6.4 数据的离散程度课时作业(含解析)

文档属性

名称 6.4 数据的离散程度课时作业(含解析)
格式 zip
文件大小 1.2MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2019-07-17 09:35:31

图片预览

文档简介

6.4 数据的离散程度课时作业
姓名:__________班级:__________考号:__________
本节知识点:
极差:(1)极差是指一组数据中最大数据与最小数据的差. 极差=最大值-最小值. (2)极差是刻画数据离散程度的一个统计量.它只能反映数据的波动范围,不能衡量每个数据的变化情况. (3)极差的优势在于计算简单,但它受极端值的影响较大.
方差:(1)一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:](可简单记忆为“方差等于差方的平均数”) (3)方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
、选择题(本大题共7小题,每小题5分,共35分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
如果一组数据,,…,的方差是4,则另一组数据,,…,的方差是
A.4 B.7 C.8 D.19
去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:




24
24
23
20
S2
2.1
1.9
2
1.9
今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是(  )
A.甲 B.乙 C.丙 D.丁
某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为4500元,则下列关于现在7位员工工资的平均数和方差的说法正确的是(  )
A.平均数不变,方差变大 B.平均数不变,方差变小
C.平均数不变,方差不变 D.平均数变小,方差不变
某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):﹣7,﹣4,﹣2,1,﹣2,2.关于这组数据,下列结论不正确的是(  )
A.平均数是﹣2 B.中位数是﹣2 C.众数是﹣2 D.方差是7
已知一组数据的方差是3,则这组数据的标准差是( )
A. 9 B. 3 C. D.
已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=(  )
A.98 B.99 C.100 D.102
下列判断正确的是(  )
A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐
B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000
C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:
比赛成绩/分
9.5
9.6
9.7
9.8
9.9
参赛队个数
9
8
6
4
3
则这30个参赛队决赛成绩的中位数是9.7
D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件
、填空题(本大题共6小题,每小题5分,共30分)
甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S甲2=16.7,乙比赛成绩的方差为S乙2=28.3,那么成绩比较稳定的是   (填“甲”或“乙”)
为了比较两箱樱桃的个头大小,分别在两箱樱桃中随机抽出若干颗樱桃,统计其质量(单位:g)如下表:
从樱桃的大小及匀称角度看,更好的一箱是  .
表1:甲箱樱桃抽检结果
质量
8
9
10
11
12
颗数
0
3
5
3
1
表2:乙箱樱桃的抽检结果
质量
7
9
10
11
12
颗数
1
1
5
4
1
甲、乙两名运动员进行了5次百米赛跑测试,两人的平均成绩都是13.3秒,而S甲2=3.7,S乙2=6.25,则两人中成绩较稳定的是   .
一组数据2,x,1,3,5,4,若这组数据的中位数是3,则这组数据的方差是   .
如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为   .
如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作s甲2、s乙2,则s甲2   s乙2.(填“>”,“=”或“<”)
、解答题(本大题共5小题,共35分)
某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.
(1)求出下列成绩统计分析表中a,b的值:
组别
平均分
中位数
方差
合格率
优秀率
甲组
6.8
a
3.76
90%
30%
乙组
b
7.5
1.96
80%
20%
(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.
某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达6分以上为合格,达到9分以上为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.
(1)补充完成下列的成绩统计分析表:
组别
平均分
中位数
方差
合格率
优秀率

6.7
      
3.41
90%
20%

      
7.5
      
80%
10%
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是      组学生;(填“甲”或“乙”)
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.
从甲、乙两名射击选手中选出一名选手参加省级比赛,现对他们分别进行5次射击测试,成绩分别为(单位:环)甲:5、6、7、9、8;乙:8、4、8、6、9,
(1)甲运动员5次射击成绩的中位数为________环,极差是________环;乙运动员射击成绩的众数为________环.
(2)已知甲的5次成绩的方差为2,通过计算,判断甲、乙两名运动员谁的成绩更稳定.
要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.
(1)已求得甲的平均成绩为8环,求乙的平均成绩;
(2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2,
s乙2哪个大;
(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选      参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选      参赛更合适.
甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
平均成绩/环
中位数/环
众数/环
方差

a
7
7
1.2

7
b
8
c
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
答案解析
、选择题
【考点】方差
【分析】题意得;数据x1,x2,…,xn的平均数设为a,则数据x1+3,x2+3,…,xn+3的平均数为a+3,在根据方差公式进行计算:
解:设第一组数据,,…,的平均数为x, 则第二组数据,,…,的平均数为x+3,根据方差公式,两组数据中,每个数据与平均数的差对应不变。所以方差仍然为4,
所以选A
【点评】此题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.
【考点】算术平均数,方差
【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.
解:因为甲组、乙组的平均数丙组比丁组大,
而乙组的方差比甲组的小,
所以乙组的产量比较稳定,
所以乙组的产量既高又稳定,
故选:B.
【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小,反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.
【考点】方差;算术平均数.
【分析】根据平均数、方差的定义即可解决问题.
解:由题意原来6位员工的月工资平均数为4500元,
因为新员工的工资 为4500元,所以现在7位员工工资的平均数是4500元,
由方差公式可知,7位员工工资的方差变小,
故选B.
【点评】本题考查方差的定义、平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
【考点】方差;算术平均数;中位数;众数.
【分析】根据平均数、中位数、众数及方差的定义,依次计算各选项即可作出判断.
解:A.平均数是﹣2,结论正确,故A不符合题意;
B、中位数是﹣2,结论正确,故B不符合题意;
C、众数是﹣2,结论正确,故C不符合题意;
D、方差是9,结论错误,故D符合题意;
故选:D.
【点评】本题考查了平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.
【考点】标准差,方差
【分析】根据标准差的平方就是方差可得这组数据的标准差是.故答案选D.
解:∵这组数据的方差是3, ∴标准差为, 故答案为:.
【点评】本题考查了标准差,关键是掌握标准差和方差的关系,标准差即方差的算术平方根;注意标准差和方差一样都是非负数.
【考点】中位数,方差
【分析】首先求出该组数据的中位数和方差,进而求出答案.
解:数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,
则该组数据的中位数是94,即a=94,
该组数据的平均数为[92+94+98+91+95]=94,
其方差为[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]
=6,所以b=6
所以a+b=94+6=100.
故选:C.
【点评】本题考查了中位数,方差的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 
【考点】总体、个体、样本、样本容量;加权平均数;中位数;方差;随机事件
【分析】直接利用样本容量以及方差的定义以及中位数的定义和必然事件的定义分别分析得出答案.
解:A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则乙组学生的身高较整齐,故此选项错误;
B、为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为100,故此选项错误;
C、在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:
比赛成绩/分
9.5
9.6
9.7
9.8
9.9
参赛队个数
9
8
6
4
3
则这30个参赛队决赛成绩的中位数是9.6,故此选项错误;
D、有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件,正确.
故选:D.
【点评】此题主要考查了样本容量以及方差、中位数和必然事件的定义,正确把握相关定义是解题关键.
、填空题
【考点】方差.
【分析】根据方差的意义即可求得答案.
解:
∵S甲2=16.7,S乙2=28.3,
∴S甲2<S乙2,
∴甲的成绩比较稳定,
故答案为:甲.
【点评】本题主要考查方差的意义,掌握方差的意义是解题的关键,即方差越大其数据波动越大,即成绩越不稳定.
【考点】方差.
【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差公式进行计算,即可得出答案.
解:∵甲箱的平均数是:(8×0+9×3+10×5+11×3+12×1)÷(3+5+3+1)=,
乙箱的平均数是:(7×1+9×1+10×5+11×4+12×1)÷(1+1+5+4+1)=,
∴甲的方差是: [3(9﹣)2+5(10﹣)2+3(11﹣)2+(12﹣)2]=116,
乙的方差是: [(7﹣)2+(9﹣)2+5(10﹣)2+4(11﹣)2+(12﹣)2]=212,
∴更好的一箱是甲箱;
故答案为:甲箱.
【点评】本题考查方差的定义:S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
【考点】方差
【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,比较出甲和乙的方差大小即可.
解:∵S甲2=3.7,S乙2=6.25,
∴S甲2<S乙2,
∴两人中成绩较稳定的是甲,
故答案为:甲.
【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【考点】中位数,方差
【分析】先根据中位数的定义求出x的值,再求出这组数据的平均数,最后根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2]进行计算即可.
解:∵按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的中位数为3,
∴x=3,
∴这组数据的平均数是(1+2+3+3+4+5)÷6=3,
∴这组数据的方差是:[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,
故答案为:.
【点评】本题考查了平均数和中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
【考点】算术平均数,方差
【分析】先根据平均数的定义确定出a的值,再根据方差公式进行计算即可求出答案.
解:根据题意,得:=a,
解得:a=5,
则这组数据为4、5、5、3、8,其平均数是5,
所以这组数据的方差为×[(4﹣5)2+(5﹣5)2+(5﹣5)2+(3﹣5)2+(8﹣5)2]=,
故答案为:.
【点评】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
【考点】折线统计图,方差
【分析】根据数据偏离平均数越大,即波动越大,数据越不稳定,方差越大,数据偏离平均数越小,即波动越小,数据越稳定,方差越小进行判断.
解:由图象可知:乙偏离平均数大,甲偏离平均数小,所以乙波动大,不稳定,方差大,即S甲2<S乙2.
故答案为:<.
【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定,反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
、解答题
【考点】方差;折线统计图;算术平均数;中位数.
【分析】(1)由折线图中数据,根据中位数和甲权平均数的定义求解可得;
(2)根据中位数的意义求解可得;
(3)可从平均数和方差两方面阐述即可.
解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,
∴其中位数a=6,
乙组学生成绩的平均分b==7.2;
(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于全班中上游,
∴小英属于甲组学生;
(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;
②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.
【点评】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键. 
【考点】条形统计图,中位数,方差
【分析】(1)先根据条形统计图写出甲乙两组的成绩,然后分别计算甲的中位数,乙的平均数和方差;
(2)比较两组的中位数进行判断;
(3)通过乙组的平均数、中位数或方差进行说明.
解:(1)甲组:3,6,6,6,6,6,7,8,9,10,中位数为6;
乙组:5,5,6,7,7,8,8,8,8,9,平均数=7.1,S乙2=1.69;
(2)因为甲组的中位数为6,所以7分在甲组排名属中游略偏上;
故答案为6,7.1,1.69;甲;
(3)乙组的平均数高于甲组;乙组的中位数高于甲组,所以乙组的成绩要好于甲组.
【点评】本题考查了条形统计图:从条形图可以很容易看出数据的大小,便于比较.也考查了中位数和方差.
【考点】中位数众数,极差,方差
【分析】(1)分别根据中位数,极差和众数的概念求解即可;
(2)先计算甲、乙的平均数,再计算乙的方差,最后与甲的方差进行比较即可得解.
解:(1)甲的射击成绩从小到大排列为:5,6,7,8,9
甲的射击成绩的中位数是:7
甲的射击成绩的极差是:9-5=4;
乙的射击成绩出现次数最多的是8环,故乙的射击成绩的众数是8环;
(2)甲的射击成绩的平均数为:(环),
乙的射击成绩的平均数为:(环),
方差为:=3.2.
∵3.2>2,
∴运动员甲的成绩更稳定.
【点睛】本题考查平均数、方差的定义,方差越大,波动性越大,反之也成立.平均数反映了一组数据的集中程度,求平均数的方法是所有数之和再除以数的个数;方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.
【考点】方差,折线统计图
【分析】(1)根据平均数的计算公式和折线统计图给出的数据即可得出答案;
(2)根据图形波动的大小可直接得出答案;
(3)根据射击成绩都在7环左右的多少可得出乙参赛更合适;根据射击成绩都在9环左右的多少可得出甲参赛更合适.
解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);
(2)根据图象可知:甲的波动大于乙的波动,则s甲2>s乙2;
(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;
如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.
故答案为:乙,甲.
【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【考点】方差;条形统计图;折线统计图;中位数;众数.
【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;
(2)结合平均数和中位数、众数、方差三方面的特点进行分析.
解:(1)甲的平均成绩a==7(环),
∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,
∴乙射击成绩的中位数b==7.5(环),
其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]
=×(16+9+1+3+4+9)
=4.2;
(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,
综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
【点评】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.