高中数学(人教版A版必修二)配套课件2份、教案、学案、同步练习题,补习复习资料:2.3.3~2.3.4 直线与平面垂直的性质 平面与平面垂直的性质

文档属性

名称 高中数学(人教版A版必修二)配套课件2份、教案、学案、同步练习题,补习复习资料:2.3.3~2.3.4 直线与平面垂直的性质 平面与平面垂直的性质
格式 zip
文件大小 3.1MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-18 12:28:21

文档简介

第三课时 直线与平面垂直、平面与平面垂直的性质
(一)教学目标
1.知识与技能
(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;
(2)能运用性质定理解决一些简单问题;
(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互关系.
2.过程与方法
(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;
3.情感、态度与价值观
通过“直观感知、操作确认、推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力.
(二)教学重点、难点
两个性质定理的证明.
(三)教学方法
学生依据已有知识和方法,在教师指导下,自主地完成定理的证明、问题的转化.
教学过程
教学内容
师生互动
设计意图
新课导入
问题1:判定直线和平面垂直的方法有几种?
问题2:若一条直线和一个平面垂直,可得到什么结论?若两条直线与同一个平面垂直呢?
师投影问题. 学生思考、讨论问题,教师点出主题
复习巩固以旧带新
探索新知
一、直线与平面垂直的性质定理
1.问题:已知直线a、b和平面,如果,那么直线a、b一定平行吗?
已知
求证:b∥a.
证明:假定b不平行于a,设=0
b′是经过O与直线a平行的直线
∵a∥b′,
∴b′⊥a
即经过同一点O的两线b、b′都与垂直这是不可能的,
因此b∥a.
2.直线与平面垂直的性质定理
垂直于同一个平面的两条直线平行
简化为:线面垂直线线平行
生:借助长方体模型AA′、BB′、CC′、DD′所在直线都垂直于平面ABCD,它们之间相互平行,所以结论成立.
师:怎么证明呢?由于无法把两条直线a、b归入到一个平面内,故无法应用平行直线的判定知识,也无法应用公理4,有这种情况下,我们采用“反证法”
师生边分析边板书.
借助模型教学,培养几何直观能力.,反证法证题是一个难点,采用以教师为主,能起到一个示范作用,并提高上课效率.
探索新知
二、平面与平面平行的性质定理
1.问题
黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?
2.例1 设,=CD,,AB⊥CD,AB⊥CD = B求证AB
证明:在内引直线BE⊥CD,垂足为B,则∠ABE是二面角的平面角.由知,AB⊥BE,又AB⊥CD,BE与CD是内的两条相交直线,所以AB⊥
3.平面与平面垂直的性质定理
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
简记为:面面垂直线面垂直.
教师投影问题,学生思考、观察、讨论,然后回答问题
生:借助长方体模型,在长方体ABCD – A′B′C′D′中,面A′ADD′⊥面ABCD,A′A⊥AD,AB⊥A′A

∴A′A⊥面ABCD
故只需在黑板上作一直线与两个平面的交线垂直即可.
师:证明直线和平面垂直一般都转化为证直线和平面内两条交线垂直,现AB⊥CD,需找一条直线与AB垂直,有条件还没有用,能否利用构造一条直线与AB垂直呢?
生:在面内过B作BE⊥CD即可.
师:为什么呢?
学生分析,教师板书
本例题的难点是构造辅助线,采用分析综合法能较好地解决这个问题.
典例分析
例2 如图,已知平面,,直线a满足,,试判断直线a与平面的位置关系.
解:在内作垂直于与交线的直线b,
因为,所以
因为,所以a∥b.
又因为,所以a∥.
即直线a与平面平行.
例3 设平面⊥平面,点P作平面的垂线a,试判断直线a与平面的位置关系?
证明:如图,设= c,过点P在平面内作直线b⊥c,根据平面与平面垂直的性质定理有.
因为过一点有且只有一条直线与平面垂直,所以直线a与直线b垂合,因此.
师投影例2并读题
生:平行
师:证明线面平行一般策略是什么?
生:转证线线平行
师:假设内一条直线b∥a则b与的位置关系如何?
生:垂直
师:已知,怎样作直线b?
生:在内作b垂直于、的交线即可.
学生写出证明过程,教师投影.
师投影例3并读题,师生共同分析思路,完成证题过程,然后教师给予评注.
师:利用“同一法”证明问题主要是在按一般途径不易完成问题的情形下,所采用的一种数学方法,这里要求做到两点.一是作出符合题意的直线不易想到,二是证直线b与直线a重合,相对容易一些,本题注意要分类讨论,其结论也可作性质用.
巩固所学知识,训练化归能力.
巩固所学知识,训练分类思想化归能力及思维的灵活性.
随堂练习
1.判断下列命题是否正确,正确的在括号内画“√”错误的画“×”.
(1)a.垂直于同一条直线的两个平面互相平行. ( √ )
b.垂直于同一个平面的两条直线互相平行. ( √ )
c.一条直线在平面内,另一条直线与这个平面垂直,则这两条直线互相垂直. ( √ )
(2)已知直线a,b和平面,且a⊥b,a⊥,则b与的位置关系是 .
答案:b∥或b.
2.(1)下列命题中错误的是( A )
A.如果平面⊥平面,那么平面内所有直线垂直于平面.
B.如果平面⊥平面,那么平面内一定存在直线平行于平面.
C.如果平面不垂直平面,那么平面内一定不存在直线垂直于平面.
D.如果平面⊥平面,平面⊥平面,,那么.
(2)已知两个平面垂直,下列命题( B )
①一个平面内已积压直线必垂直于另一平面内的任意一条直线.
②一个平面内的已知直线必垂直于另一个平面的无数条直线.
③一个平面内的任意一条直线必垂直于另一个平面.
④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.
其中正确命题的个数是( )
A.3 B.2 C.1 D.0
3.设直线a,b分别在正方体ABCD – A′B′C′D′中两个不同的面所在平面内,欲使a∥b,a,b应满足什么条件?
答案:不相交,不异面
4.已知平面,,直线a,且,,a∥,a⊥AB,试判断直线a与直线的位置关系.
答案:平行、相交或在平面内
学生独立完成
巩固、所学知识
归纳总结
1.直线和平面垂直的性质
2.平面和平面垂直的性质
3.面面垂直线面垂直线线垂直
学生归纳总结,教材再补充完善.
回顾、反思、归纳知识提高自我整合知识的能力.
课后作业
2.3 第三课时 习案
学生独立完成
固化知识
提升能力
备选例题
例1 把直角三角板ABC的直角边BC放置桌面,另一条直角边AC与桌面所在的平面垂直,a是内一条直线,若斜边AB与a垂直,则BC是否与a垂直?
【解析】
【评析】若BC与垂直,同理可得AB与也垂直,其实质是三垂线定理及逆定理,证明过程体现了一种重要的数学转化思想方法:“线线垂直→线面垂直→线线垂直” .
例2 求证:如果两个平面都垂直于第三个平面,则它们的交线垂直于第三个平面.已知⊥r,⊥r,∩= l,求证:l⊥r.
【分析】根据直线和平面垂直的判定定理可在r内构造两相交直线分别与平面、垂直.或由面面垂直的性质易在、内作出平面r的垂线,再设法证明l与其平行即可.
【证明】法一:如图,设∩r = a ,∩r = b,在r内任取一点P.过点P在r内作直线m⊥a,n⊥b.
∵⊥r,⊥r,
∴m⊥a,n⊥(面面垂直的性质).
又∩= l,
∴l⊥m,l⊥n.又m∩n = P,m,nr
∴l⊥r.
法二:如图,设∩r = a,∩r = b,在内作m⊥a,在内作n⊥b.
∵⊥r,⊥r,
∴m⊥r,n⊥r.
∴m∥n,又n,m,
∴m∥,又∩= l,m,
∴m∥l,
又m⊥r,∴l⊥r.
【评析】充分利用面面垂直的性质构造线面垂直是解决本题的关键.证法一充分利用面面垂直、线面垂直、线线垂直相互转化;证法二涉及垂直关系与平行关系之间的转化.此题是线线、面面垂直转化的典型题,通过一题多解,对沟通知识和方法,开拓解题思路是有益的.
2. 3.3直线与平面垂直的性质
【教学目标】
(1)培养学生的几何直观能力和知识的应用能力,使他们在直观感知的基础上进一步学会证明.
(2)掌握直线和平面垂直的性质定理和推论的内容、推导和简单应用。
(3)掌握等价转化思想在解决问题中的运用.
【教学重难点】
重点:直线和平面垂直的性质定理和推论的内容和简单应用。
难点:直线和平面垂直的性质定理和推论的证明,等价转化思想的渗透。
【教学过程】
复习引入
师:判断直线和平面垂直的方法有几种?
师:各判定方法在何种条件或情形下方可熟练运用?
师:在空间,过一点,有几条直线与已知平面垂直?过一点,有几个平面与已知直线垂直?
判断下列命题是否正确:
1、在平面中,垂直于同一直线的两条直线互相平行。
在空间中,垂直于同一直线的两条直线互相平行。
垂直于同一平面的两直线互相平行。
垂直于同一直线的两平面互相平行。
师:直线和平面是否垂直的判定方法上节课我们已研究过,这节课我们来共同探讨直线和平面如果垂直,则其应具备的性质是什么?
创设情景
如图,长方体ABCD—A′B′C′D′中,棱A A′、B B′、C C′、D D′所在直线都垂直于平面ABCD,它们之间具有什么位置关系?
(三)讲解新课
例1 已知:a,b。求证:b∥a
师:此问题是在a,b的条件下,研究a和b是否平行,若从正面去证明b∥a,则较困难。而利用反证法来完成此题,相对较为容易,但难在辅助线b’的作出,这也是立体几何开始的这部分较难的一个证明.在老师的知道下,学生尝试证明,稍后教师指正.
生:证明:假定b不平行于a,设, b’是经过点O的两直线a平行的直线.
∥b’, a, b’
即经过同一点O的两直线b ,b’都与垂直,这是不可能的,因此b∥a.
有了上述证明,师生可共同得到结论.:
直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行,也可简记为线面垂直,线线平行.
利用三种形式去描述它
下列命题中错误的是(C)
若一直线垂直于一平面,则此直线必垂直于这个平面上的所有直线。
若一个平面通过另一个平面的一条垂线,则这两个平面互相垂直。
若一直线垂直于一个平面的一条垂线,则此直线必平行于这个平面
D、若平面内的一条直线和这个平面的一条斜线的射影垂直,则也和这条直线垂直。
(四)课堂检测
课本页:1、2.
拓展练习:设直线a,b分别在正方体ABCD—A′B′C′D′中两个不同的平面内,
欲使b∥a,a、b应满足什么条件?
分析:结合两直线平行的判定定理,考虑a、b满足的条件。
解:a、b满足下面条件中的任何一个,都能使b∥a
(1)a、b同垂直于正方体的一个面
(2)a、b分别在正方体两个相对的面内且共面。
(3)a、b平行于同一条棱。
(4)E、F、G、H分别为B′C′、CC′、AA′、AD的中点,
EF所在直线为a,GH所在直线为b,等等。
(五)课堂小结
本节课,我们学习了直线和平面垂直的性质定理,定理的证明用到反证法,证明几何问题常规的方法有两种:直接证法和间接证法。直接证法长依据定义、定理、公理,并适当引用平面几何知识;用直接法证明比较困难时,我们可以考虑间接证法,反证法就是一种间接证法。关于直线与平面垂直的性质定理的证明,教材采用反证法,学生理解上会有一定的困难,教学时应注意引导学生理解反证法的反设、归谬,进而得到要证的结论。
【板书设计】
一、直线和平面垂直的性质定理及其推论
二、例题
例1
例2
【作业布置】
导学案课后练习与提高
2.3.3直线与平面垂直的性质
课前预习学案
一、预习目标:通过对图形的观察,知道直线于平面垂直的性质
二、预习内容:
1、直线与平面垂直的判定方法有哪些?
2、在空间,过一点,有几条直线与已知平面垂直?过一点,有几个平面与已知直线垂直?
3、判断题(判断下列命题是否正确)
(1)、在平面中,垂直于同一直线的两条直线互相平行。
(2)、在空间中,垂直于同一直线的两条直线互相平行。
(3)、垂直于同一平面的两直线互相平行。
(4)、垂直于同一直线的两平面互相平行。
4、若直线和平面如果垂直,则其应具备的性质是什么?
提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标:
(1)明确直线与平面垂直的性质定理。
(2)利用直线与平面垂直的性质定理解决问题。
学习重点:直线和平面垂直的性质定理和推论的内容和简单应用。
学习难点:直线和平面垂直的性质定理和推论的证明,等价转化思想的渗透。
二、学习过程
探究一、直线与平面垂直的性质
1、 如图,长方体ABCD—A′B′C′D′中,棱A A′、B B′、C C′、D D′所在直线都垂直于平面ABCD,它们之间具有什么位置关系?
2、 已知:a,b。求证:b∥a(由1让学生自行证明)
得直线与平面垂直的性质定理
三种语言刻画
探究二、定理的应用
例1已知
变式1:
下列命题中错误的是()
A、若一直线垂直于一平面,则此直线必垂直于这个平面上的所有直线。
B、若一个平面通过另一个平面的一条垂线,则这两个平面互相垂直。
C、若一直线垂直于一个平面的一条垂线,则此直线必平行于这个平面
D、若平面内的一条直线和这个平面的一条斜线的射影垂直,则也和这条直线垂直。(四)课堂检测
1、课本页:1、2.
2、设直线a,b分别在正方体ABCD—A′B′C′D′中两个不同的平面内,
欲使b∥a,a、b应满足什么条件?
课后巩固练习与提高
1.若表示直线,表示平面,下列条件中,能使的是 ( )


2.已知与是两条不同的直线,若直线平面,①若直线,则;②若,则;③若,则;④,则。上述判断正确的是 ( )
①②③ ②③④ ①③④ ②④
3.下列关于直线与平面的命题中,真命题是 ( )
若且,则 若且,则
若且,则 且,则
4.在直四棱柱中,当底面四边形满足条件 时,有(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况)
5.设三棱锥的顶点在平面上的射影是,给出以下命题:
①若,,则是的垂心
②若两两互相垂直,则是的垂心
③若,是的中点,则
④若,则是的外心
其中正确命题的命题是
6如图,直三棱柱中,,侧棱,侧面的两条对角线交于点,的中点为,
求证:平面
2. 3.4 平面与平面垂直的性质
【教学目标】
(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理的正确认识;
(2)能运用性质定理证明一些空间位置关系的简单命题,进一步培养学生空间观念.
(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系,掌握等价转化思想在解决问题中的运用.
【教学重难点】
重点:理解掌握面面垂直的性质定理和内容和推导。
难点:运用性质定理解决实际问题。
【教学过程】
(一) 复习提问
1.线面垂直判定定理:
如果一条直线和一个平面内两条相交直线都垂直,则这条直线垂直于这个平面.
2.面面垂直判定定理:
如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.
(二)引入新课
已知黑板面与地面垂直,你能在黑板面内找到一条直线与地面平行、相交或垂直吗这样的直线分别有什么性质?试说明理由!
(三)探求新知
已知:面α⊥面β,α∩β= a, ABα, AB⊥a于 B,
求证:AB⊥β
(让学生思考怎样证明)
分析:要证明直线垂直于平面,须证明直线垂直于平面内两条相交直线,而题中条件已有一条,故可过该直线作辅助线.
证明:在平面β内过B作BE⊥a,
又∵AB⊥a,
∴∠ABE为α﹣a﹣β的二面角,
又∵α⊥β,
∴∠ABE = 90° , ∴AB⊥BE
又∵AB⊥a, BE∩a = B,
∴AB⊥β
面面垂直的性质定理:
两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.
(用符号语言表述) 若α⊥β,α∩β=a, ABα, AB⊥a于 B,则 AB⊥β
师:从面面垂直的性质定理可知,要证明线垂直于面可通过面面垂直来证明,而前面
我们知道,面面垂直也可通过线面垂直来证明。这种互相转换的证明方法是常用的数学思想方法。同学们在学习中要认真理解和体会。
(四)拓展应用
例1.求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.

例2.如图,已知平面α 、β,α⊥β,α∩β =AB, 直线a⊥β, aα,
试判断直线a与平面α的位置关系(求证:a ∥α )(引导学生思考)
分析:因为直线与平面有在平面内、相交、平行三种关系)
解:在α内作垂直于α 、β交线AB的直线b,
∵ α⊥β ∴b⊥β
∵ a⊥β ∴ a ∥b ,
又∵aα ∴ a ∥α
课堂练习:
练习 第1、2题
A组 第1题
(四)当堂检测
1.如图,长方体ABCD﹣A′B′C′D′中,判断下面结论的正误。
(1)平面ADD′A′⊥平面ABCD (2) DD′⊥ 面ABCD (3)AD′⊥ 面ABCD
2.空间四边形ABCD中,ΔABD与ΔBCD都为正三角形,面ABD⊥面BCD,试在平面BCD内找一点,使AE⊥面BCD,亲说明理由
参考答案
2解:在ΔABD中,∵AB=AD,取BD的中点E,
连结AE,则AE为BD的中线
∴AE⊥BD
又∵面BCD∩面ABD=BD, 面ABD⊥面BCD
∴AE⊥面BCD
(五)课堂小结
1. 面面垂直判定定理:
如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.
2. 面面垂直的性质定理:
两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.
② 利用性质定理解决问题
【板书设计】
一、平面与平面垂直的性质定理
二、三种形式表达
三、性质定理的应用
【作业布置】课后练习与提高
2.3.4 平面与平面垂直的性质
课前预习导学案
一、预习目标
明确平面与平面垂直的判定定理。
直线与平面垂直的性质定理
预习内容
1、平面与平面垂直的判定定理
2、直线与平面垂直的性质定理
3、思考题:
(1)黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?
(2)在长方体中,平面与平面垂直,直线垂直于其交线。平面内的直线与平面垂直吗?
提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标
(1)探究平面与平面垂直的性质定理
(2)应用平面与平面垂直的性质定理解决问题
学习重点:理解掌握面面垂直的性质定理和内容和推导。
学习难点:运用性质定理解决实际问题。
二、学习过程
探究一
已知:面α⊥面β,α∩β= a, ABα, AB⊥a于 B,
求证:AB⊥β
(让学生思考怎样证明,小组间可以相互讨论)
由证明结果的平面与平面垂直的性质定理(三种形式的表达)
探究二、性质的应用
例1.求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.
证明(略)
变式 练习 第1题
例2.如图,已知平面α 、β,α⊥β,α∩β =AB, 直线a⊥β, aα,
试判断直线a与平面α的位置关系(求证:a ∥α )(引导学生思考)
解:(略)
变式 练习 2题(略)
A组 第1题(略)
当堂检测
1.如图,长方体ABCD﹣A′B′C′D′中,判断下面结论的正误。
(1)平面ADD′A′⊥平面ABCD (2) DD′⊥ 面ABCD (3)AD′⊥ 面ABCD
2.空间四边形ABCD中,ΔABD与ΔBCD都为正三角形,面ABD⊥面BCD,试在平面BCD内找一点,使AE⊥面BCD,亲说明理由
课后练习与提高
1.已知正方形所在的平面,垂足为,连结,则互相垂直的平面有 ( )
5对 6对 7对 8对
2.平面⊥平面,=,点,点,那么是的( )
充分但不必要条件 必要但不充分条件 充要条件 既不充分也不必要条件
3.若三个平面,之间有,,则与 ( )
垂直 平行 相交 以上三种可能都有
4.已知,是两个平面,直线,,设(1),(2),(3),若以其中两个作为条件,另一个作为结论,则正确命题的个数是 ( )
0 1 2 3
5.在四棱锥中,底面,
底面各边都相等,是上的一动点,
当点满足__________时,平面平面。
6.三棱锥中,,点为中点,于点,连,求证:平面平面
参考答案:1B 2C 3D 4C 5中点 6略
课后提升作业 十五
直线与平面垂直的性质
(45分钟 70分)
一、选择题(每小题5分,共40分)
1.已知直线a,b和平面M,N,且a⊥M,则下列说法正确的是 (  )
A.b∥M?b⊥a       B.b⊥a?b∥M
C.N⊥M?a∥N D.a?N?M∩N≠?
【解析】选A.对于A,如图1所示:过直线b作平面N与平面M相交于直线l,由直线与平面平行的性质定理可知:b∥l,又因为a⊥M,l?M,所以a⊥l,所以b⊥a,A正确.选项B,C均少考虑了直线在面内的情况,分别如图2,3所示,均错误;对于D,用排除法,如图4所示,M∥N,D错误.
2.(2018·太原高二检测)已知m,n表示两条不同直线,α表示平面.下列说法正确的是 (  )
A.若m∥α,n∥α,则m∥n   B.若m⊥α,n?α,则m⊥n
C.若m⊥α,m⊥n,则n∥α D.若m∥α,m⊥n,则n⊥α
【解析】选B.对于A,若m∥α,n∥α,则m,n相交、平行或异面,不对;对于B,若m⊥α,n?α,则m⊥n,故B正确;对于C,若m⊥α,m⊥n,则n∥α或n?α,故C错;对于D,若m∥α,m⊥n,则n∥α或n?α或n⊥α,D不正确.
3.(2018·温州高二检测)设m,n表示两条不同的直线,α,β表示两个不同的平面,则下列命题不正确的是 (  )
A.m⊥α,m⊥β,则α∥β B.m∥n,m⊥α,则n⊥α
C.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n
【解析】选D.A选项正确,两平面垂直于同一直线,两平面平行;B选项正确,两平行线中的一条垂直于某个平面,则另一条必垂直于这个平面;C选项正确,两直线垂直于同一平面,两直线平行;D选项错误,由线面平行的性质定理知,线平行于面,过线的面与已知面相交,则交线与已知直线平行,由于m和β的位置关系不确定,不能确定线线平行.
4.(2018·吉安高一检测)如图所示,PO⊥平面ABC,BO⊥AC,在图中与AC垂直的直线有 (  )
A.1条     B.2条     C.3条    D.4条
【解析】选D.因为PO⊥平面ABC,AC?平面ABC,所以PO⊥AC,又因为AC⊥BO,PO∩BO=O,所以AC⊥平面PBD,因此,平面PBD中的4条直线PB,PD,PO,BD都与AC垂直.
5.如图,设平面α∩β=EF,AB⊥α,CD⊥α,垂足分别是B,D,如果增加一个条件,就能推出BD⊥EF,这个条件不可能是下面四个选项中的 (  )
A.AC⊥β
B.AC⊥EF
C.AC与BD在β内的射影在同一条直线上
D.AC与α,β所成的角相等
【解析】选D.因为AB⊥α,CD⊥α,所以AB∥CD,所以A,B,C,D四点共面.选项A,B中的条件都能推出EF⊥平面ABDC,则EF⊥BD.选项C中,由于AC与BD在β内的射影在同一条直线上,所以显然有EF⊥BD.选项D中,若AC∥EF,则AC与α,β所成角也相等,但不能推出BD⊥EF.
6.(2015·朔州高二检测)如图,在正方体ABCD-A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于 (  )
A.AC B.BD C.A1D D.A1D1
【解析】选B.在正方体ABCD-A1B1C1D1中,E是A1C1,B1D1的中点,设O是AC,BD的交点,则EO⊥平面ABCD,所以EO⊥BD,又CO⊥BD,CO∩EO=O,所以BD⊥
面COE,所以BD⊥CE.
7.正方体ABCD-A1B1C1D1中E为线段B1D1上的一个动点,则下列结论中错误的是 
(  )
A.AC⊥BE
B.B1E∥平面ABCD
C.三棱锥E-ABC的体积为定值
D.B1E⊥BC1
【解析】选D.对于A,因为在正方体中,AC⊥BD,AC⊥DD1,BD∩DD1=D,
所以AC⊥平面BB1D1D,
因为BE?平面BB1D1D,所以AC⊥BE,所以A正确.
对于B,因为B1D1∥平面ABCD,所以B1E∥平面ABCD成立,即B正确.
对于C,三棱锥E-ABC的底面△ABC的面积为定值,锥体的高BB1为定值,所以锥体体积为定值,即C正确.
对于D,因为D1C1⊥BC1,所以B1E⊥BC1错误.
8.(2018·福州高一检测)已知棱长为1的正方体ABCD-A1B1C1D1中,点E,F,M分别是AB,AD,AA1的中点,又P,Q分别在线段A1B1,A1D1上,且A1P=A1Q=x,0A.l∥平面ABCD
B.l⊥AC
C.平面MEF与平面MPQ不垂直
D.当x变化时,l不是定直线
【解析】选D.因为A1P=A1Q=x,所以PQ∥B1D1,又E,F分别是AB,AD的中点,故EF∥BD,从而PQ∥EF,而EF?平面MPQ,PQ?平面MPQ,故EF∥平面MPQ,且平面MEF∩平面MPQ=l,从而EF∥l,而l?平面ABCD,EF?平面ABCD,所以l∥平面ABCD,故A正确;由EF∥BD,AC⊥BD,所以AC⊥EF,又EF∥l,所以AC⊥l,故B正确;设A1C1∩B1D1=H,连接MH,易证MH⊥平面MEF,而MH?平面MPQ,故平面MPQ与平面MEF不垂直,故C正确,综上,不正确的为D项.
【补偿训练】如图,PA⊥☉O所在的平面,AB是☉O的直径,C是☉O上的一点,AE⊥PB于E,AF⊥PC于F,给出下列结论:①BC⊥平面PAC;②AF⊥平面PCB;③EF⊥PB;④AE⊥平面PBC.其中正确命题的个数是(  )
A.1     B.2     C.3     D.4
【解析】选C.因为PA⊥☉O所在的平面,BC?☉O所在的平面,所以PA⊥BC,而BC⊥AC,AC∩PA=A,所以BC⊥平面PAC,故①正确;又因为AF?平面PAC,所以AF⊥BC,而AF⊥PC,PC∩BC=C,所以AF⊥平面PCB,故②正确;而PB?平面PCB,所以AF⊥PB,而AE⊥PB,AE∩AF=A,所以PB⊥平面AEF,而EF?平面AEF,所以EF⊥PB,故③正确;因为AF⊥平面PCB,假设AE⊥平面PBC,所以AF∥AE,显然不成立,故④不正确.
二、填空题(每小题5分,共10分)
9.如图,在正方体ABCD-A1B1C1D1中,给出以下四个结论:
①D1C∥平面A1ABB1;②A1D1与平面BCD1相交;
③AD⊥平面D1DB;④平面BCD1⊥平面A1ABB1.
其中正确结论的序号是________.
【解析】对于①,因为平面A1ABB1∥平面DCC1D1,而D1C?平面DCC1D1,故D1C与平面A1ABB1没有公共点,所以D1C∥平面A1ABB1,即①正确;对于②,因为A1D1∥BC,所以A1D1?平面BCD1,所以②错误;对于③,只有AD⊥D1D,而AD与平面BDD1内其他直线不垂直,所以③错误;对于④,在正方体ABCD-A1B1C1D1中,易得BC⊥平面A1ABB1,而BC?平面BCD1,所以平面BCD1⊥平面A1ABB1,所以④正确.
答案:①④
10.(2018·杭州高二检测)如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分别是AD,BE的中点,将三角形ADE沿AE折起,下列说法正确的是________(填上所有正确的序号).
①不论D折至何位置(不在平面ABC内)都有MN∥平面DEC;
②不论D折至何位置都有MN⊥AE;
③不论D折至何位置(不在平面ABC内)都有MN∥AB;
④在折起过程中,一定存在某个位置,使EC⊥AD.
【解析】将三角形ADE沿AE折起后几何体如图所示.
①取DE,EC的中点分别为H,G,连接MH,HG,GN,则四边形MNGH为平行四边形,所以MN∥GH,而GH?平面DEC,MN?平面DEC,所以MN∥平面DEC,所以①正确.
②因为MN∥GH,而AE⊥EC,AE⊥DE,
EC∩DE=E,所以AE⊥平面EDC,
所以AE⊥GH,故AE⊥MN,②正确.
③因为GH与EC相交,而AB∥EC,故无论D折到何位置AB都不平行于MN,③错.
④当EC⊥ED时,因为CE⊥AE,所以CE⊥平面AED,
所以CE⊥AD,所以存在某个位置,使EC⊥AD,所以④正确.
答案:①②④
【补偿训练】AB是☉O的直径,点C是☉O上的动点(点C不与A,B重合),过动点C的直线VC垂直于☉O所在的平面,D,E分别是VA,VC的中点,则下列结论中正确的是________(填写正确结论的序号).
(1)直线DE∥平面ABC.
(2)直线DE⊥平面VBC.
(3)DE⊥VB.
(4)DE⊥AB.
【解析】因为AB是☉O的直径,点C是☉O上的动点(点C不与A,B重合),
所以AC⊥BC,
因为VC垂直于☉O所在的平面,
所以AC⊥VC,又BC∩VC=C,.Com]
所以AC⊥平面VBC.
因为D,E分别是VA,VC的中点,
所以DE∥AC,又DE?平面ABC,AC?平面ABC,
所以DE∥平面ABC,
DE⊥平面VBC,DE⊥VB,
DE与AB所成的角为∠BAC是锐角,故DE⊥AB不成立.由以上分析可知(1)(2)(3)正确.
答案:(1)(2)(3)
三、解答题(每小题10分,共20分)
11.(2018·重庆高一检测)在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,点E是PC的中点.
证明:(1)CD⊥AE.
(2)PD⊥平面ABE.
【解题指南】(1)要证线线垂直,可先证线面垂直,进而由线面垂直的定义得出线线垂直.
(2)要证明线面垂直,则先证明直线垂直于平面内的两条相交直线.
【证明】(1)在四棱锥P-ABCD中,
因为PA⊥底面ABCD,CD?平面ABCD,故PA⊥CD.
又因为AC⊥CD,PA∩AC=A,所以CD⊥平面PAC.
而AE?平面PAC,
所以CD⊥AE.
(2)由PA=AB=BC,∠ABC=60°,
得△ABC是等边三角形,故AC=PA.
因为点E是PC的中点,所以AE⊥PC.
由(1)知:AE⊥CD,且PC∩CD=C,
所以AE⊥平面PCD.
而PD?平面PCD,所以AE⊥PD.
又因为PA⊥底面ABCD,
所以PA⊥AB.
又AB⊥AD,且PA∩AD=A,
所以AB⊥平面PAD,
故AB⊥PD.又因为AB∩AE=A,
所以PD⊥平面ABE.
【拓展延伸】遵循从“低维”到“高维”的转化原则
在解决线面、面面平行、垂直判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行、垂直”到“线面平行、垂直”,再到“面面平行、垂直”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,绝不可过于“模式化”.
12.(2018·雅安高二检测)如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(1)求证:A1C⊥平面BCDE.
(2)过点E作截面EFH∥平面A1CD,分别交CB于F,A1B于H,求截面EFH的面积.
【解析】(1)因为CD⊥DE,A1D⊥DE,CD∩A1D=D,所以DE⊥平面A1CD.
又因为A1C?平面A1CD,所以A1C⊥DE.
又A1C⊥CD,DE∩CD=D,所以A1C⊥平面BCDE.
(2)过点E作EF∥CD交BC于F,
过点F作FH∥A1C,
交A1B于H,连接EH.则截面EFH∥平面A1CD.
因为四边形EFCD为矩形,所以EF=CD=1,CF=DE=4,从而FB=2,HF=A1C=.
因为A1C⊥平面BCDE,FH∥A1C,
所以HF⊥平面BCDE,所以HF⊥FE.
所以S△HFE=.
【能力挑战题】
如图,已知二面角α-MN-β的大小为60°,菱形ABCD在平面β内,A,B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥平面α,垂足为O.
(1)证明:AB⊥平面ODE.
(2)求异面直线BC与OD所成角的余弦值.
【解析】(1)如图,
因为DO⊥α,AB?α,所以DO⊥AB,连接BD,由题设知,△ABD是正三角形,又E是AB的中点,所以DE⊥AB,DO∩DE=D,故AB⊥平面ODE.
(2)因为BC∥AD,所以BC与OD所成的角等于AD与OD所成的角,即∠ADO是BC与OD所成的角.
由(1)知,AB⊥平面ODE,所以AB⊥OE,又DE⊥AB,于是∠DEO是二面角α-MN-β的平面角,从而∠DEO=60°.
不妨设AB=2,则AD=2,易知DE=.
在Rt△DOE中,DO=DE·sin60°=,
连接AO,在Rt△AOD中,cos∠ADO===,
故异面直线BC与OD所成角的余弦值为.
课后提升作业 十六
平面与平面垂直的性质
(45分钟 70分)
一、选择题(每小题5分,共40分)
1.已知平面α⊥平面β,α∩β=l,点A∈α,A?l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是 (  )
A.AB∥m B.AC⊥m
C.AB∥β D.AC⊥β
【解析】选D.因为m∥α,m∥β,α∩β=l,
所以m∥l.
因为AB∥l,所以AB∥m.故A一定正确.
因为AC⊥l,m∥l,所以AC⊥m.
从而B一定正确.
因为A∈α,AB∥l,l?α,所以B∈α.
所以AB?β,l?β.所以AB∥β.
故C也正确.
因为AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.
2.(2015·安徽高考)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是 (  )
A.若α,β垂直于同一平面,则α与β平行
B.若m,n平行于同一平面,则m与n平行
C.若α,β不平行,则在α内不存在与β平行的直线
D.若m,n不平行,则m与n不可能垂直于同一平面
【解析】选D.
选项
具体分析
结论
A
平面α,β垂直于同一个平面,则α,β相交或平行
错误
B
直线m,n平行于同一个平面,则m与n平行、相交、异面
错误
C
若α,β不平行,则在α内存在与β平行的直线,如α中平行于α与β交线的直线,则此直线也平行于平面β
错误
D
若m,n垂直于同一个平面,则m∥n,其逆否命题即为选项D
正确
3.(2018·杭州高二检测)设α,β,γ是三个互不重合的平面,m,n是直线,给出下列命题:①α⊥β,β⊥γ,则α⊥γ;②若α∥β,m?β,m∥α,则m∥β;③若m,n在γ内的射影互相垂直,则m⊥n;④若m∥α,n∥β,α⊥β,则m⊥n,其中正确命题的个数为 (  )
A.0 B.1 C.2 D.3
【解析】选B.①:根据面面垂直的判定可知:①错误;②:根据线面平行的判定可知,②正确;③:如正方体ABCD-A1B1C1D1中,AB1与AD1在底面A1B1C1D1的射影互相垂直,而AB1与AD1的夹角为,③错误;④:m,n可能斜交,可能平行,可能异面,可能垂直,④错误,所以正确命题的个数为1个.
4.如图所示,平面α⊥平面β,A∈α,B∈β,AB与两平面α,β所成的角分别为和,过A,B分别作两平面交线的垂线,垂足分别为A′,B′,则AB∶A′B′等于 (  )
A.2∶1
B.3∶1
C.3∶2
D.4∶3
【解题指南】利用面面垂直的性质定理找AB与两平面α,β所成的角,再利用直角三角形的知识表示出AB的值与A′B′的值,进而求出AB∶A′B′的值.
【解析】选A.如图,由已知得AA′⊥平面β,
∠ABA′=,BB′⊥平面α,
∠BAB′=,设AB=a,则BA′=a,BB′=a,
在Rt△BA′B′中,A′B′=a,所以=.
【补偿训练】在三棱锥P-ABC中,平面PAC⊥平面ABC,∠PCA=90°,△ABC是边长为4的正三角形,PC=4,M是AB边上的一动点,则PM的最小值为 (  )
A.2    B.2    C.4    D.4
【解析】选B.连接CM,则由题意PC⊥平面ABC,可得PC⊥CM,所以PM=,要求PM的最小值只需求出CM的最小值即可,在△ABC中,当CM⊥AB时CM有最小值,此时有CM=4×=2,所以PM的最小值为2.
5.线段AB的两端在直二面角α-l-β的两个面内,并与这两个面都成30°角,则异面直线AB与l所成的角是 (  )
A.30° B.45° C.60° D.75°
【解题指南】过B作l的平行线BC,将直线l与AB所成角转化为AB与BC所成角.
【解析】选B.设AB=a,在平面α内,作AA′⊥l于A′,
则AA′⊥β,连A′B,则∠ABA′=30°.
在Rt△AA′B中,AB=a,
所以AA′=a.
同理作BB′⊥l于B′,连AB′,则∠BAB′=30°,
所以BB′=a,AB′=a,
所以A′B′==a,
过B作BCA′B′.
连接A′C,则A′CBB′,连接AC,在Rt△AA′C中,
AC==a.
由BC⊥平面AA′C,所以△ABC为直角三角形,
且AC=BC,所以∠ABC=45°,为l与AB所成角.
6.(2018·菏泽高一检测)已知两条不重合的直线m,n和两个不重合的平面α,β,有下列命题:
①若m⊥n,m⊥α,则n∥α;
②若m⊥α,n⊥β,m∥n,则α∥β;
③若m,n是两条异面直线,m?α,n?β,m∥β,n∥α,则α∥β;
④若α⊥β,α∩β=m,n?β,n⊥m,则n⊥α.其中正确命题的个数是 (  )
A.1 B.2 C.3 D.4
【解析】选C.①若m⊥n,m⊥α,则n∥α或n?α,故①错误;②因为m⊥α,m∥n,所以n⊥α,又n⊥β,则α∥β,故②正确;③过直线m作平面γ交平面β于直线c,因为m,n是两条异面直线,所以设n∩c=O;因为m∥β,m?γ,γ∩β=c,所以m∥c;因为m?α,c?α,所以c∥α,因为n?β,c?β,n∩c=O,c∥α,n∥α,所以α∥β,故③正确;④由面面垂直的性质定理:因为α⊥β,α∩β=m,n?β,n⊥m,所以n⊥α,故④正确.
7.如图所示,三棱锥P-ABC的底面在平面α内,且AC⊥PC,平面PAC⊥平面PBC,点P,A,B是定点,则动点C的轨迹是 (  )
A.一条线段
B.一条直线
C.一个圆
D.一个圆,但要去掉两个点
【解析】选D.因为平面PAC⊥平面PBC,AC⊥PC,平面PAC∩平面PBC=PC,
AC?平面PAC,所以AC⊥平面PBC.
又因为BC?平面PBC,所以AC⊥BC.所以∠ACB=90°.
所以动点C的轨迹是以AB为直径的圆,除去A和B两点.
8.(2015·浙江高考)设α,β是两个不同的平面,l,m是两条不同的直线,且l?α,m?β (  )
A.若l⊥β,则α⊥β
B.若α⊥β,则l⊥m
C.若l∥β,则α∥β
D.若α∥β,则l∥m
【解析】选A.选项A中,由平面与平面垂直的判定,故正确;选项B中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;选项C中,l∥β时,α,β可以相交;选项D中,α∥β时,l,m也可以异面.
【补偿训练】设α,β,γ为平面,l,m,n为直线,则能得到m⊥β的一个条件为 (  )
A.α⊥β,α∩β=l,m⊥l   B.n⊥α,n⊥β,m⊥α
C.α∩γ=m,α⊥γ,β⊥γ D.α⊥γ,β⊥γ,m⊥α
【解析】选B.如图①知A错;如图②知C错;如图③,在正方体中,两侧面α与β相交于l,都与底面γ垂直,γ内的直线m⊥α,但m与β不垂直,故D错;由n⊥α,n⊥β知α∥β,又m⊥α,故m⊥β,因此B正确.
二、填空题(每小题5分,共10分)
9.(2018·桂林高二检测)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.
(1)A′C⊥BD.(2)∠BA′C=90°.
(3)CA′与平面A′BD所成的角为30°.
(4)四面体A′-BCD的体积为.
【解析】若A′C⊥BD,又BD⊥CD,
则BD⊥平面A′CD,则BD⊥A′D,显然不可能,故(1)错误.
因为BA′⊥A′D,BA′⊥CD,故BA′⊥平面A′CD,
所以BA′⊥A′C,所以∠BA′C=90°,故(2)正确.
因为平面A′BD⊥平面BCD,BD⊥CD,
所以CD⊥平面A′BD,CA′与平面A′BD所成的角为∠CA′D,
因为A′D=CD,
所以∠CA′D=,故(3)错误.
四面体A′-BCD的体积为V=S△BDA′·h=××1=,
因为AB=AD=1,DB=,
所以A′C⊥BD,综上(2)(4)成立.
答案:(2)(4)
10.斜三棱柱ABC-A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,且平面ACC1A1⊥平面BCC1B1,则A1B=________.
【解析】取CC1中点M,连A1M与BM,
因为AA1=AC=BC=2,∠A1AC=∠C1CB=60°,
所以△A1CC1是等边三角形,
四边形ACC1A1≌四边形CBB1C1,
所以A1M⊥CC1,
BM⊥CC1,所以A1M=BM=.
又平面ACC1A1⊥平面BCC1B1,
所以∠A1MB为二面角的平面角,且∠A1MB=90°.
所以A1B=.
答案:
三、解答题(每小题10分,共20分)
11.如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=,AD=CD=1.
(1)求证:BD⊥AA1.
(2)在棱BC上取一点E,使得AE∥平面DCC1D1,求的值.
【解题指南】(1)利用面面垂直的性质,证明BD⊥平面AA1C1C,可得BD⊥AA1.
(2)点E为BC的中点,即=1,再证明AE∥DC,利用线面平行的判定,可得AE∥平面DCC1D1.
【解析】(1)在四边形ABCD中,因为BA=BC,DA=DC,所以BD⊥AC,平面AA1C1C⊥平面ABCD,且平面ACC1A1∩平面ABCD=AC,BD?平面ABCD,所以BD⊥平面ACC1A1,又AA1?平面ACC1A1,所以BD⊥AA1.
(2)点E为BC的中点,即=1,
下面给予证明:在三角形ABC中,因为AB=AC,且E为BC的中点,所以AE⊥BC,又在四边形ABCD中,AB=BC=CA=,DA=DC=1,所以∠ACB=60°,∠ACD=30°,所以DC⊥BC,即平面ABCD中有AE∥DC.因为DC?平面DCC1D1,AE?平面DCC1D1,所以AE∥平面DCC1D1.
12.(2018·重庆高二检测)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=
90°,AC=BC=AA1,D是棱AA1的中点.
(1)证明:平面BDC1⊥平面BDC.
(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.
【解析】(1)设AC=1,因为D为AA1的中点,AC=BC=AA1,
所以AC=AD=A1D=A1C1=1,
所以DC=DC1=,又CC1=2,
所以DC2+D=C,
所以C1D⊥DC,因为BC⊥AC,BC⊥C1C,AC∩C1C=C,
所以BC⊥平面A1ACC1,C1D?平面A1ACC1,所以C1D⊥BC,
因为DC∩BC=C,
所以C1D⊥平面BDC,
又C1D?平面BDC1,
所以平面BDC1⊥平面BDC.
(2)过C1作C1H⊥A1B1于H点,
因为平面A1B1C1⊥平面ABB1A1,
平面A1B1C1∩平面ABB1A1=A1B1,
所以C1H⊥平面ABB1A1,
由(1)知,
在等腰Rt△A1B1C1中,C1H=,
所以=·(A1D+BB1)·A1B1·C1H=,
=·AC·BC·CC1=1,
所以这两部分体积的比为1∶1.
【能力挑战题】
如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD,
(1)证明:平面AEC⊥平面BED.
(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为,求该三棱锥的侧面积.
【解析】(1)因为四边形ABCD为菱形,所以AC⊥BD.
因为BE⊥平面ABCD,所以AC⊥BE,又BD∩BE=B,故AC⊥平面BED.
又AC?平面AEC,所以平面AEC⊥平面BED.
(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=x,GB=GD=.
因为AE⊥EC,所以在Rt△AEC中,可得EG=x.
由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=x.
由已知得,三棱锥E-ACD的体积
VE-ACD=×AC·GD·BE=x3=.
故x=2.从而可得AE=EC=ED=.
所以△EAC的面积为3,△EAD的面积与△ECD的面积均为.
故三棱锥E-ACD的侧面积为3+2.
课件40张PPT。·新知自解平行a∥ba?αa⊥l一个平面内交线垂直线面答案: A答案: D答案: ②④课堂探究
谢谢观看!课件23张PPT。第二章  § 2.3 直线、平面垂直的判定及其性质2.3.3 直线与平面垂直的性质
2.3.4 平面与平面垂直的性质1.掌握直线与平面垂直,平面与平面垂直的性质定理;
2.能运用性质定理解决一些简单问题;
3.了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系.问题导学题型探究达标检测学习目标问题导学     新知探究 点点落实知识点一 直线与平面垂直的性质思考 在日常生活中常见到一排排和地面垂直的电线杆.一排电线杆中的每根电线杆都与地面垂直,这些电线杆之间的位置关系是什么?
答案 平行.答案平行知识点二 平面与平面垂直的性质定理
思考 黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?
答案 容易发现墙壁与墙壁所在平面的交线与地面垂直,因此只要在黑板上画出一条与这条交线平行的直线,则所画直线必与地面垂直.答案返回一个平面内交线垂直a?αa⊥l题型探究     重点难点 个个击破类型一 直线与平面垂直的性质定理例1  如图,在四棱锥P--ABCD中,底面ABCD是矩形,AB⊥平面PAD,AD=AP,E是PD的中点,M,N分别在AB,PC上,且MN⊥AB,MN⊥PC.证明:AE∥MN.
解 因为AB⊥平面PAD,AE?平面PAD,所以AE⊥AB,
又AB∥CD,所以AE⊥CD.
因为AD=AP,E是PD的中点,所以AE⊥PD.
又CD∩PD=D,所以AE⊥平面PCD.
因为MN⊥AB,AB∥CD,所以MN⊥CD.
又因为MN⊥PC,PC∩CD=C,所以MN⊥平面PCD,所以AE∥MN.反思与感悟解析答案证明线线平行的常用方法有:
(1)利用线线平行定义:证共面且无公共点.
(2)利用三线平行公理:证两线同时平行于第三条直线.
(3)利用线面平行的性质定理:把证线线平行转化为证线面平行.
(4)利用线面垂直的性质定理:把证线线平行转化为证线面垂直.
(5)利用面面平行的性质定理:把证线线平行转化为证面面平行.跟踪训练1 如图,α∩β=l,PA⊥α,PB⊥β,垂足分别为A、B,a?α,a⊥AB.求证:a∥l.证明 ∵PA⊥α,l?α,∴PA⊥l.
同理PB⊥l.
∵PA∩PB=P,∴l⊥平面PAB.
又∵PA⊥α,a?α,∴PA⊥a.
∵a⊥AB,PA∩AB=A,∴a⊥平面PAB.
∴a∥l.解析答案类型二 平面与平面垂直的性质定理例2 如图所示,P是四边形ABCD所在平面外的一点,ABCD是∠DAB=60°且边长为a的菱形.侧面PAD为正三角形,其所在平面垂直于底面ABCD.G为AD边的中点.求证:(1)BG⊥平面PAD;证明 由题意知△PAD为正三角形,G是AD的中点,∴PG⊥AD.
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴PG⊥平面ABCD,∴PG⊥BG.
又∵四边形ABCD是菱形且∠DAB=60°,
∴△ABD是正三角形,∴BG⊥AD.
又AD∩PG=G,∴BG⊥平面PAD.解析答案(2)AD⊥PB.
证明 由(1)可知BG⊥AD,PG⊥AD,BG∩PG=G,
所以AD⊥平面PBG,又PB?平面PBG,
所以AD⊥PB.解析答案反思与感悟证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理.本题已知面面垂直,故可考虑面面垂直的性质定理.利用面面垂直的性质定理,证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.跟踪训练2 如图,在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.求证:BC⊥AB.证明 如图,在平面PAB内,作AD⊥PB于D.
∵平面PAB⊥平面PBC,且平面PAB∩平面PBC=PB.
∴AD⊥平面PBC.
又BC?平面PBC,∴AD⊥BC.
又∵PA⊥平面ABC,BC?平面ABC,∴PA⊥BC,
又∵PA∩AD=A,∴BC⊥平面PAB.
又AB?平面PAB,∴BC⊥AB.解析答案类型三 线线、线面、面面垂直的综合问题例3 如图,在四面体ABCD中,平面ABC⊥平面BCD,AB⊥AC,DC⊥BC.求证:平面ABD⊥平面ACD. 解析答案反思与感悟反思与感悟证明 ∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,在平面ABC内,作AE⊥BC于点E,如图,则AE⊥平面BCD.
又CD?平面BCD,∴AE⊥CD.
又BC⊥CD,AE∩BC=E,AE、BC?平面ABC,
∴CD⊥平面ABC,
又AB?平面ABC,∴AB⊥CD.
又AB⊥AC,AC∩CD=C,AC,CD?平面ACD.
∴AB⊥平面ACD.
又AB?平面ABD,∴平面ABD⊥平面ACD.在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每一种垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的,其转化关系如下:跟踪训练3 如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点.求证:
(1)DE=DA;解析答案证明 设BD=a,如图,作DF∥BC交CE于F,
则CF=DB=a.因为CE⊥面ABC,
所以BC⊥CF,DF⊥EC,所以DE=DA.(2)平面BDM⊥平面ECA;解析答案所以四边形MNBD为平行四边形,所以MD∥BN.
又因为EC⊥面ABC,所以EC⊥BN,EC⊥MD.
又DE=DA,M为EA的中点,所以DM⊥AE.
所以DM⊥平面AEC,所以面BDM⊥面ECA.(3)平面DEA⊥平面ECA.
证明 由(2)知DM⊥平面AEC,而DM?平面DEA,
所以平面DEA⊥平面ECA.证明 取CA的中点N,连接MN,BN,返回123达标检测     4解析答案1.已知△ABC所在的平面为α,直线l⊥AB,l⊥AC,直线m⊥BC,m⊥AC,则直线l,m的位置关系是(  )
A.相交 B.异面 C.平行 D.不确定
解析 因为l⊥AB,l⊥AC,AB?α,AC?α且AB∩AC=A,所以l⊥α,
同理可证m⊥α,所以l∥m.C1234解析答案2.已知平面α∩平面β=l,平面γ⊥α,γ⊥β,则(  )
A.l∥γ B.l?γ
C.l与γ斜交 D.l⊥γ
解析 如图,在γ面内取一点O,作OE⊥m,OF⊥n,
由于β⊥γ,γ∩β=m,
所以OE⊥面β,所以OE⊥l,
同理OF⊥l,OE∩OF=O,
所以l⊥γ.D12343.已知l⊥平面α,直线m?平面β.有下面四个命题:
①α∥β?l⊥m; ②α⊥β?l∥m;
③l∥m?α⊥β; ④l⊥m?α∥β.
其中正确的两个命题是(  )
A.①② B.③④ C.②④ D.①③
解析 ∵l⊥α,α∥β,m?β,∴l⊥m,故①正确;
∵l∥m,l⊥α,∴m⊥α,又∵m?β,∴α⊥β,故③正确.D解析答案1234解析答案4.如图所示,在四棱锥S--ABCD中,底面ABCD是矩形,侧面SDC⊥底面ABCD,求证:平面SCD⊥平面SBC.
证明 因为底面ABCD是矩形,所以BC⊥CD.
又平面SDC⊥平面ABCD,
平面SDC∩平面ABCD=CD,BC?平面ABCD,
所以BC⊥平面SCD.
又因为BC?平面SBC,
所以平面SCD⊥平面SBC.1.垂直关系之间的相互转化2.平行关系与垂直关系之间的相互转化3.判定线面垂直的方法主要有以下五种
①线面垂直的定义;②线面垂直的判定定理;③面面垂直的性质定理;④如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同
一平面, ⑤如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面,返回2.3.3 直线与平面垂直的性质
2.3.4 平面与平面垂直的性质
一、基础过关
1.已知两个平面互相垂直,那么下列说法中正确的个数是 (  )
①一个平面内的直线必垂直于另一个平面内的无数条直线;
②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线;
③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上;
④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面.
A.4 B.3 C.2 D.1
2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是 (  )
A.相交 B.平行 C.异面 D.相交或平行
3.若m、n表示直线,α表示平面,则下列命题中,正确命题的个数为 (  )
①?n⊥α; ②?m∥n;
③?m⊥n; ④?n⊥α.
A.1 B.2 C.3 D.4
4.在△ABC所在的平面α外有一点P,且PA=PB=PC,则P在α内的射影是△ABC的(  )
A.垂心 B.内心 C.外心 D.重心
5. 如图所示,AF⊥平面ABCD,DE⊥平面ABCD,且AF=DE,AD=6,则EF=________.
6.若α⊥β,α∩β=AB,a∥α,a⊥AB,则a与β的关系为________.
7. 如图,在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.
求证:BC⊥AB.
8. 如图所示,在正方体ABCD—A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.
求证:(1)MN∥AD1;
(2)M是AB的中点.
二、能力提升
9. 如图所示,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和.过A、B分别作两平面交线的垂线,垂足分别为A′、B′,则AB∶A′B′等于(  )
A.2∶1 B.3∶1 C.3∶2 D.4∶3
10.设α-l-β是直二面角,直线a?α,直线b?β,a,b与l都不垂直,那么(  )
A.a与b可能垂直,但不可能平行
B.a与b可能垂直,也可能平行
C.a与b不可能垂直,但可能平行
D.a与b不可能垂直,也不可能平行
11.直线a和b在正方体ABCD-A1B1C1D1的两个不同平面内,使a∥b成立的条件是________.(只填序号)
①a和b垂直于正方体的同一个面;
②a和b在正方体两个相对的面内,且共面;
③a和b平行于同一条棱;
④a和b在正方体的两个面内,且与正方体的同一条棱垂直.
12.如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4.
(1)设M是PC上的一点,
求证:平面MBD⊥平面PAD;
(2)求四棱锥P—ABCD的体积.
三、探究与拓展
13.如图,直三棱柱ABC-A1B1C1中,AC=BC=AA1,D是棱AA1
的中点,DC1⊥BD.
(1)证明:DC1⊥BC;
(2)求二面角A1-BD-C1的大小.
答案
1.B 2.B 3.C 4.C 
5.6
6.a⊥β
7.证明 在平面PAB内,作AD⊥PB于D.
∵平面PAB⊥平面PBC,
且平面PAB∩平面PBC=PB.
∴AD⊥平面PBC.
又BC?平面PBC,
∴AD⊥BC.
又∵PA⊥平面ABC,
BC?平面ABC,
∴PA⊥BC,∴BC⊥平面PAB.
又AB?平面PAB,
∴BC⊥AB.
8.证明 (1)∵ADD1A1为正方形,
∴AD1⊥A1D.
又∵CD⊥平面ADD1A1,
∴CD⊥AD1.
∵A1D∩CD=D,
∴AD1⊥平面A1DC.
又∵MN⊥平面A1DC,
∴MN∥AD1.
(2)连接ON,在△A1DC中,
A1O=OD,A1N=NC.
∴ON綊CD綊AB,
∴ON∥AM.
又∵MN∥OA,
∴四边形AMNO为平行四边形,
∴ON=AM.
∵ON=AB,∴AM=AB,
∴M是AB的中点.
9.A 10.C 
11.①②③
12.(1)证明 在△ABD中,∵AD=4,BD=8,AB=4,
∴AD2+BD2=AB2.∴AD⊥BD.
又∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,BD?面ABCD,
∴BD⊥面PAD,又BD?面BDM,
∴面MBD⊥面PAD.
(2)解 过P作PO⊥AD,
∵面PAD⊥面ABCD,
∴PO⊥面ABCD,
即PO为四棱锥P—ABCD的高.
又△PAD是边长为4的等边三角形,
∴PO=2.
在底面四边形ABCD中,AB∥DC,AB=2DC,∴四边形ABCD为梯形.
在Rt△ADB中,斜边AB边上的高为=,
此即为梯形的高.
∴S四边形ABCD=×=24.
∴VP—ABCD=×24×2=16.
13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D为AA1的中点,故DC=DC1.
又AC=AA1,可得DC+DC2=CC,所以DC1⊥DC.而DC1⊥BD,CD∩BD=D,所以DC1⊥平面BCD.
因为BC?平面BCD,所以DC1⊥BC.
(2)解 DC1⊥BC,CC1⊥BC?BC⊥平面ACC1A1?BC⊥AC,取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,A1C1=B1C1?C1O⊥A1B1,面A1B1C1⊥面A1BD?C1O⊥面A1BD,又∵DB?面A1DB,∴C1O⊥BD,又∵OH⊥BD,∴BD⊥面C1OH,C1H?面C1OH,∴BD⊥C1H,得点H与点D重合,且∠C1DO是二面角A1-BD-C的平面角,设AC=a,则C1O=a,C1D=a=2C1O?∠C1DO=30°,故二面角A1-BD-C1的大小为30°.