高中数学(人教版A版必修三)配套课件2份、教案、学案、同步练习题,补习复习资料:2.1.3分层抽样

文档属性

名称 高中数学(人教版A版必修三)配套课件2份、教案、学案、同步练习题,补习复习资料:2.1.3分层抽样
格式 zip
文件大小 1.9MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-21 10:12:02

文档简介

§2.1.3分层抽样
学习目标
(1)正确理解分层抽样的概念;
(2)掌握分层抽样的一般步骤;
(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
重点难点
正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽 样方法解决现实生活中的抽样问题。
学法指导
通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。
知识链接
简单随机抽样、系统抽样常用方法及其操作步骤。
问题探究
一、情景设置:
假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?
二、探究新知:
知识探究(一):分层抽样的基本思想
问题:某地区有高中生2400人,初中生10800人,小学生11100人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查.
思考1:从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?一般地,从N个个体中任意抽取一个,则每一个个体被抽到的概率是多少?
思考2:从6件产品中随机抽取一个容量为3的样本,可以分三次进行,每次从中随机抽取一件,抽取的产品不放回,这叫做逐个不放回抽取.在这个抽样中,某一件产品被抽到的概率是多少?
思考3:具体在三类学生中抽取样本时(如在10800名初中生中抽取108人),可以用哪种抽样方法进行抽样?
思考4:在上述抽样过程中,每个学生被抽到的概率相等吗?
思考5:上述抽样方法不仅保证了抽样的公平性,而且抽取的样本具有较好的代表性,从而是一种科学、合理的抽样方法,这种抽样方法称为分层抽样.一般地,分层抽样的基本思想是什么?
思考6:若用分层抽样从该地区抽取81名学生调查身体发育状况,那么高中生、初中生和小学生应分别抽取多少人?
知识探究(二):分层抽样的操作步骤:
某单位有职工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查职工的身体状况,要从中抽取一个容量为100的样本。
思考1:该项调查应采用哪种抽样方法进行?
思考2:按比例,三个年龄层次的职工分别抽取多少人?
思考3:在各年龄段具体如何抽样?怎样获得所需样本?
思考4:一般地,分层抽样的操作步骤如何?
思考5:在分层抽样中,如果总体的个体数为N,样本容量为n,第i层的个体数为k,则在第i层应抽取的个体数如何计算?
思考6:样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数该如何处理?
思考7:简单随机抽样、系统抽样和分层抽样既有其共性,又有其个性,根据下表,你能对三种抽样方法作一个比较吗?
方法
类别
共同
特点
抽样
特征
相互
联系
适应
范围
简单随
机抽样
系统
抽样
分层
抽样
典例分析:
例1 某公司共有1000名员工,下设若干部门,现用分层抽样法,从全体员工中抽取一个容量为80的样本,已知策划部被抽取4个员工,求策划部的员工人数是多少?
例2 某中学有180名教职员工,其中教学人员144人,管理人员12人,后勤服务人员24人,设计一个抽样方案,从中选取15人去参观旅游.
例3 某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品的销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,完成这两项调查宜分别采用什么方法?
目标检测
某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体情况,需从他们中抽取一个容量为36的样本,则适合的抽取方法是( )
A.简单随机抽样B.系统抽样C.分层抽样
D.先从老人中剔除1人,然后再分层抽样
2、某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为 ( )
A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20
为了了解高一学生的身体发育状况,学校计划在高一年级10个班的某两个班中按男女比例抽取样本,正确的抽样方法是 ( )
简单随机抽样B.分层抽样
C.先用抽签法,分层抽样
D.先用分层抽样,再用随机数表法
4、某校有500名学生,其中O型血的有200人,A型血的人有125人,B型血的有125人,AB型血的有50人,为了研究血型与色弱的关系,要从中抽取一个20人的样本,按分层抽样,O型血应抽取的人数为 人,A型血应抽取的人数为 人,B型血应抽取的人数为 人,AB型血应抽取的人数为 人。
5、某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n= 。
6、某中学有学生2000名高一、高二、高三 的学生人数之比5:3:2现要用分层抽样抽取一个样本,要求每个学生被抽取的可能性是0.02,则抽取的样本容量为 。
7、对某单位1000名职工进行某项专门调查,调查的项目与职工任职年限有关,人事部门提供了如下资料:
任职年限
5年以下
5年至10年
10年以上
人数
300
500
200
试利用上述资料设计一个抽样比为0.1的抽样方法。
纠错矫正
收获与体会
2. 1.3分层抽样教案
【教学目标】
1.通过实例知道分层抽样的概念,意义及分层抽样适用的情景.
2.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.
3.知道分层抽样过程中总体中的各个个体被抽取的机会相等.
4.区分简单随机抽样?系统抽样和分层抽样,并选择适当正确的方法进行抽样.
【教学重难点】
教学重点: 正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题.
教学难点:应用分层抽样解决实际问题, 并恰当的选择三种抽样方法解决现实生活中的
抽样问题.
【教学过程】
复习回顾.
系统抽样有什么优缺点?它的一般步骤是什么?
答:优点是比简单随机抽样更易操,缺点是系统抽样有规律性,样本有可能代表性很差;
(1)将总体的N个个体编号
(2)确定分段间隔k,对编号进行分段,当(n是样本容量)是整数,取k=; 不是整数时,先从总体中随机的剔除几个个体,使得总体中剩余的个体数能被样本
容量整除.
(3)在第一段用简单随机抽样确定起始个体的编号L(L≤k)
(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+k,
再加上k得到第3个个体编号L+2k,这样继续下去,直到获取整个样本.
二.创设情境.
假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?
答: 高中生2400×1%=24人,初中生10900×1%=109人,小学生11000×1%=110人,作为样本.这样,如果从学生人数这个角度来看,按照这种抽样方法所获得样本结构与这一地区全体中小学生的结构是基本相同的.
三.探究新知.
(一)分层抽样的定义.
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样?
【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:
(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复?不遗漏的原则?
(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等,即保持样本结构与总体结构一致性?
(二)分层抽样的步骤:
(1)分层:按某种特征将总体分成若干部分?
(2)按比例确定每层抽取个体的个数?
(3)各层分别按简单随机抽样或系统抽样的方法抽取?
(4)综合每层抽样,组成样本?
【说明】
(1)分层需遵循不重复?不遗漏的原则?
(2)抽取比例由每层个体占总体的比例确定?
(3)各层抽样按简单随机抽样或系统抽样的方法进行?
探究交流
(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行 ( )
A?每层等可能抽样
B?每层不等可能抽样
C?所有层按同一抽样比等可能抽样
(2)如果采用分层抽样,从个体数为N的总体中抽取一个容量为n
样本,那么每个个体被抽到的可能性为 ( )
A. B. C. D.
点拨:
(1)保证每个个体等可能入样是简单随机抽样?系统抽样?分层抽样共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的,故此选C?
(2)根据每个个体都等可能入样,所以其可能性本容量与总体容量比,故此题选C?
(三)? 简单随机抽样?系统抽样?分层抽样的比较
类 别
共同点
各自特点
联 系
适用范围
简单随机抽样
(1)抽样过程中每个个体被抽到的可能性相等
(2)每次抽出个体后不再将它放回,即不放回抽样
从总体中逐个抽取
总体个数较少
系统抽样
将总体均分成几部 分,按预先制定的规则在各部分抽取
在起始部分样时采用简随机抽样
总体个数较多
分层抽样
将总体分成几层,分层进行抽取
分层抽样时采用简单随机抽样或系统抽样
总体由差异明显的几部分组成
【例题精析】
例1某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为
A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20
[分析]因为300:200:400=3:2:4,于是将45分成3:2:4的三部分。设三部分各抽取的个体数分别为3x,2x,4x,由3x+2x+4x=45,得x=5,故高一、高二、高三各年级抽取的人数分别为15,10,20,故选D。
例2:一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程?
[分析]采用分层抽样的方法?
解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:
(1)将3万人分为5层,其中一个乡镇为一层?
(2)按照样本容量的比例随机抽取各乡镇应抽取的样本?
300×3/15=60(人),300×2/15=100(人),300×2/15=40(人),300×2/15=60(人),
因此各乡镇抽取人数分别为60人?40人?100人?40人?60 人?
(3)将300人组到一起,即得到一个样本?
【说明】若整除不尽采用四舍五入计算.
练一练:
一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从运动员中抽出一个容量为28的样本?
解析:男:女=4:3,由,男生抽取4×4=16(人),女生抽取4×3=12(人)?
【课堂练习】见导学案
【课堂小结】
1、分层抽样是当总体由差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:
(1)、分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异
要小,面层之间的样本差异要大,且互不重叠。
(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样。
(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样。
2、分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法。
【作业布置】导学案
板书设计
一.复习回顾. (三)? 简单随机抽样?系统抽样?分层抽样的比较
系统抽样有什么优缺点? 例题精析
它的一般步骤是什么?21 例1 例2
创设情境. 课堂小结
三.探究新知. 作业布置
(一)分层抽样的定义.
【说明】
(二)分层抽样的步骤:
【说明】
探究交流
点拨

三中数学组 编写人:耿华丽 审稿人: 郭振宇 李怀奎
2.1.3分层抽样
课前预习学案
一.预习目标
1.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.
2. 区分简单随机抽样?系统抽样和分层抽样,并选择适当正确的方法进行抽样.
二.预习内容
三. 完成下列问题:
1.什么情况下进行分层抽样?应遵循什么要求?步骤有哪些?
2.对于简单随机抽样?系统抽样?分层抽样你能找出哪些异同?

课内探究学案
学习目标
1.通过实例知道分层抽样的概念,意义及分层抽样适用的情景.
2.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.
3.知道分层抽样过程中总体中的各个个体被抽取的机会相等.
4.区分简单随机抽样?系统抽样和分层抽样,并选择适当正确的方法进行抽样.
重点:灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题.
难点:灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题.程
学习过程
一、复习回顾.
系统抽样有什么优缺点?它的一般步骤是什么?21世纪教育

二.创设情境.
假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?
三.自主学习
(一)分层抽样的定义.
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样?
【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:

(二)分层抽样的步骤:
探究交流
(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行 ( )
A?每层等可能抽样
B?每层不等可能抽样
C?所有层按同一抽样比等可能抽样
(2)如果采用分层抽样,从个体数为N的总体中抽取一个容量为n
样本,那么每个个体被抽到的可能性为 ( )
A. B. C. D.
反思:
(三)? 简单随机抽样?系统抽样?分层抽样的比较
类 别
共同点
各自特点
联 系
适用范围
简单随机抽样
系统抽样
分层抽样
四.典型例题
例1某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,
现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为
A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20
反思:
例2:一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程?
反思:
练一练:
一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从运动员中抽出一个容量为28的样本?
五.当堂检测
1.一个公司共有500名员工,下设一些部门,要采用分层抽样的方法从全体员工中抽取一个容量为50人的样本,已知某部门有员工100人,则该部门抽取的员工人数为( )
A.50人 B. 10人 C. 25人 C.5人
2.总体数为M个,其中带有标记的是N,要从中抽取K个入样,用随机抽样的方法进行抽取,则抽取的样本中带有标记的应为( )个
A. NK∕M B.KM∕N C.MN∕K D.N
3.在某班元旦晚会上,现场的一个游戏要求从观众中选出5人参与,下列抽样方法最合适的是(  )
A.分层抽样  B.系统抽样  C.抽签法  D.随机数法
4.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体情况,需从他们中抽取一个容量为36的样本,则适合的抽取方法是 ( )
A.简单随机抽样
B.系统抽样
C.分层抽样
D.先从老人中剔除1人,然后再分层抽样
5.一个年级有12个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为14的同学参加交流活动,这里运用的是什么抽样方法( )
A.分层抽样 B.抽签法 C.随机数法  D.系统抽样
6.某校有500名学生,其中O型血的有200人,A型血的人有125人,B型血的有125人,AB型血的有50人,为了研究血型与色弱的关系,要从中抽取一个20人的样本,按分层抽样,O型血应抽取的人数为 人,A型血应抽取的人数为 人,B型血应抽取的人数为 人,AB型血应抽取的人数为 人.
7.某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n=
六.反思总结
课后练习与提高
1.下列问题与方法配对正确的是( )
问题⑴某社会团体有500个家庭,其中高收入家庭125个,中等收入家庭280个,低
收入家庭95个,为了了解社会购买力的某项指标,要从中抽取一个容量为100的样本.
问题(2)从10名同学中抽取3人参加座谈会.
方法Ⅰ: 简单随机抽样方法
方法Ⅱ: 系统抽样方法
方法Ⅲ: 分层抽样方法
A(1) Ⅲ,(2)Ⅰ B (1)Ⅰ,(2)Ⅱ C (1)Ⅱ,(2)Ⅲ D(1)Ⅲ,(2)Ⅱ
2.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上的人,用分层抽样的方法从中抽取20人,各年龄阶段各抽取多少人( )
A.7,5,8 B.9,5,6 C.6,5,9 D.8,5,7
3.某班有30名男生。现调查平均身高,已知男女身高有明显不同,用分层抽样法抽出男生3人,女生有2人,则该班女生有( )人
A.15 B.5 C.20 D.10
4.有A,B,C三种零件,分别为a个,300个,b个.采用分层抽样法抽取一个容量为45的样本,A种零件被抽取20个,C种零件被抽取10个,这三种零件共( )个
A.900 B.850 C.800 D.750
15.计划从三个街道20000人中抽取一个200人的样本,现已知三个街道人数之比为2:3:5,采用分层抽样的方法抽取,应分别抽取( )人
A.20,30,150 B.30,35,135 C.40,60,80 D. 40,60,100
6.调查某单位职工健康情况,已知青年人为300,中年人为K,老年人为100,用分层抽样抽取容量为22的样本,已知抽取的青年与老年的人数分别为12和4,那么中年人数K为

7.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,样本中型号产品有16件,那么此样本的容量n=
8.某单位有老年人28人,中年人54人,青年人81人,为调查身体健康状况,需要从中抽取一个容量为36的样本,用分层抽样法应分别从老年人,中年人,青年人中各抽取
人, 人, 人。
9.一批产品中,有一级品100个,二级品60个,三级品40个,分别用系统抽样法和分层抽样法,从这批产品中抽取一个容量为20的样本。

10.对某单位1000名职工进行某项专门调查,调查的项目与职工任职年限有关,人事部门提供了如下资料:
任职年限
5年以下
5年至10年
10年以上
人数
300
500
200
试利用上述资料设计一个抽样比为1/10的抽样方法。
当堂检测 B A C D A 8 5 5 2 360
课后练习与提高
D B C A D 150 80 6 12 18;
9. 系统抽样法:将200件产品编号为1~200,然后将编号分为20个部分,在第1部分中用简单随机抽样法取一件产品.如抽到5号,那么得到的20个编号为5号,15号,25号,…,195号的样本.分层抽样法:因为100+60+40=200,20/200=1/10,所以100×1/10=10,60×1/10=6,40×1/10=4.因此在一,二.三级品中分别抽取10件,6件,4件,即得到所需样本.
10.在这个问题中,总体是某单位的1000名职工,并且已经知道人数的总体分布情况,可以用分层抽样法抽取样本。把总体分三层,任职5年以下抽取个体数300/10=30,任职5-10年的抽取个体500/10=50,任职10年以上的抽取个体200/10=20,用系统抽样方法或简单随机抽样方法在各层中抽取以上数目的样本。
课件34张PPT。新知自解分成互不交叉的层按照一定比例各层独立样本结构总体结构差异明显答案: C答案: C答案: 9,5,6
课堂探究答案: B答案: (1)D (2)C
谢谢观看!学业分层测评(十一) 分层抽样
(建议用时:45分钟)
[学业达标]
一、选择题
1.某地区为了了解居民家庭生活状况,先把居民按所在行业分为几类,然后每个行业抽的居民家庭进行调查,这种抽样是(  )
A.简单随机抽样   B.系统抽样
C.分层抽样 D.分类抽样
【解析】 由于居民按行业可分为不同的几类,符合分层抽样的特点.
【答案】 C
2.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是(  )
A.12,24,15,9 B.9,12,12,7
C.8,15,12,5 D.8,16,10,6
【解析】 抽样比例为=,故各层中依次抽取的人数为160×=8(人),320×=16(人),200×=10(人),120×=6(人).故选D.
【答案】 D
3.在1 000个球中有红球50个,从中抽取100个进行分析,如果用分层抽样的方法对球进行抽样,则应抽红球(  )
A.33个 B.20个
C.5个 D.10个
【解析】 设应抽红球x个,则=,则x=5.
【答案】 C
4.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为(  )
图2-1-1
A.200,20 B.100,20
C.200,10 D.100,10
【解析】 该地区中小学生总人数为
3 500+2 000+4 500=10 000,
则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20.
【答案】 A
5.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有(  )
①简单随机抽样;②系统抽样;③分层抽样.
A.②③ B.①③
C.③ D.①②③
【解析】 由三种抽样方法的特点.
可知,选D.
【答案】 D
二、填空题
6.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.
【解析】 应在丙专业抽取的学生人数是
×40=16.
【答案】 16
7.某校共有2 000名学生,各年级男、女生人数如表所示.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为_____________.
一年级
二年级
三年级
女生
373
380
y
男生
377
370
z
【解析】 依题意可知三年级学生人数为500,即总体中各年级的人数比例为3∶3∶2,故用分层抽样抽取三年级学生人数为64×=16.
【答案】 16
8.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.
【解析】 高二年级学生人数占总数的,样本容量为50,则50×=15.
【答案】 15
三、解答题
9.某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:
人数
管理
技术开发
营销
生产
合计
老年
40
40
40
80
200
中年
80
120
160
240
600
青年
40
160
280
720
1 200
合计
160
320
480
1 040
2 000
(1)若要抽取40人调查身体状况,则应怎样抽样?
(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人? 【导学号:28750034】
【解】 (1)按老年、中年、青年分层抽样,
抽取比例为=.
故老年人,中年人,青年人各抽取4人,12人,24人,
(2)按管理、技术开发、营销、生产进行分层,用分层抽样,抽取比例为=,
故管理,技术开发,营销,生产各抽取2人,4人,6人,13人.
10.某市两所高级中学联合在暑假组织全体教师外出旅游,活动分为两条线路:华东五市游和长白山之旅,且每位教师至多参加了其中的一条线路.在参加活动的教师中,高一教师占42.5%,高二教师占47.5%,高三教师占10%.参加华东五市游的教师占参加活动总人数的,且该组中,高一教师占50%,高二教师占40%,高三教师占10%.为了了解各条线路不同年级的教师对本次活动的满意程度,现用分层抽样的方法从参加活动的全体教师中抽取一个容量为200的样本.试确定:
(1)参加长白山之旅的高一教师、高二教师、高三教师分别所占的比例;
(2)参加长白山之旅的高一教师、高二教师、高三教师分别应抽取的人数.
【解】 (1)设参加华东五市游的人数为x,参加长白山之旅的高一教师、高二教师、高三教师所占的比例分别为a,b,c,则有=47.5%,=10%,解得b=50%,c=10%.故a=100%-50%-10%=40%,即参加长白山之旅的高一教师、高二教师、高三教师所占的比例分别为40%,50%,10%.
(2)参加长白山之旅的高一教师应抽取人数为200××40%=60;
抽取的高二教师人数为200××50%=75;
抽取的高三教师人数为200××10%=15.
[能力提升]
1.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为(  )
A.8      B.11
C.16 D.10
【解析】 若设高三学生数为x,则高一学生数为,高二学生数为+300,所以有x+++300=3 500,解得x=1 600.故高一学生数为800,因此应抽取高一学生数为 =8.
【答案】 A
2.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为(  )
A.60 B.80
C.120 D.180
【解析】 11~12岁回收180份,其中在11~12岁学生问卷中抽取60份,则抽样比为.
∵从回收的问卷中按年龄段分层抽取容量为300的样本,
∴从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷总数为=900(份),则15~16岁回收问卷份数为:x=900-120-180-240=360(份).
∴在15~16岁学生中抽取的问卷份数为360×=120(份),故选C.
【答案】 C
3.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本,如果采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求得样本容量为________.
【解析】 总体容量N=36.
当样本容量为n时,系统抽样间隔为∈N*,所以n是36的约数;
分层抽样的抽样比为,求得工程师、技术员、技工的抽样人数分别为、、,所以n应是6的倍数,
所以n=6或12或18或36.
当样本容量为n+1时,总体中先剔除1人时还有35人,系统抽样间隔为∈N*,所以n只能是6.
【答案】 6
4.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.
(1)应如何抽取才能得到比较客观的评价结论?
(2)要从3 000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?
(3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?
【解】 (1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.
因为样本容量=120,总体个数=500+3 000+4 000=7 500,则抽样比:=,
所以有500×=8,3 000×=48,
4 000×=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8、48、64.
分层抽样的步骤是:
①分层:分为教职员工、初中生、高中生,共三层.
②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8、48,64.
③各层分别按简单随机抽样或系统抽样的方法抽取样本.
④综合每层抽样,组成样本.
这样便完成了整个抽样过程,就能得到比较客观的评价结论.
(2)由于简单随机抽样有两种方法:抽签法和随机数法.如果用抽签法,要作3 000个号签,费时费力,因此采用随机数法抽取样本,步骤是:
①编号:将3 000份答卷都编上号码:0001,0002,0003,…,3000.
②在随机数表上随机选取一个起始位置.
③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.
(3)由于4 000÷64=62.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,217,333,395,457,…,3 929.
课件24张PPT。2.1.3 分层抽样第二章 §2.1 随机抽样1.理解分层抽样的基本思想和适用情形;
2.掌握分层抽样的实施步骤;
3.了解三种抽样方法的区别和联系.问题导学题型探究达标检测学习目标知识点一 分层抽样的基本思想和适用情形答案问题导学     新知探究 点点落实思考 中国共产党第十八次代表大会2 270名代表是从40个单位中产生的,这40个单位分别是1─31为省(自治区、直辖市)、32中央直属机关、33中央国家机关、34全国台联、35解放军、36武警部队、37中央金融系统、38中央企业系统、39中央香港工委、40中央澳门工委.你觉得如果用简单随机抽样或者是系统抽样来产生这些代表怎么样?答案 这40个单位各有各的情况,各有各的意见,存在明显差异.而各单位人数差异很大,如果采用简单随机抽样或者系统抽样,可能有些人员少的单位根本就没有自己的代表,从而使样本没有更好的代表性.所以采用这两种抽样方法都不合适.一般地,当总体是由 的几个部分组成时,往往选用分层抽样的方法.
一般地,在抽样时,将总体分成 的层,然后按照一定的比例,从各层 地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种 .
分层抽样尽量利用了调查者对调查对象(总体)事先所掌握的各种信息,并充分考虑了保持 与 的一致性,这对提高样本的代表性是非常重要的.差异明显互不交叉独立分层抽样样本结构总体结构答案?答案知识点二 分层抽样的实施步骤各层总的个体数×抽样比简单随机抽样答案知识点三 三种抽样方法的比较返回抽样过程中每个个体被抽取的概率相等从总体中逐个不放回抽取简单随机抽样是基础样本空量较小将总体分成均衡几部分,按规则关联抽取用简单随机抽样抽取起始号码总体中的个体数较多,样本容量较大将总体分成几层,按比例分层抽取用简单随机抽样或系统抽样对各层抽样总体由差异明显的几部分组成类型一 分层抽样的适用情景解析答案反思与感悟例1 某地区有高中生2 400人,初中生10 900人,小学生11 000人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?题型探究 重点难点 个个击破解 (1)从总体来看,因为不同年龄阶段的学生的近视情况可能存在明显差异,为了使样本具有较好的代表性,应该分高中、初中、小学三个层次分别抽样.
(2)从三类学生的数量来看,人数较多,所以在各层抽样时可以采用系统抽样.
(3)采用系统抽样分好组之后,确定第一组人选时,可以采用简单随机抽样.分层抽样实质是利用已知信息尽量使样本结构与总体结构相似.在实际操作时,并不排斥与其他抽样方法联合使用.反思与感悟跟踪训练1 某单位有员工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查员工的身体状况,要从中抽取一个容量为100的样本,如何进行抽取?解析答案?类型二 分层抽样的实施步骤解析答案反思与感悟例2 写出跟踪训练1的实施步骤.解 (1)按年龄将500名职工分成三层:35岁以下的职工;35岁~49岁的职工;50岁以上的职工.(3)在各层分别用随机数法抽取样本.
(4)综合每层抽样,组成容量为100的样本.如果总体中的个体有差异,那么就用分层抽样抽取样本.用分层抽样抽取样本时,要把性质、结构相同的个体组成一层.反思与感悟跟踪训练2 某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.?解析答案类型三 三种抽样方法的比较例3 某高级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;解析答案反思与感悟③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,正确的是(  )
A.②③都不能为系统抽样
B.②④都不能为分层抽样
C.①④都可能为系统抽样
D.①③都可能为分层抽样?反思与感悟根据样本的号码判断抽样方法时,要紧扣三类抽样方法的特征.利用简单随机抽样抽取的样本号码没有规律性;利用分层抽样抽取的样本号码有规律性,即在每一层抽取的号码个数m等于该层所含个体数目与抽样比的积,并且应该恰有m个号码在该层的号码段内;利用系统抽样取出的样本号码也有规律性,其号码按从小到大的顺序排列,则所抽取的号码是:l,l+k,l+2k,…,l+(n-1)k.其中,l为第一个样本号码(l≤k),n为样本容量(n=1,2,3,…),l是第一组中的号码,k为分段间隔,k=总体容量/样本容量.反思与感悟解析答案返回解析 因为i=6,所以1组抽取号码为10×1+(6+1)=17,2组抽取号码为10×2+(6+2)=28,3组抽取号码为10×3+(6+3)=39,4组抽取号码为10×4+(6+4-10)=40,5组抽取号码为10×5+(6+5-10)=51,6组抽取号码为10×6+(6+6-10)=62,7组抽取号码为10×7+(6+7-10)=73.6,17,28,39,40,51,62,731.为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(  )
A.简单随机抽样 B.按性别分层抽样
C.按学段分层抽样 D.系统抽样C达标检测     12345解析 由于三个学段学生的视力情况差别较大,故需按学段分层抽样.解析答案2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为(  )
A.7 B.15
C.25 D.35B12345?解析答案3.简单随机抽样、系统抽样、分层抽样三者的共同特点是(  )
A.将总体分成几部分,按预先设定的规则在各部分抽取
B.抽样过程中每个个体被抽到的机会均等
C.将总体分成几层,然后分层按照比例抽取
D.没有共同点B12345答案4.某工厂有3条生产同一产品的流水线,每天生产的产品件数分别是3 000件,4 000件,8 000件.若要从中抽取一个容量为150的样本来监控产品质量,则简单随机抽样,系统抽样,分层抽样三种抽样方法中,下列说法正确的是(  )
A.用分层抽样就不能用系统抽样
B.用系统抽样就不能用简单随机抽样
C.三条流水线可以各用一种抽样方法
D.三种抽样方法都可能用到D12345答案123455.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为___.12解析答案?规律与方法1.用分层抽样从个体为N的总体中抽取一个容量为n的样本时,在整个抽样过程中每个个体被抽到的机会相等.
2.分层抽样是建立在简单随机抽样或系统抽样基础上的,由于它充分利用了已知信息,考虑了保持样本结构与总体结构的一致性,因此它获取的样本更具代表性,在实用中更为广泛.解决分层抽样问题时,注意以下两个关系的应用:返回(2)总体中各层的容量比=对应各层样本数之比.
3.简单随机抽样是基础,系统抽样与分层抽样是补充和发展,三者相辅相成,对立统一.2.1.3 分层抽样
课时目标 1.理解分层抽样的概念.2.掌握分层抽样的使用条件和操作步骤,会用分层抽样法进行抽样.
1.分层抽样的概念
在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.
2.分层抽样的适用条件
分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.
一、选择题
1.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法(  )
A.抽签法 B.随机数表法
C.系统抽样 D.分层抽样
答案 D
2.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为(  )
A.70 B.20
C.48 D.2
答案 B
解析 由于=10,即每10所学校抽取一所,
又因中学200所,所以抽取200÷10=20(所).
3.某工厂生产A、B、C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为(  )
A.50 B.60
C.70 D.80
答案 C
解析 由分层抽样方法得:×n=15,
解得n=70.
4.下列问题中,最适合用分层抽样方法抽样的是(  )
A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈
B.从10台冰箱中抽出3台进行质量检查
C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量
D.从50个零件中抽取5个做质量检验
答案 C
解析 A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.
5.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为(  )
A.5个 B.10个
C.20个 D.45个
答案 A
解析 由题意知每=10(个)球中抽取一个,现有50个红球,应抽取=5(个).
6.某小学三个年级共有学生270人,其中一年级108人,二、三年级各81人,现要用抽样方法抽取10人形成样本,将学生按一、二、三年级依次统一编号为1,2,…,270,如果 抽得号码有下列四种情况:
①5,9,100,107,111,121,180,195,200,265;
②7,34,61,88,115,142,169,196,223,250;
③30,57,84,111,138,165,192,219,246,270;
④11,38,60,90,119,146,173,200,227,254;
其中可能是由分层抽样得到,而不可能是由系统抽样得到的一组号码为(  )
A.①② B.②③
C.①③ D.①④
答案 D
解析 按照分层抽样的方法抽取样本,一、二、三年级抽取的人数分别为:,,,即4人,3人,3人;不是系统抽样即编号的间隔不同,观察①、②、③、④知:①④符合题意,②是系统抽样,③中三年级人数为4人,不是分层抽样.
二、填空题
7.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.
答案 7,4,6
解析 应抽取的亩数分别为210×=7,120×=4,180×=6.
8.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.
答案 20
解析 由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为×100=20.
9.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.
答案 88
解析 在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=×16=88.
三、解答题
10.某小学有1 800名学生,6个年级中每个年级的人数大致相同,男女生的比例也大致相同,要从中抽取48名学生,测试学生100米跑的成绩.你认为应该用什么样的方法?怎样抽样?为什么要用这个方法?
解 应该用分层抽样的方法.因为小学的不同年级之间,男女生之间百米跑的成绩有较大差异,所以将1 800名学生按不同年级、性别分成12组,每组随机抽取4名,一共抽取48名学生.这样的抽样方法可使样本的结构与总体的结构保持一致.
11.某工厂有3条生产同一产品的流水线,每天生产的产品件数分别是3 000件,4 000件,8 000件.若要用分层抽样的方法从中抽取一个容量为150件产品的样本,应该如何抽样?
解 总体中的个体数N=3 000+4 000+8 000=15 000,样本容量n=150,抽样比例为==,所以应该在第1条流水线生产的产品中随机抽取3 000×=30(件)产品,在第2条流水线生产的产品中随机抽取4 000×=40(件)产品,在第3条流水线生产的产品中随机抽取8 000×=80(件)产品.这里因为每条流水线所生产的产品数都较多,所以,在每条流水线的产品中抽取样品时,宜采用系统抽样方法.
能力提升
12.某单位有技师18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n的样本,如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中剔除1个个体,求样本容量n.
解 因为采用系统抽样和分层抽样时不用剔除个体,所以n是36的约数,且是6的约数,即n又是6的倍数,n=6,12,18或36,又n+1是35的约数,故n只能是4,6,34,综合得n=6,即样本容量为6.
13.选择合适的抽样方法抽样,写出抽样过程.
(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个.
(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.
(3)有甲厂生产的300个篮球,抽取10个.
(4)有甲厂生产的300个篮球,抽取30个.
解 (1)总体容量较小,用抽签法.
①将30个篮球编号,号码为00,01,…,29;
②将以上30个编号分别写在完全一样的小纸条上,揉成小球,制成号签;
③把号签放入一个不透明的袋子中,充分搅拌;
④从袋子中逐个抽取3个号签,并记录上面的号码;
⑤找出和所得号码对应的篮球即可得到样本.
(2)总体由差异明显的两个层次组成,需选用分层抽样法.
①确定抽取个数.因为=3,所以甲厂生产的应抽取=7(个),乙厂生产的应抽取=3(个);
②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本.
(3)总体容量较大,样本容量较小,宜用随机数法.
①将300个篮球用随机方式编号,编号为000,001,…,299;
②在随机数表中随机的确定一个数作为开始,如第8行第29列的数“7”开始.任选一个方向作为读数方向,比如向右读;
③从数“7”开始向右读,每次读三位,凡不在000~299中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个样本个体的号码.
(4)总体容量较大,样本容量也较大宜用系统抽样法.
①将300个篮球用随机方式编号,编号为001,002,003,…,300,并分成30段,其中每一段包含=10(个)个体;
②在第一段001,002,003,…,010这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;
③将编号为002,012,022,…,292的个体抽出,组成样本
1.分层抽样的概念和特点
当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样.
分层抽样的优点是使样本具有较强的代表性,而且在各层抽样时又可灵活地选用不同的抽样法.
2.三种抽样方法的选择
简单随机抽样、系统抽样及分层抽样的共同特点是在抽样过程中每一个个体被抽取的机会都相等,体现了抽样方法的公平性和客观性.其中简单随机抽样是最基本的抽样方法,在系统抽样和分层抽样中都要用到简单随机抽样.当总体中的个体数较少时,常采用简单随机抽样;当总体中的个体数较多时,常采用系统抽样;当已知总体是由差异明显的几部分组成时,常采用分层抽样.