=f()的所有x之和为( )
A.- B.-
C.-8 D.8
12.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图象如图所示.现给出下面说法:
①前5分钟温度增加的速度越来越快;
②前5分钟温度增加的速度越来越慢;
③5分钟以后温度保持匀速增加;
④5分钟以后温度保持不变.
其中正确的说法是( )
A.①④ B.②④
C.②③ D.①③
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知函数f(x)=,且关于x的方程f(x)+x-a=0有且只有一个实根,则实数a的取值范围是______________.
14.要建造一个长方体形状的仓库,其内部的高为3m,长与宽的和为20m,则仓库容积的最大值为________.
15.已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围为________.
16.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.
三、解答题(本大题共6小题,共70分)
17.(10分)讨论方程4x3+x-15=0在[1,2]内实数解的存在性,并说明理由.
18.(12分)(1)已知f(x)=+m是奇函数,求常数m的值;
(2)画出函数y=|3x-1|的图象,并利用图象回答:k为何值时,方程|3x-1|=k无解?有一解?有两解?
19.(12分)某出版公司为一本畅销书定价如下:
C(n)=这里n表示定购书的数量,C(n)是定购n本书所付的钱数(单位:元).
若一本书的成本价是5元,现有甲、乙两人来买书,每人至少买1本,两人共买60本,问出版公司最少能赚多少钱?最多能赚多少钱?
20.(12分)是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上与x轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.
21.(12分)已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求实数a的取值范围.
22.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:
①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a元;
②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;
③每户每月的定额损耗费a不超过5元.
(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系式;
(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:
月份
用水量(立方米)
水费(元)
一
4
17
二
5
23
三
2.5
11
试分析该家庭今年一、二、三各月份的用水量是否超过最低限量,并求m,n,a的值.
章末检测(B)
1.A [在同一坐标系中分别画出函数y1=|x2-3|和y2=a的图象,如图所示.
可知方程解的个数为0,2,3或4,不可能有1个解.]
2.D [设售价为x元,则利润
y=[400-20(x-90)](x-80)=20(110-x)(x-80)
=-20(x2-190x+8800)
=-20(x-95)2+4500.
∴当x=95时,y最大为4500元.]
3.C [当t=4时,y=log24=2,y==-2,y==7.5,y=2×4-2=6.
所以y=适合,
当t=1.99代入A、B、C、D4个选项,y=的值与表中的1.5接近,故选C.]
4.D [购物超过200元,至少付款200×0.9=180(元),超过500元,至少付款500×0.9=450(元),可知此人第一次购物不超过200元,第二次购物不超过500元,则此人两次购物总金额是168+=168+470=638(元).若一次购物,应付500×0.9+138×0.7=546.6(元).]
5.C [令f(x)=x2+ax-2,则f(0)=-2<0,
∴要使f(x)在[1,5]上与x轴有交点,则需要
,即,解得-≤a≤1.]
6.D [∵f(a)·f(b)<0,∴f(x)在区间[a,b]上存在零点,
又∵f(x)在[a,b]上是单调函数,∴f(x)在区间[a,b]上的零点唯一,即f(x)=0在[a,b]上必有唯一实根.]
7.C [由题意知,解得-5
8.B [在同一坐标系下画出四个函数的图象,由图象可知f2(x)=x增长的最快.]
9.B [f(2)=ln2-=ln2-1<1-1=0,
f(3)=ln3->1-=>0.故零点所在区间为(2,3).]
10.B [设g(x)=(x-a)(x-b),则f(x)是由g(x)的图象向下平移2个单位得到的,而g(x)的两个零点为a,b,f(x)的两个零点为α,β,结合图象可得α
11.C [∵x>0时f(x)单调且为偶函数,
∴|2x|=||,即2x(x+4)=±(x+1).
∴2x2+9x+1=0或2x2+7x-1=0.
∴共有四根.
∵x1+x2=-,x3+x4=-,
∴所有x之和为-+(-)=-8.]
12.B [因为温度y关于时间t的图象是先凸后平行直线,即5分钟前每当t增加一个单位增量Δt,则y随相应的增量Δy越来越小,而5分钟后y关于t的增量保持为0.故选B.]
13.(1,+∞)
解析 由f(x)+x-a=0,
得f(x)=a-x,
令y=f(x),y=a-x,如图,
当a>1时,y=f(x)与y=a-x有且只有一个交点,
∴a>1.
14.300m3
解析 设长为xm,则宽为(20-x)m,仓库的容积为V,
则V=x(20-x)·3=-3x2+60x,0
由二次函数的图象知,顶点的纵坐标为V的最大值.
∴x=10时,V最大=300(m3).
15.(0,1)
解析 函数f(x)=的图象如图所示,
该函数的图象与直线y=m有三个交点时m∈(0,1),此时函数g(x)=f(x)-m有3个零点.
16.[-1,1]
解析 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y|=2x+1与直线y=b的图象如图所示,由图象可得:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件为b∈[-1,1].
17.解 令f(x)=4x3+x-15,
∵y=4x3和y=x在[1,2]上都为增函数.
∴f(x)=4x3+x-15在[1,2]上为增函数,
∵f(1)=4+1-15=-10<0,f(2)=4×8+2-15=19>0,
∴f(x)=4x3+x-15在[1,2]上存在一个零点,
∴方程4x3+x-15=0在[1,2]内有一个实数解.
18.解 (1)∵f(x)=+m是奇函数,
∴f(-x)=-f(x),∴+m=--m.
∴+m=-m,
∴+2m=0.
∴-2+2m=0,∴m=1.
(2)作出直线y=k与函数y=|3x-1|的图象,如图.
①当k<0时,直线y=k与函数y=|3x-1|的图象无交点,即方程无解;
②当k=0或k≥1时,直线y=k与函数y=|3x-1|的图象有唯一的交点,所以方程有一解;
③当0
19.解 设甲买n本书,则乙买(60-n)本(不妨设甲买的书少于或等于乙买的书),则n≤30,n∈N*.
①当1≤n≤11且n∈N*时,49≤60-n≤59,
出版公司赚的钱数f(n)=12n+10(60-n)-5×60=2n+300;
②当12≤n≤24且n∈N*时,36≤60-n≤48,
出版公司赚的钱数
f(n)=12n+11(60-n)-5×60=n+360;
③当25≤n≤30且n∈N*时,30≤60-n≤35,
出版公司赚的钱数f(n)=11×60-5×60=360.
∴f(n)=
∴当1≤n≤11时,302≤f(n)≤322;
当12≤n≤24时,372≤f(n)≤384;
当25≤n≤30时,f(n)=360.
故出版公司最少能赚302元,最多能赚384元.
20.解 若实数a满足条件,
则只需f(-1)f(3)≤0即可.
f(-1)f(3)=(1-3a+2+a-1)(9+9a-6+a-1)=4(1-a)(5a+1)≤0,
所以a≤-或a≥1.
检验:(1)当f(-1)=0时a=1,
所以f(x)=x2+x.
令f(x)=0,即x2+x=0,得x=0或x=-1.
方程在[-1,3]上有两根,不合题意,故a≠1.
(2)当f(3)=0时a=-,
此时f(x)=x2-x-.
令f(x)=0,即x2-x-=0,
解得,x=-或x=3.
方程在[-1,3]上有两根,不合题意,故a≠-.
综上所述,a∈(-∞,-)∪(1,+∞).
21.解 当a=0时,函数为f(x)=2x-3,其零点x=不在区间[-1,1]上.
当a≠0时,函数f(x)在区间[-1,1]分为两种情况:
①函数在区间[-1,1]上只有一个零点,此时:
或,
解得1≤a≤5或a=.
②函数在区间[-1,1]上有两个零点,此时
,即.
解得a≥5或a<.
综上所述,如果函数在区间[-1,1]上有零点,那么实数a的取值范围为(-∞,]∪[1,+∞).
22.解 (1)依题意,得y=
其中0
(2)∵0
由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m立方米.
将和分别代入②,
得
③-④,得n=6.
代入17=9+n(4-m)+a,得a=6m-16.
又三月份用水量为2.5立方米,
若m<2.5,将代入②,得a=6m-13,
这与a=6m-16矛盾.
∴m≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量.
将代入①,得11=9+a,
由解得
∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m=3,n=6,a=2.
课件33张PPT。习题课 函数的实际应用第三章 函数的应用1.进一步掌握常用的函数模型解析式的求法及应用;
2.提高在面临实际问题时,通过自己建立函数模型来解决问题的能力;
3.培养借助表格、图象处理数据的能力.问题导学题型探究达标检测学习目标问题导学 新知探究 点点落实1.(1)求给定的函数模型的解析式,通常使用_________法.
(2)使用待定系数法求解析式时,假设有n个系数待定,则需要列______个关于待定系数的方程.答案待定系数n2.回想一下当你面临实际问题时,是如何建立函数模型的,特别需要注意哪些要点?答案答案 处理实际问题的关键是:①全面、准确地接收题目提供的信息,②根据需求整理信息,③正确表达其中蕴含的数量关系,④注意变量的实际意义对取值范围的影响.3.回顾上节例3人口增长问题的处理方法,回答下列问题:
(1)如何寻找拟合函数?答案答案 根据原始数据、表格,绘出散点图;考察散点图,画出拟合曲线;从函数模型中挑出“最贴近”拟合曲线的函数类型,求出其待定系数.(2)当有多个候选拟合函数模型时,如何进行选择?答案 把已知数据特别是远期数据分别代入候选函数,根据拟合效果择优录用.(3)使用拟合函数预测的结果一定准确吗?预报准确度受哪些因素影响?答案答案 利用拟合函数得到的结果不一定准确.预报准确度与建立拟合函数依据的制约因素全面与否,数据采集密集度,采集区间长度都有关系.4.我们在处理以往案例中,大量使用了表格、图象.用它们处理数据有什么优势?答案 表格便于我们定量观察量与量之间的依存关系.单调性及增长速度,图象则更直观.返回题型探究 重点难点 个个击破类型一 二次函数模型的应用例1 某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示:解析答案请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?反思与感悟解 由表中可知,销售单价每增加1元,日均销售量就减少40桶,设在进价的基础上增加x元后,日均销售利润为y元,在此情况下的日均销售量为480-40(x-1)=520-40x(桶).
由于x>0,520-40x>0,即0<x<13.
y=(520-40x)x-200=-40x2+520x-200,0<x<13.
易知,当x=6.5时,y有最大值.
所以,只需将销售单价定为11.5元,就可获得最大的利润.反思与感悟反思与感悟对于二次函数模型,根据实际问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的最值问题.利用二次函数求最值时特别注意取得最值时的自变量与实际意义是否相符.解析答案跟踪训练1 某农家旅游公司有客房300间,每间日房租为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日租金增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?解 设客房日租金每间提高2x元,则每天客房出租数为300-10x,由x>0,且300-10x>0得:0<x<30,
设客房租金总收入y元,则有:y=(20+2x)(300-10x) =-20(x-10)2+8 000(0<x<30)
由二次函数性质可知当x=10时,ymax=8 000.
所以当每间客房日租金提高到20+10×2=40元时,客房租金总收入最高,为每天8 000元.类型二 对数函数模型的应用例2 1999年10月12日“世界60亿人口日”,提出了“人类对生育的选择将决定世界未来”的主题,控制人口急剧增长的紧迫任务摆在我们的面前.
(1)世界人口在此前40年内翻了一番,问每年人口平均增长率是多少?解析答案解 设每年人口平均增长率为x,n年前的人口数为y,
则y·(1+x)n=60,
当n=40时,y=30,即30(1+x)40=60,∴(1+x)40=2,
两边取对数,则40lg (1+x)=lg 2,∴1+x≈1.017,得x=1.7%.
故每年人口平均增长率是1.7%.答 每年人口平均增长率为1.7%.解析答案反思与感悟(2)我国人口在1998年底达到12.48亿,若将人口平均增长率控制在1%以内,我国人口在2008年底至多有多少亿?
以下数据供计算时使用:反思与感悟解 依题意,y≤12.48(1+1%)10,
得lg y≤lg 12.48+10×lg 1.01≈1.139 2,
∴y≤13.78,故人口至多有13.78亿.
答 2008年人口至多有13.78亿.反思与感悟1.解决应用题的基础是读懂题意,理顺数量关系,关键是正确建模,要注意数学模型中元素的实际意义.
2.对数函数模型的一般表达式为:f(x)=mlogax+n(m,n,a为常数,a>0,a≠1).解析答案跟踪训练2 燕子每年秋天都要从北方飞到南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数 ,单位是m/s,其中Q表示燕子的耗氧量.
(1)计算:燕子静止时的耗氧量是多少个单位?解得Q=10,即燕子静止时的耗氧量为10个单位.解析答案(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?即当一只燕子耗氧量为80个单位时,速度为15 m/s.类型三 选择函数的拟合问题例3 某地区不同身高的未成年男性的体重平均值如表:解析答案(1)根据表中提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重y kg与身高x cm的函数关系?试写出这个函数模型的解析式.解析答案解 以身高为横坐标,体重为纵坐标,画出散点图.根据点的分布特征,可考虑以y=a·bx作为刻画这个地区未成年男性的体重与身高关系的函数模型.这样,我们就得到一个函数模型:y=2×1.02x.
将已知数据代入上述函数解析式,或作出上述函数的图象,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高的关系.解析答案反思与感悟(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175 cm,体重为78 kg的在校男生的体重是否正常?解 将x=175代入y=2×1.02x得y=2×1.02175
由计算器算得y≈63.98.由于78÷63.98≈1.22>1.2,
所以,这个男生偏胖.反思与感悟依据问题给出的数据,建立反映数据变化规律的函数模型的探索方法:
(1)首先建立直角坐标系,画出散点图;
(2)根据散点图设出比较接近的可能的函数模型的解析式;
(3)利用待定系数法求出各解析式;
(4)对模型拟合程度进行检验,若拟合程度差,重新选择拟合函数,若拟合程度好,符合实际问题,就用这个函数模型解释实际问题.跟踪训练3 为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测量最大积雪深度x与当年灌溉面积y.现有连续10年的实测资料,如表所示.解析答案(1)描点画出灌溉面积随积雪深度变化的图象;解 利用计算机几何画板软件,
描点如图甲.解析答案(2)建立一个能基本反映灌溉面积变化的函数模型,并画出图象;解 从图甲中可以看到,数据点大致落在一条直线附近,由此,我们假设灌溉面积y和最大积雪深度x满足线性函数模型y=a+bx.用计算器可得a≈2.4,b≈1.8.
这样,我们得到一个函数模型:y=2.4+1.8x.作出函数图象如图乙,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映积雪深度与灌溉面积的关系.解析答案返回(3)根据所建立的函数模型,若今年最大积雪深度为25 cm,可以灌溉土地多少公顷?解 由y=2.4+1.8×25,求得y=47.4,
即当积雪深度为25 cm时,可以灌溉土地47.4公顷.123达标检测 45答案A.2 400元 B.900元
C.300元 D.3 600元A123452.某种电热水器的水箱盛满水是200升.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡( )
A.3 B.4 C.5 D.6答案解析 设t分钟时水箱的水有y升,依题意有y=200+2t2-34t,当t=8.5时,y有最小值,共放水289升,可供4人洗澡.B123453.某种商品第一年提价25%,第二年欲恢复成原价,则应降价( )
A.30% B.25% C.20% D.15%答案C123454.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差( )答案A123455.一个高为H,盛水量为V0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到罐满为止,如果水深h时水的体积为V,则函数V=f(h)的图象大致是( )答案D规律与方法1.函数模型的应用实例主要包括三个方面
(1)利用给定的函数模型解决实际问题;
(2)建立确定的函数模型解决问题;
(3)建立拟合函数模型解决实际问题.
2.函数拟合与预测的一般步骤
(1)能够根据原始数据、表格,绘出散点图.返回(2)通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,
但在实际应用中,这种情况是一般不会发生的.因此,使实际点尽可能均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了.
(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.
(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.课件31张PPT。章末复习课第三章 函数的应用1.体会函数与方程之间的联系,会用二分法求方程的近似解;
2.了解指数函数、幂函数、对数函数的增长差异;
3.巩固建立函数模型的过程和方法,了解函数模型的广泛应用. 要点归纳题型探究达标检测学习目标知识网络要点归纳 主干梳理 点点落实知识梳理1.函数的零点与方程的根的关系:
(1)方程f(x)=0有实数根?函数 的图象与 有交点?
有零点.
(2)确定函数零点的个数有两个基本方法:①借助函数 性和
定理研究图象与x轴的交点个数;②通过移项,变形转化成两个函数图象的交点个数进行判断.答案y=f(x)x轴函数单调零点存在性y=f(x)2.二分法
(1)图象都在x轴同侧的函数零点 (填“能”或“不能”)用二分法求.
(2)用二分法求零点近似解时,零点区间(a,b)始终要保持f(a)·f(b) 0;
(3)若要求精确度为0.01,则当|a-b| 0.01时,便可判断零点近似值为 .
3.在同样是增函数的前提下,当自变量变得充分大之后,指数函数、对数函数、幂函数三者中增长最快的是 ,增长最慢的是 .答案不能<
(1)给定函数模型与拟合函数模型中求函数解析式主要使用 法.
(2)建立确定性的函数模型的基本步骤是
.
(3)所有的函数模型问题都应注意变量的实际意义对 的影响.返回答案待定系数审题,设量,表示条件,整理化简,标明定义域定义域类型一 函数的零点与方程的根的关系及应用题型探究 重点难点 个个击破解析答案(1)当a=1时,函数g(x)是否存在零点,若存在,求出所有零点;若不存在,说明理由.解 当a=1时,设t=ex(显然t∈[1,3]),
则h(t)=t2+t-1,
令h(t)=t2+t-1=0,∴函数g(x)不存在零点.(2)求函数g(x)的最小值.解析答案反思与感悟解 设t=ex,则h(t)=t2+|t-a|(显然t∈[1,3]).
当a≤1时,h(t)=t2+t-a在区间[1,3]上是增函数,
所以h(x)的最小值为h(1)=2-a.反思与感悟因为函数h(t)在区间(a,3]上是增函数,在区间[1,a]上也是增函数,
又函数h(t)在[1,3]上为连续函数,
所以函数h(t)在[1,3]上为增函数,
所以h(t)的最小值为h(1)=a.
综上可得:当a≤1时,g(x)的最小值为2-a;反思与感悟1.函数的零点与方程的根的关系:方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.
2.确定函数零点的个数有两个基本方法:利用图象研究与x轴的交点个数或转化成两个函数图象的交点个数进行判断.跟踪训练1 若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则函数f(x)可以是( )
A.f(x)=4x-1 B.f(x)=(x-1)2
C.f(x)=ex-1 D.f(x)=ln(x-1)解析答案答案 A类型二 用二分法求函数的零点或方程的近似解例2 用二分法求3x2-4x-1=0的近似解(精确度0.1).解析答案反思与感悟解 令f(x)=3x2-4x-1,作出函数图象如图所示,解析答案观察图象知方程的一根x0∈(-1,0),
另一根x0′∈(1,2),
且f(-1)=6,f(0)=-1,f(1)=-2,f(2)=3.则f(-0.5)=1.75,所以f(-0.5)·f(0)<0,
故x0∈(-0.5,0).
再取区间(-0.5,0)的中点x2=-0.25,反思与感悟则f(-0.25)≈0.19,所以f(-0.25)·f(0)<0,
故x0∈(-0.25,0).
再取区间(-0.25,0)的中点x3=-0.125,
则f(-0.125)≈-0.45,
所以f(-0.125)·f(-0.25)<0,
故x0∈(-0.25,-0.125).
再取区间(-0.25,-0.125)的中点x4=-0.187 5,
则f(-0.187 5)≈-0.14,
所以f(-0.25)·f(-0.187 5)<0,解析答案反思与感悟故x0∈(-0.25,-0.187 5).
又因为|0.25-0.187 5|=0.062 5<0.1,所以-0.187 5为方程3x2-4x-1=0的一个根的近似值.
同理:当x0′∈(1,2)时,方程的根的近似值为1.562 5.
综上所述,方程3x2-4x-1=0的根的近似值为-0.187 5和1.562 5.反思与感悟反思与感悟1.看清题目的精确度,它决定着二分法的结束.
2.根据f(a0)·f(b0)<0确定初始区间,高次方程要先确定有几个解再确定初始区间.
3.初始区间的选定一般在两个整数间,不同初始区间结果是相同的,但二分的次数相差较大.
4.取区间中点c,计算中点函数值f(c),确定新的零点区间,直到所取区间(an,bn)中,|an-bn|<ε,那么区间(an,bn)内任意一个数都是满足精度ε的近似解.跟踪训练2 某方程在区间[0,1]内有一无理根,若用二分法求此根的近似值要使所得近似值的精确度达到0.1,则将区间(0,1)分( )
A.2次 B.3次 C.4次 D.5次解析答案解析 等分1次,区间长度为0.5;等分两次,区间长度为0.25;…;
等分4次,区间长度为0.062 5<0.1,符合题意.C类型三 函数模型及应用例3 在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R与管道半径r的函数关系为R=kr4(k>0,k是常数).
(1)假设气体在半径为3 cm的管道中,流量速率为400 cm3/s,求该气体通过半径为r cm的管道时,其流量速率R的表达式;解析答案解 由题意,得R=kr4(k是大于0的常数).
由r=3 cm,R=400 cm3/s,得k·34=400,(2)已知(1)中的气体通过的管道半径为5 cm,计算该气体的流量速率.解析答案即气体通过管道半径为5 cm时,该气体的流量速率约为3 086 cm3/s.反思与感悟反思与感悟一旦选定函数模型,下面的工作就是挖掘题目条件求出待定系数.跟踪训练3 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比,药物释放完毕后,y与t的函数关系式为 (a为常数),如图,根据图中所提供的信息,回答下列问题:解析答案(1)从药物释放开始,每立方米空气中的含药
量y(毫克)与时间t(小时)之间的函数关系式为
___________________________.解析 由题意和图示知,当0≤t≤0.1时,可设y=kt(k为待定系数),由于点(0.1,1)在直线上,∴k=10;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.解析答案返回0.6123达标检测 解析答案1.已知函数f(x)=ax-x-a(a>0,a≠1),那么函数f(x)的零点个数是( )
A.0个 B.1个 C.2个 D.至少1个4解析 在同一坐标系中作出函数y=ax与y=x+a的图象,当a>1时,如图(1),当0<a<1时,如图(2),故选D.D5答案2.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( )1234CA.x1 B.x2
C.x3 D.x4512343.在一次数学试验中,采集到如下一组数据:则下列函数与x,y的函数关系是最接近的是(其中a,b为待定系数)( )
A.y=a+bx B.y=a+bxB答案51234答案 (log32,1)55.已知方程2x=10-x的根x∈(k,k+1),k∈Z,则k=______.1234答案25规律与方法1.对于零点性质要注意函数与方程的结合,借助零点的性质可研究函数的图象、确定方程的根;对于连续函数,利用零点存在性定理,可用来求参数的取值范围.
2.函数模型的应用实例的基本题型
(1)给定函数模型解决实际问题;
(2)建立确定的函数模型解决问题;
(3)建立拟合函数模型解决实际问题.返回3.函数建模的基本过程如图§3.2 习题课
课时目标 1.进一步体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.2.掌握几种初等函数的应用.3.理解用拟合函数的方法解决实际问题的方法.
1.在我国大西北,某地区荒漠化土地面积每年平均比上年增长10.4%,专家预测经过x年可能增长到原来的y倍,则函数y=f(x)的图象大致为( )
2.能使不等式log2x
A.(0,+∞) B.(2,+∞)
C.(-∞,2) D.(0,2)∪(4,+∞)
3.四人赛跑,假设其跑过的路程fi(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( )
A.f1(x)=x2B.f2(x)=4x
C.f3(x)=log2xD.f4(x)=2x
4.某城市客运公司确定客票价格的方法是:如果行程不超过100km,票价是0.5元/km,如果超过100 km,超过100 km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是______________________.
5.如图所示,要在一个边长为150m的正方形草坪上,修建两条宽相等且相互垂直的十字形道路,如果要使绿化面积达到70%,则道路的宽为____________________m(精确到0.01m).
一、选择题
1.下面对函数f(x)=与g(x)=()x在区间(0,+∞)上的衰减情况说法正确的是( )
A.f(x)的衰减速度越来越慢,g(x)的衰减速度越来越快
B.f(x)的衰减速度越来越快,g(x)的衰减速度越来越慢
C.f(x)的衰减速度越来越慢,g(x)的衰减速度越来越慢
D.f(x)的衰减速度越来越快,g(x)的衰减速度越来越快
2.下列函数中随x的增大而增长速度最快的是( )
A.y=exB.y=100ln x
C.y=x100D.y=100·2x
3.一等腰三角形的周长是20,底边y是关于腰长x的函数,它的解析式为( )
A.y=20-2x(x≤10) B.y=20-2x(x<10)
C.y=20-2x(5≤x≤10) D.y=20-2x(5
4.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,其包装费用、销售价格如下表所示:
型号
小包装
大包装
重量
100克
300克
包装费
0.5元
0.7元
销售价格
3.00元
8.4元
则下列说法中正确的是( )
①买小包装实惠 ②买大包装实惠 ③卖3小包比卖1大包盈利多 ④卖1大包比卖3小包盈利多
A.①③B.①④C.②③D.②④
5.某商店出售A、B两种价格不同的商品,由于商品A连续两次提价20%,同时商品B连续两次降价20%,结果都以每件23元售出,若商店同时售出这两种商品各一件,则与价格不升不降时的情况比较,商店盈利情况是( )
A.多赚约6元B.少赚约6元
C.多赚约2元D.盈利相同
6.某地区植被破坏、土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则下列函数中与沙漠增加数y万公顷关于年数x的函数关系较为相似的是( )
A.y=0.2xB.y=(x2+2x)
C.y=D.y=0.2+log16x
题 号
1
2
3
4
5
6
答 案
二、填空题
7.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供________人洗澡.
8.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x年后剩留量为y,则x,y的函数关系是__________________.
9.已知甲、乙两地相距150km,某人开汽车以60km/h的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h的速度返回甲地,把汽车离开甲地的距离s表示为时间t的函数,则此函数表达式为________.
三、解答题
10.某种放射性元素的原子数N随时间t的变化规律是N=N0e-λt,其中N0,λ是正常数.
(1)说明该函数是增函数还是减函数;
(2)把t表示成原子数N的函数;
(3)求当N=时,t的值.
11.我县某企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系;
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).
能力提升
12.某乡镇现在人均一年占有粮食360kg,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有ykg粮食,求出函数y关于x的解析式.
13.如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.
(1)写出y关于x的函数关系式,并指出这个函数的定义域.
(2)当AE为何值时,绿地面积y最大?
解决实际问题的解题过程:
(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;
(2)建立函数模型:将变量y表示为x的函数,在中学数学中,我们建立的函数模型一般都是基本初等函数;
(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点,正确选择函数知识求得函数模
型的解,并还原为实际问题的解.
这些步骤用框图表示:
§3.2 习题课
双基演练
1.D [设某地区的原有荒漠化土地面积为a,则x年后的面积为a(1+10.4%)x,由题意y==1.104x,故选D.]
2.D [由题意知x的范围为x>0,由y=log2x,y=x2,y=2x的图象可知,当x>0时,log2x
3.D [由于指数函数的增长特点是越来越大,故选D.]
4.y=
5.24.50
解析 设道路宽为x,则×100%=30%,
解得x1≈24.50,x2≈275.50(舍去).
作业设计
1.C
2.A [对于指数函数,当底数大于1时,函数值随x的增大而增大的速度快,又∵e>2,故选A.]
3.D [∵20=y+2x,∴y=20-2x,
又y=20-2x>0且2x>y=20-2x,
∴5
4.D [买小包装时每克费用为元,买大包装每克费用为=元,而>,所以买大包装实惠,卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润是8.4-1.8×3-0.7=2.3(元).而2.3>2.1,卖1大包盈利多,故选D.]
5.B [设A、B两种商品的原价为a、b,
则a(1+20%)2=b(1-20%)2=23?a=,b=,a+b-46≈6(元).]
6.C [将(1,0.2),(2,0.4),(3,0.76)与x=1,2,3时,选项A、B、C、D中得到的y值做比较,y=的y值比较接近,
故选C.]
7.4
解析 设最多用t分钟,则水箱内水量y=200+2t2-34t,当t=时y有最小值,此时共放水34×=289(升),可供4人洗澡.
8.y=
解析 设每经过1年,剩留量为原来的a倍,则y=ax,
且0.9576=a100,从而a=0.9576,因此y=0.9576.
9.s=
解析 当0≤t≤2.5时s=60t,
当2.5
当3.5≤t≤6.5时s=150-50(t-3.5)=325-50t,
综上所述,s=
10.解 (1)由于N0>0,λ>0,函数N=N0e-λt是属于指数函数y=e-x类型的,所以它是减函数,即原子数N的值随时间t的增大而减少.
(2)将N=N0e-λt写成e-λt=,根据对数的定义有-λt=ln,所以t=-(lnN-lnN0)=(lnN0-lnN).
(3)把N=代入t=(ln N0-ln N),
得t=(ln N0-ln)=ln 2.
11.解 (1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k1x,g(x)=k2,
由图知f(1)=,∴k1=,又g(4)=,∴k2=.
从而f(x)=x(x≥0),g(x)=(x≥0).
(2)设A产品投入x万元,则B产品投入10-x万元,设企业的利润为y万元,
y=f(x)+g(10-x)=+(0≤x≤10),
令=t,
则y=+t=-(t-)2+(0≤t≤),
当t=,ymax≈4,此时x=10-=3.75,10-x=6.25.
所以投入A产品3.75万元,投入B产品6.25万元时,能使企业获得最大利润,且最大利润约为4万元.
12.解 设该乡镇现在人口量为M,则该乡镇现在一年的粮食总产量为360M,
经过1年后,该乡镇粮食总产量为360M(1+4%),人口量为M(1+1.2%),则人均占有粮食为;经过2年后,人均占有粮食为;…;经过x年后,人均占有粮食为y=,即所求函数解析式为y=360()x.
13.解 (1)S△AEH=S△CFG=x2,
S△BEF=S△DGH=(a-x)(2-x).
∴y=S矩形ABCD-2S△AEH-2S△BEF=2a-x2-(a-x)(2-x)
=-2x2+(a+2)x.
由,得0
∴y=-2x2+(a+2)x,定义域为(0,2].
(2)当<2,即a<6时,
则x=时,y取最大值;
当≥2,即a≥6时,y=-2x2+(a+2)x在(0,2]上是增函数,
则x=2时,ymax=2a-4.
综上所述:当a<6,AE=时,绿地面积取最大值;
当a≥6,AE=2时,绿地面积取最大值2a-4.
点击下载
同课章节目录
第一章 集合与函数概念
1.1 集合
1.2 函数及其表示
1.3 函数的基本性质
第二章 基本初等函数(Ⅰ)
2.1 指数函数
2.2 对数函数
2.3 幂函数
第三章 函数的应用
3.1 函数与方程
3.2 函数模型及其应用
点击下载
VIP下载