高中数学(人教版A版必修三)配套课件2份、教案、学案、同步练习题,补习复习资料:2.1.1简单随机抽样

文档属性

名称 高中数学(人教版A版必修三)配套课件2份、教案、学案、同步练习题,补习复习资料:2.1.1简单随机抽样
格式 zip
文件大小 1.4MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-21 10:18:08

文档简介

§2.1.1 简单的随机抽样
学习目标
正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
重点难点
正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。.
学法指导
(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
知识链接
复习初中所学的概率知识。
问题探究
一、情景设置:
要判断一锅汤的味道需要把整锅汤都喝完吗?应该怎样判断?
二、探究新知:
知识探究(一):简单随机抽样的基本思想
思考1:从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?一般地,从N个个体中任意抽取一个,则每一个个体被抽到的概率是多少?
思考2:从6件产品中随机抽取一个容量为3的样本,可以分三次进行,每次从中随机抽取一件,抽取的产品不放回,这叫做逐个不放回抽取.在这个抽样中,某一件产品被抽到的概率是多少?
思考3:一般地,从N个个体中随机抽取n个个体作为样本,则每一个个体被抽到的概率是多少?
思考4:食品卫生工作人员,要对校园食品店的一批小包装饼干进行卫生达标检验,打算从中抽取一定数量的饼干作为检验的样本.其抽样方法是,将这批小包装饼干放在一个麻袋中搅拌均匀,然后逐个不放回抽取若干包,这种抽样方法就是简单随机抽样.那么简单随机抽样的含义如何?
简单随机抽样的含义:
思考5:根据你的理解,简单随机抽样有哪些主要特点?
思考6:在1936年美国总统选举前,一份颇有名气的杂志的工作人员对兰顿和罗斯福两位候选人做了一次民意测验.调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表.调查结果表明,兰顿当选的可能性大(57%),但实际选举结果正好相反,最后罗斯福当选(62%).你认为预测结果出错的原因是什么?
知识探究(二):简单随机抽样的方法
思考1:假设要在我们班选派5个人去参加某项活动,为了体现选派的公平性,你有什么办法确定具体人选?
思考2:用抽签法(抓阄法)确定人选,具体如何操作?
思考3:一般地,抽签法的操作步骤如何?
思考4:你认为抽签法有哪些优点和缺点?
思考5:从0,1,2,…,9十个数中每次随机抽取一个数,依次排列成一个数表称为随机数表(见教材P103页),每个数每次被抽取的概率是多少?
思考6:假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时应如何操作?
思考7:如果从100个个体中抽取一个容量为10的样本,你认为对这100个个体进行怎样编号为宜?
思考8:一般地,利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?
三、典例分析:
例1 为调查央视春节联欢晚会的收视率,有如下三种调查方案:方案一:通过互联网调查.
方案二:通过居民小区调查.
方案三:通过电话调查. 上述三种调查方案能获得比较准确的收视率吗?为什么?
例2 为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,试利用简单随机抽样法抽取样本,并简述其抽样过程.
例3 利用随机数表法从500件产品中抽取40件进行质检.
(1)这500件产品可以怎样编号?
(2)如果从随机数表第10行第8列的数开始往左读数,则最先抽取的5件产品的编号依次是什么?
目标检测
1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是
A.总体是240 B、个体是每一个学生
C、样本是40名学生 D、样本容量是40
2、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是 ( )
A、总体 B、个体是每一个零件
C、总体的一个样本 D、样本容量
在简单随机抽样中,某个个体被抽到的可能性是( )
A、与第一次抽样有关,且第一次抽到的可能性最小
B、与第一次抽样无关,且每次抽到的可能性都相等
C、与第一次抽样有关,最后一次抽到的可能性最小
D、与第一次抽样无关,每次抽到的可能性都不相等
利用简单随机抽样从有6个个体的总体中抽取一个容量为3的样本,则总体中每个个体被抽到的可能性是( )
B、 C、 D、
5、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是 。
6、从3名男生、2名女生中随机抽取2人,检查数学成绩,则抽到的均为女生的可能性是 。
7、采用简单随机抽样时,常用的方法有: 。
某电视台一娱乐节目要从40名热心观众中随机抽取4名幸运观众,试用抽签法为其设计产生这4名幸运观众的过程.
欲从全班45名学生中随机抽取10名学生参加一项社区服务活动,试用随机数表法确定这10名学生.
通常人们打桥牌时,将洗好的扑克牌随机确定一张为始牌,这时开始按次序抓牌,对任何一方来说,都是从52张(去掉大、小王)总体中抽取13张样本,问这样的抽样方法是否是简单随机抽样?如果是,请说明理由;如果不是,请思考此方法的规律是怎样的?

纠错矫正
收获与体会
2. 1.1简单随机抽样

【教学目标】:
1.正确理解随机抽样的概念,会描述抽签法、随机数表法的一般步骤.
2.能够根据样本的具体情况选择适当的方法进行抽样.
【教学重难点】:
教学重点:正确理解简单随机抽样的概念,会描述抽签法及随机数法的步骤,能灵活应用相关知识从总体中抽取样本.
教学难点:简单随机抽样的概念,抽签法及随机数法的步骤.
【教学过程】:
情境导入:
1.根据国务院的决定,我国于2000年11月1日进行了第五次全国人口普查的登记工作。近千万普查工作人员投入到了艰苦繁重的工作中,结果显示至普查日期为止我国人口总数为129533万。
上面的例子是一个统计上的典型事例,它用到了什么统计方法?它有什么优缺点?你有什么其他的办法吗?发表一下你的观点?
(答:用到了普查的统计方法;优点是全面准确,缺点是工作量大,在绝大部分的统计案例中无法实现(检查具有破坏性);随机抽查的方法。)
2.课本P55阅读
你认为在该故事中预测结果出错的原因是什么?
(答:所选样本没有代表性。)
3.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?
显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?
新知探究:
一、简单随机抽样的概念:
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
思考:简单随机抽样的每个个体入样的可能性为多少?(n/N)
二、抽签法和随机数法:
1、抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
抽签法的一般步骤:
(1)将总体的个体编号;
(2)连续抽签获取样本号码.
思考:你认为抽签法有什么优点和缺点;当总体中的个体数很多时,用抽签法方 便吗?
解析:操作简便易行,当总体个数较多时工作量大,也很难做到“搅拌均匀”

2、随机数法
利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法.
怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的 500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。
第一步,先将800袋牛奶编号,可以编为000,001,…,799。
第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明, 下面摘取了附表1的第6行至第10行)。
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38
57 60 86 32 44 09 47 27 96 54 49 17 46 09 62
87 35 20 96 43 84 26 34 91 64
21 76 33 50 25 83 92 12 06 76
12 86 73 58 07 44 39 52 38 79
15 51 00 13 42 99 66 02 79 54
90 52 84 77 27 08 02 73 43 28
第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。
随机数表法的步骤:
(1)将总体的个体编号;
(2)在随机数表中选择开始数字;
(3)读数获取样本号码.
思考:结合自己的体会说说随机数法有什么优缺点?
解析:相对于抽签法有效地避免了搅拌不均匀的弊端,但读数和计数时容易出错.
精讲精练:
例1.下列抽取样本的方式是否属于简单随机抽样?说明理由.
(1)从无限多个个体中抽取100个个体作为样本;
(2)盒子中共有80个零件,从中选出5个零件进行质量检验,在进行操作时,从中任意抽出一个零件进行质量检验后把它放回盒子里;
(3)某班45名同学,指定个子最高的5人参加某活动;
(4)从20个零件中一次性抽出3个进行质量检测.
[解析] 根据简单随机抽样的特点进行判断,考查学生对简单随机抽样的理解;
[解] (1)不是简单随机抽样,由于被抽取的样本的总体个数是无限的;
(2)不是简单随机抽样,由于它是放回抽样;
(3)不是简单随机抽样,因为不是等可能性抽样;
(4)不是简单随机抽样,因为不是逐个抽样.
[点评]判断所给抽样是不是简单随机抽样,关键是看它们是否符合简单随机抽样的四个特点.
[变式训练1] 下列问题中,最适合用简单随机抽样方法抽样的是 ( )
A. 某电影有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了观
报告会结束以后听取观众的意见,要留下32名观众进行座谈
B. 从十台冰箱中抽取3台进行质量检验
C. 某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部
门为了解大家对学校机构改革的意见,要从中抽取容量为20的样本
D. 某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田 480 亩估计全乡农田平均产量
例2. 某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?
[解析] 简单随机抽样一般采用两种方法:抽签法和随机数表法.
[解] 解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径.
解法2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本.
[点评] (1)抽签法和随机数表法是常见的两种简单的随机抽样方法,具体问题要灵活运用这两种方法.
(2)在应用随机数表时,将100个个体编号为00,01,02,…99而非0,1,2,…99,是为了便于使用随机数表.此外,将起始号码选为00而非01,可使100个号码都用两位数字号码表示.
[变式训练2] 某企业有150名职工,要从中随机的抽取20人去参观学习,请用抽签法和随机数表法进行抽取,写出过程.
反馈测评:
1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是
A.总体是240 B、个体是每一个学生
C、样本是40名学生 D、样本容量是40
2、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是 ( )
A、总体 B、个体是每一个学生
C、总体的一个样本 D、样本容量
3、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体a被抽到的可能性是 ,a在第10次被抽到的可能性是

【板书设计】:
【作业布置】:
优化丛书 体验成功2.1.1.

2.1.1简单随机抽样
课前预习学案
一、预习目标
预习简单随机抽样的概念,初步了解抽签法、随机数表法的一般步骤。
二、预习内容
1.一般地,设一个总体含有N个个体,从中 地抽取n个个体作为 (n≤N),如果每次抽取时总体内的各个个体 ,就把这种抽样方法叫做
2.一般地,抽签法就是把总体中的N个个体 ,把号码写在 上,将号签放在一个容器中, ,每次从中抽取一个号签, n次就得到一个容量为n的样本
3.利用 或计算机产生的随机数进行抽样,叫随机数表法.
提出疑惑
抽签法有什么优点和缺点?
随机数表法有什么优点和缺点?
如何灵活运用这两种方法?
课内探究学案
一、学习目标
1.正确理解随机抽样的概念,会描述抽签法、随机数表法的一般步骤.
2.能够根据样本的具体情况选择适当的方法进行抽样.
二、学习重难点:正确理解简单随机抽样的概念,会描述抽签法及随机数法的步骤,能灵活应用相关知识从总体中抽取样本.
三、学习过程
(一)合作探究
(简单随机抽样的概念:
探究一:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?
探究二:简单随机抽样的定义

探究三:简单随机抽样的特点:
(1)简单随机抽样要求被抽取的样本的总体个数N是
(2)简单随机样本是从总体中逐个 抽取的
(3)简单随机抽样的每个个体入样的可能性均为
(抽签法
探究四:抽签法的一般步骤:
1.
2.
探究五:抽签法的优点和缺点
优点:
缺点:
(随机数法
探究六:随机数法的一般步骤:
1.
2.
3.
探究七:随机数法的优点和缺点
优点:
缺点:
(二)精讲点拨:
例1.下列抽取样本的方式是否属于简单随机抽样?说明理由.
(1)从无限多个个体中抽取100个个体作为样本;
(2)盒子中共有80个零件,从中选出5个零件进行质量检验,在进行操作时,从中任 意抽出一个零件进行质量检验后把它放回盒子里;
(3)某班45名同学,指定个子最高的5人参加某活动;
(4)从20个零件中一次性抽出3个进行质量检测.

[变式训练1] 下列问题中,最适合用简单随机抽样方法抽样的是 ( )
A. 某电影有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了观
报告会结束以后听取观众的意见,要留下32名观众进行座谈
B. 从十台冰箱中抽取3台进行质量检验
C. 某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教
育部门为了解大家对学校机构改革的意见,要从中抽取容量为20的样本
D. 某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农
田 480 亩估计全乡农田平均产量
例2. 某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?

[变式训练2] 某企业有150名职工,要从中随机的抽取20人去参观学习,请用抽签法和随机数表法进行抽取,写出过程.

(三)反思总结:






(四)当堂检测:
1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是
A.总体是240 B、个体是每一个学生
C、样本是40名学生 D、样本容量是40
2、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是 ( )
A、总体 B、个体是每一个学生
C、总体的一个样本 D、样本容量
3、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体a被抽到的可能性是 ,a在第10次被抽到的可能性是

课后练习与提高
选择题
1.对于简单随机抽样,个体被抽到的机会( )
A. 相等 B.不相等
C.不确定 D.与抽取的次数有关
2.抽签法中确保样本代表性的关键是 ( )
A.制签 B.均匀搅拌
C.注意抽取 D.抽样不放回
3.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男生被抽到的概率是( )
B. C. D.
填空题
4.从50个产品中抽取10个进行检查,则总体个数为 ,样本容量为
5.福利彩票的中奖号码是由1~36个号码中,选出7个号码来按规则确定中奖情况,这种从36个选7个号的抽取方法是 .
解答题
6.某中学高一年级400人,高二年级有320人,高三年级有280人,以每人被抽取的概率为0.2,向该中学抽取一个容量为n的样本,求n的值.

学业分层测评(九) 简单随机抽样
(建议用时:45分钟)
[学业达标]
一、选择题
1.下列抽取样本的方式属于简单随机抽样的个数有(  )
(1)盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.
(2)从20件玩具中一次性抽取3件进行质量检验.
(3)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.
A.3        B.2
C.1 D.0
【解析】 ①②③中都不是简单随机抽样,这是因为:①是放回抽样,②中是“一次性”抽取,而不是“逐个”抽取,③中“指定个子最高的5名同学”,不存在随机性,不是等可能抽样.
【答案】 D
2.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是(  )
A., B.,
C., D.,
【解析】 根据简单随机抽样的定义知选A.
【答案】 A
3.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是(  )
A. B.
C. D.
【解析】 简单随机抽样是等可能性抽样,每个个体被抽到的机率都是=.故选C.
【答案】 C
4.从10个篮球中任取一个,检查其质量,用随机数法抽取样本,则应编号为(  )
A.1,2,3,4,5,6,7,8,9,10
B.-5,-4,-3,-2,-1,0,1,2,3,4
C.10,20,30,40,50,60,70,80,90,100
D.0,1,2,3,4,5,6,7,8,9
【解析】 利用随机数表法抽样时,必须保证所编号码的位数一致.
【答案】 D
5.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是(  )
A.①② B.①③
C.②③ D.③
【解析】 根据随机数表的要求,只有编号时数字位数相同,才能达到随机等可能抽样.
【答案】 C
二、填空题
6.用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签摇匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为________.
【解析】 由抽签法的步骤知,正确顺序为④①③②⑤.
【答案】 ④①③②⑤
7.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.
①2 000名运动员是总体;
②每个运动员是个体;
③所抽取的20名运动员是一个样本;
④样本容量为20;
⑤这个抽样方法可采用随机数法抽样;
⑥每个运动员被抽到的机会相等.
【解析】 ①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.
【答案】 ④⑤⑥
8.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N=________.
【解析】 =25%,因此N=120.
【答案】 120
三、解答题
9.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案? 【导学号:28750028】
【解】 第一步,将元件的编号调整为010,011,012,…,099,100,…,600.
第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.
第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.
第四步,与以上这6个号码对应的6个元件就是所要抽取的对象.
10.天津某大学为了支持东亚运动会,从报名的60名大三学生中选10人组成志愿小组,请用抽签法和随机数法设计抽样方案.
【解】 抽签法:
第一步:将60名大学生编号,编号为1,2,3,…,60;
第二步:将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;
第三步:将60个号签放入一个不透明的盒子中,充分搅匀;
第四步:从盒子中逐个抽取10个号签,并记录上面的编号;
第五步:所得号码对应的学生,就是志愿小组的成员.
随机数法:
第一步:将60名学生编号,编号为01,02,03,…,60;
第二步:在随机数表中任选一数开始,按某一确定方向读数;
第三步:凡不在01~60中的数或已读过的数,都跳过去不作记录,依次记录下10个得数;
第四步:找出号码与记录的数相同的学生组成志愿小组.
[能力提升]
1.下列说法中正确的是(  )
A.要考察总体情况,一定要把总体中每个个体都考察一遍
B.随机数表中每个位置出现各数字的可能性相同,因而随机数表是唯一的
C.当总体容量较大时,也可用简单随机抽样方法抽取样本,但是比较麻烦
D.因为利用随机数表法抽样时,开始数是人为约定的,所以抽样不公平
【解析】 A中,从节约费用等方面考虑,一般是通过样本去估计总体;B中,随机数表不是唯一的,只要能保证每个位置各数字出现的可能性相等就是一张随机数表;D中,由于约定开始数的时候是任意的,因此保证了抽样的公平性.
【答案】 C
2.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为(  )
A.      B.k+m-n
C. D.不能估计
【解析】 设参加游戏的小孩有x人,则=,
因此x=.
【答案】 C
3.某中学高一年级有400人,高二年级有320人,高三年级有280人,以每人被抽取的可能性均为0.2,从该中学抽取一个容量为n的样本,则n=________.
【解析】 ∵=0.2,
∴n=200.
【答案】 200
4.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.
【解】 第一步:先确定艺人
(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;
(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.
第二步:确定演出顺序
确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.

第二章 统 计
2.1.1 简单随机抽样
课时目标 1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.
1.简单随机抽样的定义
设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
2.简单随机抽样的分类
简单随机抽样
3.简单随机抽样的优点及适用类型
简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.
一、选择题
1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是(  )
A.200个表示发芽天数的数值
B.200个球根
C.无数个球根发芽天数的数值集合
D.无法确定
答案 A
2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是(  )
A.40 B.50
C.120 D.150
答案 C
解析 由于样本容量即样本的个数,抽取的样本的个数为40×3=120.
3.抽签法中确保样本代表性的关键是(  )
A.制签 B.搅拌均匀
C.逐一抽取 D.抽取不放回
答案 B
解析 由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.
4.下列抽样实验中,用抽签法方便的有(  )
A.从某厂生产的3 000件产品中抽取600件进行质量检验
B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
D.从某厂生产的3 000件产品中抽取10件进行质量检验
答案 B
解析 A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.
5.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是(  )
A.1 000名运动员是总体
B.每个运动员是个体
C.抽取的100名运动员是样本
D.样本容量是100
答案 D
解析 此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.
6.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是(  )
A., B.,
C., D.,
答案 A
二、填空题
7.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为________.
答案 简单随机抽样
解析 由简单随机抽样的特点可知,该抽样方法是简单随机抽样.
8.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.
答案 抽签法
9.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)
答案 ①③②
三、解答题
10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程.
解 利用抽签法,步骤如下:
(1)将30辆汽车编号,号码是01,02,…,30;
(2)将号码分别写在一张纸条上,揉成团,制成号签;
(3)将得到的号签放入一个不透明的袋子中,并搅拌均匀;
(4)从袋子中依次抽取3个号签,并记录上面的编号;
(5)所得号码对应的3辆汽车就是要抽取的对象.
11.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?
解 (1)将元件的编号调整为010,011,012,…,099,100,…600;
(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读;
(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;
(4)以上号码对应的6个元件就是要抽取的样本.
能力提升
12.在简单随机抽样中,某一个个体被抽到的可能性(  )
A.与第几次抽样有关,第一次抽到的可能性大一些
B.与第几次抽样无关,每次抽到的可能性相等
C.与第几次抽样有关,最后一次抽到的可能性大些
D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同
答案 B
解析 由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.
13.某车间工人已加工一种轴50件,为了了解这种轴的直径是否符合要求,要从中抽出5件在同一条件下测量,试用两种方法分别取样.
解 方法一 抽签法.
(1)将50个轴进行编号01,02,…,50;
(2)把编号写在大小、形状相同的纸片上作为号签;
(3)把纸片揉成团,放在箱子里,并搅拌均匀;
(4)依次不放回抽取5个号签,并记下编号;
(5)把号签对应的轴组成样本.
方法二 随机数法
(1)将50个轴进行编号为00,01,…,49;
(2)在随机数表中任意选定一个数并按向右方向读取;
(3)每次读两位,并记下在00~49之间的5个数,不能重复;
(4)把与读数相对应的编号相同的5个轴取出组成样本
1.判断所给的抽样是否为简单随机抽样的依据是随机抽样的特征:
简单随机抽样

如果四个特征有一个不满足就不是简单随机抽样.
2.利用抽签法抽取样本时应注意以下问题:
(1)编号时,如果已有编号(如学号、标号等)可不必重新编号.
(2)号签要求大小、形状完全相同.
(3)号签要搅拌均匀.
(4)要逐一不放回抽取.
3.在利用随机数表法抽样的过程中注意:
(1)编号要求数位相同.
(2)第一个数字的抽取是随机的.
(3)读数的方向是任意的,且事先定好的.