新课标高中数学人教A版必修五教案3.1不等关系与不等式

文档属性

名称 新课标高中数学人教A版必修五教案3.1不等关系与不等式
格式 zip
文件大小 350.0KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-19 19:17:16

文档简介

第一课时 3.1 不等关系与不等式(一)
一、教学目标
1.使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,能列出不等式与不等式组.
2. 学习如何利用不等式表示不等关系,利用不等式的有关基本性质研究不等关系;
3.通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的设置,通过学生对问题的探究思考,广泛参与,改变学生的学习方式,提高学习质量。
二、教学重、难点
重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。
难点:正确理解现实生活中存在的不等关系. 用不等式(组)正确表示出不等关系。
三、教学过程
(一)[创设问题情境]
问题1:设点A与平面的距离为d,B为平面上的任意一点,则d≤。
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。根据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元?
分析:若杂志的定价为x元,则销售的总收入为万元。那么不等关系“销售的总收入不低于20万元”可以表示为不等式≥20
问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍。怎样写出满足上述所有不等关系的不等式呢?
分析:假设截得500mm的钢管x根,截得600mm的钢管y根..
根据题意,应有如下的不等关系:
(1)解得两种钢管的总长度不能超过4000mm;
(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;
(3)解得两钟钢管的数量都不能为负。
由以上不等关系,可得不等式组:
[练习]:第74页,第1、2题。
提问:除了以上列举的现实生活中的不等关系,你还能列举出你周围日常生活中的不等关系吗?
归纳:
文字语言与数学符号间的转换.

文字语言 数学符号 文字语言 数学符号
大于 > 至多 ≤
小于 < 至少 ≥
大于等于 ≥ 不少于 ≥
小于等于 ≤ 不多于 ≤

(二)典例分析
例1:某校学生以面粉和大米为主食.已知面食每100克含蛋白质6个单位,含淀粉4个单位;米饭每100克含蛋白质3个单位,含淀粉7个单位.某快餐公司给学生配餐,现要求每盒至少含8个单位的蛋白质和10个单位的淀粉.设每盒快餐需面食百克、米饭百克,试写出满足的条件.

例2:配制两种药剂需要甲、乙两种原料,已知配一剂种药需甲料3毫克,乙料5毫克,配一剂药需甲料5毫克,乙料4毫克。今有甲料20毫克,乙料25毫克,若两种药至少各配一剂,则两种药在配制时应满足怎样的不等关系
(三)知识拓展
1.设问:等式性质中:等式两边加(减)同一个数(或式子),结果仍相等。不等式是否也有类似的性质呢?
从实数的基本性质出发,实数的运算性质与大小顺序之间的关系:对于任意两个实数a,b,
如果a>b,那么a-b是正数; 如果a它们的逆命题也是否正确?

2.例3、比较(a+3)(a-5)与(a+2)(a-4)的大小.
例4、已知x≠0,比较(x2+1)2与x4+x2+1的大小.
归纳:作差比较法的步骤是:
1、作差;
2、变形:配方、因式分解、通分、分母(分子)有理化等;
3、判断符号;
4、作出结论.
(四)课堂小结
1.通过具体情景,建立不等式模型;
2.比较两实数大小的方法——求差比较法.
(五)作业:?《 习案》作业
比较与(其中,)的大小
解:,
∵,,∴,所以.
说明:不等式(,)在生活中可以找到原型:克糖水中有克糖(),若再添加克糖(),则糖水便甜了.




第二课时 3.1不等关系与不等式(二)
一、教学目标
(1)使学生掌握常用不等式的基本基本性质;
(2)会将一些基本性质结合起来应用.
(3)学习如何利用不等式的有关基本性质研究不等关系;
二、教学重、难点
重点:理解不等式的性质及其证明.
难点:利用不等式的基本性质证明不等式。
三、教学过程
(一)复习提问
1、比较两实数大小的理论依据是什么?
2、“作差法”比较两实数的大小的一般步骤.
3、初中我们学过的不等式的基本性质是什么?
基本性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
基本性质2 不等式两边都乘(或除以)同一个正数,不等号的方向不变.
基本性质3 不等式两边都乘(或除以)同一个负数,不等号的方向改变.
其数学含义:
(1)若a>b, 则a+c>b+c,a-c>b-c;
(2)若a>b,c>0,则ac>bc,>;
(3)若a>b,c<0,则ac<bc,<..
(二)新授
常用的不等式的基本性质
(1) (对称性) (2) (传递性)
(3) (可加性)
(4); (可乘性)
(5)(同向不等式的可乘性)
(6) (可乘方性、可开方性)
例1:已知求证:

例2:如果30<x<42,16<y<24,求x+y,x-2y及的取值范围.
∵30<x<42,16<y<24 ∴-48<-2y<-32,
∴30+16<x+y<42+24 即46<x+y<66;
∴30-48<x-2y<42-32 即-18<x-2y<10;

例3.已知,求的取值范围。
(三)随堂练习1、教材P74面第3题
2、回答下列问题:
(1)如果a>b,c>d,是否可以推出ac>bd?举例说明;
(2)如果a>b,c<d,且c≠0,d≠0,是否可以推出?举例说明.
3.若,则下列不等式总成立的是( C )
A. B。 C。 D。
4.有以下四个条件:(3);(4)
其中能使成立的有 3 个
5.若a、b、c,a>b,则下列不等式成立的是( C )
A. B. C. D.
6.,则的取值范围是( B )
A. B.
C. D.
(四)小结:不等式的性质及其证明,利用不等式的基本性质证明不等式。
(五)作业:《习案》作业二十二