高中数学(人教版A版必修三)配套课件2份、教案、学案、同步练习题,补习复习资料:3.1.2概率的意义

文档属性

名称 高中数学(人教版A版必修三)配套课件2份、教案、学案、同步练习题,补习复习资料:3.1.2概率的意义
格式 zip
文件大小 2.4MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-21 10:14:46

文档简介

§3.1.2 概率的意义
学习目标
正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题.
重点难点
重点: 概率意义的理解和应用.
难点: 用概率知识解决现实生活中的具体问题.
学法指导
通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.
知识链接
随机事件、必然事件、不可能事件的概念
随机事件及其概率,概率与频率的区别和联系.
问题探究 【探究新知】(一): 概率的正确理解
思考1:连续两次抛掷一枚硬币,可能会出现哪几种结果?
思考2:抛掷—枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗?
可见,随机事件在一次实验中发生与否是随机的,但是随机性中含有________.认识了这种随机性中的规律性,就能使我们比较准确的预测随机事件发生的________.概率只是度量事件发生的可能性的________,不能确定是否发生.
思考3: 围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.

思考5:如果某种彩票的中奖概率为 ,那么买1000张这种彩票一定能中奖吗?为什么?
【探究新知】:概率思想的实际应用
思考1:在一场乒乓球比赛前,必须要决定由谁先发
球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?
思考2: 如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?

思考3:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大?
在一次试验中________ 的事件称为小概率事件, ________ 的事件称为大概率事件.
如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.
思考4:天气预报是气象专家依据观测到的气象资料和专家们的实际经验,经过分析推断得到的.某地气象局预报说,明天本地降水概率为70%,能否认为明天本地有70%的区域下雨,30%的区域不下雨?你认为应如何理解?
思考5:天气预报说昨天的降水概率为 90%,结果昨天根本没下雨,能否认为这次天气预报不准确?如何根据频率与概率的关系判断这个天气预报是否正确?
思考6: 在遗传学中有下列原理:
(1)纯黄色和纯绿色的豌豆均由两个特征因子组成,下一代是从父母辈中各随机地选取一个特
征组成自己的两个特征.
(2)用符号YY代表纯黄色豌豆的两个特征,符号yy代表纯绿色豌豆的两个特征.
(3)当这两种豌豆杂交时,第一年收获的豌豆特征为:Yy.把第一代杂交豌豆再种下时,第二年收获的豌豆特征为:YY,Yy,yy.
(4)对于豌豆的颜色来说.Y是显性因子,y是隐性因子.当显性因子与隐性因子组合时,表现显性因子的特性,即YY,Yy都呈黄色;当两个隐性因子组合时才表现隐性因子的特性,即yy呈绿色.
在第二代中YY,Yy,yy出现的概率分别是多少?黄色豌豆与绿色豌豆的数量比约为多少?

【例题讲评】
例题1 高一一名姚明fancy在篮球赛中的进球率为80%。在一次比赛中,他共可以投10次,前两次都没投进,那么后8次一定都能投进吗?
例题2 为了估计水库中的鱼的尾数,先从水库中捕出2 000尾鱼,给每尾鱼作上记号(不影响其存活),然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出500尾鱼,其中有记号的鱼有40尾,试根据上述数据,估计这个水库里鱼的尾数.
【巩固练习】 教材第2、3题.
【课堂小结】
1. 正确理解概率的意义,概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.
2.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.
目标检测
1.某医院治疗一种病的治愈率是90%,这个90%指的是 ( )
A.100个病人中能治愈90个
B.100个病人中能治愈10个
C. 100个病人中可能治愈90个
D.也上说法都正确
2.气象台预报“本市明天降雨概率是70%”,以下理解正确的是 ( )
A.本市明天将有70%的地区降雨;
B.本市明天将有70%的时间降雨;
C.明天出行不带雨具肯定淋雨;
D.明天出行不带雨具淋雨的可能性很大.
3.设某厂产品的次品率为2%,估计该厂8000件产品中合格品的件数可能为 ( )
A.160 B.7840 C.7998 D.7800
4.根据某医疗所的调查,某地区居民血型的分布是:O型45%,A型15%,AB型30%,B型10%,现在有一血型为O型的病人需要输液,若在该地区任选一人,那么能为病人输血的概率是 ( )
A.50% B.15% C.45% D.65%
5.一个箱子中放置了若干个大小相同的白球和黑球,从箱子中抽到白球的概率是99%,抽到黑球的概率是1%,现在随机取出一球,你估计这个球是白球还是黑球?
6今天电视台的天气预报说:今晚阴有雨,明天白天降雨概率是60%,请回答下列问题:
(1)明天白天运输部门能否抢运粮食?
(2)如果明天抢运的是石灰和白糖,能否在白天进行?
纠错矫正
总结反思
3. 1.2概率的意义
一、教材分析
(1)正确理解概率的含义。
在概率定义的基础上,从以下两个方面帮助学生正确理解概率的含义,澄清日常生活中遇到的一些错误认识:
①试验:通过抛掷一枚质地均匀的硬币,解释正面朝上的概率为0.5含义,纠正“连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上”的错误认识;通过从盒子中摸球的试验,解释中奖概率为 的含义,纠正“如果中奖率为 ,那么买1000张彩票一定能中奖”的错误认识。
②随机性与规律性:解释每次试验结果的随机性,多次试验结果的规律性,进一步说明频率与概率之间的区别。
(2)了解概率在实际问题中的应用。
①概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。可以从正反两个方面举例让学生进行判断。
②概率与决策的关系:介绍统计中极大似然法思想的概率解释,并清楚它的概率基础:在一次试验中,概率大的事件发生的可能性大。这种思想是“风险与决策”中经常使用的。
③概率与预报的关系:通过天气预报、地震预报、股票预报等实例,让学生了解概率在预报中的作用。
二、教学目标
1.从频率稳定性的角度,了解概率的意义.
2.学生经历试验,统计,分析,归纳,总结,进而了解并感受概率的定义的过程,引导学生从数学的视角,观察客观世界;用数学的思维,思考客观世界;以数学的语言,描述客观世界.
3.学生经历试验,整理,分析,归纳,确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准,新颖,独特的思维方式所震撼..
三、教学重点难点
重点:概率的正确理解。
难点:用概率知识解决现实生活中的具体问题。
四、学情分析
回忆上节课有关概率的定义,通过试验解释概率的含义,纠正日常生活中的一些错误认识,介绍概率与公平性、概率与决策、概率与预报方面的实例。
五、教学方法
1.举例法
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:预习课本,初步把握概率的定义。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标。
1在条件S下进行n次重复实验,事件A出现的频数和频率的含义分别如何?
2.概率是反映随机事件发生的可能性大小的一个数据,概率与频率之间有什么联系和区别?它们的取值范围如何?
联系:概率是频率的稳定值;
区别:频率具有随机性,概率是一个确定的数;范围:[0,1].
3.大千世界充满了随机事件,生活中处处有概率.利用概率的理论意义,对各种实际问题
作出合理解释和正确决策,是我们学习概率的一个基本目的.
(三)合作探究、精讲点拨。
1.概率的正确理解
思考1:连续两次抛掷一枚硬币,可能会出现哪几种结果?
“两次正面朝上”,“两次反面朝上”,“一次正面朝上,一次反面朝上”.
思考2:抛掷—枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷
一枚硬币,一定是出现一次正面和一次反面吗?
探究:试验:全班同学各取一枚同样的硬币,连续抛掷两次,观察它落地后的朝向.
将全班同学的试验结果汇总,计算三种结果发生的频率.你有什么发现?随着试验次数的增多,三种结果发生的频率会有什么变化规律?
“两次正面朝上”的频率约为0.25,“两次反面朝上” 的频率约为0.25,
“一次正面朝上,一次反面朝上” 的频率约为0.5.
思考3:围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.
不一定.摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑子,也可能没有一次摸到黑子,摸到黑子的概率为1-0.910≈0.6513
思考4:如果某种彩票的中奖概率为 0.001,那么买1000张这种彩票一定能中奖吗?为什么?
不一定,理由同上. 买1 000张这种彩票的中奖概率约为1-0.9991000≈0.632,即有63.2%的可能性中奖,但不能肯定中奖.
2.游戏的公平性
在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?
裁判员拿出一个抽签器,它是-个像大硬币似的均匀塑料圆板,一面是红圈,一面是绿圈,然后随意指定一名运动员,要他猜上抛的抽签器落到球台上时,是红圈那面朝上还是绿圈那面朝上。如果他猜对了,就由他先发球,否则,由另一方先发球. 两个运动员取得发球权的概率都是0.5.
探究:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大?
(图参考课本115页)
不公平,因为各班被选中的概率不全相等,七班被选中的概率最大.
3.决策中的概率思想
思考:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?(参考课本115页)
这枚骰子的质地不均匀,标有6点的那面比较重,会使出现1点的概率最大,更有可能连续10次都出现1点. 如果这枚骰子的质地均匀,那么抛掷一次出现1点的概率为,连续10次都出现1点的概率为 这是一个小概率事件,几乎不可能发生.
如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.
4.天气预报的概率解释
思考:某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释中哪一个能代表气象局的观点?
明天本地有70%的区域下雨,30%的区域不下雨?
明天本地下雨的机会是70%
降水概率≠降水区域;明天本地下雨的可能性为70%.
答案参考课本117页
思考:天气预报说昨天的降水概率为 90%,结果昨天根本没下雨,能否认为这次天气预报不准确?如何根据频率与概率的关系判断这个天气预报是否正确?
不能,概率为90%的事件发生的可能性很大,但“明天下雨”是随即事件,也有可能不发生.收集近50年同日的天气情况,考察这一天下雨的频率是否为90%左右.
5试验与发现
奥地利遗传学家孟德尔从1856年开始用豌豆作试验,他把黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的.第二年,他把第一年收获的黄色豌豆再种下,收获的豌豆既有黄色的又有绿色的.同样他把圆形和皱皮豌豆杂交,第一年收获的豌豆都是圆形的.第二年,他把第一年收获的圆形豌豆再种下,收获的豌豆却既有圆形豌豆,又有皱皮豌豆.类似地,他把长茎的豌豆与短茎的豌豆杂交,第一年长出来的都是长茎的豌豆. 第二年,他把这种杂交长茎豌豆再种下,得到的却既有长茎豌豆,又有短茎豌豆.试验的具体数据如下:
豌豆杂交试验的子二代结果
性状
显性
显性
隐性
隐性
子叶的颜色
黄色
6022
绿色
2001
种子的性状
圆形
5474
皱皮
1850
茎的高度
长茎
787
短茎
277
你能从这些数据中发现什么规律吗?
孟德尔的豌豆实验表明,外表完全相同的豌豆会长出不同的后代,并且每次试验的显性与隐性之比都接近3︰1,这种现象是偶然的,还是必然的?我们希望用概率思想作出合理解释.
6.遗传机理中的统计规律
在遗传学中有下列原理:
(1)纯黄色和纯绿色的豌豆均由两个特征因子组成,下一代是从父母辈中各随机地选取一个特征组成自己的两个特征.
(2)用符号AA代表纯黄色豌豆的两个特征,符号BB代表纯绿色豌豆的两个特征.
(3)当这两种豌豆杂交时,第一年收获的豌豆特征为:AB.把第一代杂交豌豆再种下时,第二年收获的豌豆特征为: AA,AB,BB.
(4)对于豌豆的颜色来说.A是显性因子,B是隐性因子.当显性因子与隐性因子组合时,表现显性因子的特性,即AA,AB都呈黄色;当两个隐性因子组合时才表现隐性因子的特性,即BB呈绿色.
在第二代中AA,AB,BB出现的概率分别是多少?黄色豌豆与绿色豌豆的数量比约为多少?
P(AA)=0.5×0.5=0.25 p(BB)=0.5×0.5=0.25
P(AB)=1-0.25-0.25=0.5
黄色豌豆(AA,AB)︰绿色豌豆(BB)≈3︰1
(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(五)发导学案、布置预习。
我们已经学习了概率的意义,那么,概率还具有那些性质呢?在下一节课我们一起来学习概率的基本性质。这节课后大家可以先预习这一部分,如何得出恰当的结论的。并完成本节的课后练习及课后延伸拓展作业。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计
1.概率的正确理解
2.游戏的公平性
3.决策中的概率思想
4.天气预报的概率解释
5试验与发现

十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.
2.孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,
这是一种科学的研究方法,我们应认真体会和借鉴.
3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
十一、学案设计(见下页)
3.1.2概率的意义
课前预习学案
一、预习目标
1.从频率稳定性的角度,了解概率的意义.
2.怎样从数量上刻画一个随机事件发生的可能性的大小.
二、预习内容
知识生成:
1.概率的正确理解:概率是描述随机事件发生的 的度量,
事件A的概率P(A)越大,其发生的可能性就越 ;
概率P(A)越小,事件A发生的可能性就越 .
2.概率的实际应用:知道随机事件的概率的大小,有利我们做出正确的 ,
还可以 某些决策或规则的正确性与公平性.
3.游戏的公平性: 应使参与游戏的各方的机会为等可能的, 即各方的 相等,
根据这一要求确定游戏规则才是 的.
4.决策中的概率思想:以使得样本出现的 最大为决策的准则.
5.天气预报的概率解释:降水的概率是指降水的这个随机事件出现的 ,
而不是指某些区域有降水或能不能降水.
6.遗传机理中的统计规律: (看书P118)
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标
1.概率的正确理解;
2.概率思想的实际应用.
二、学习重难点:
重点:概率的正确理解
难点:用概率知识解决现实生活中的具体问题。
三、学习过程
1、概率的正确理解
问题1:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两 次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。你认为这种想法正确吗?
试验:让我们做一个抛掷硬币的试验,观察它落地时的情况。
每人各取一枚同样的硬币,连续两次抛掷,观察它落地后的朝向,并记录下结果,填入下表。重复上面的过程10次,把全班同学试验结果汇总,计算三种结果发生的频率。
姓名
试验次数
两次正面朝上的次数、比例
两次反面朝上的次数、比例
一次正面朝上,一次反面朝上的次数、比例
事实上, “两次均反面朝上”的概率为 , “两次均反面朝上”的概率也为 , “正面朝上、反面朝上各一次”的概率为 。
问题2:有人说,中奖率为 1/1000的彩票,买1000张一定中奖,这种理解对吗?
2.游戏的公平性
在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道
裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?
探究:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大?
3.决策中的概率思想
思考:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?(参考课本115页)
4.天气预报的概率解释
思考:某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释中哪一个能代表气象局的观点?明天本地有70%的区域下雨,30%的区域不下雨?明天本地下雨的机会是70%
5.试验与发现
你能从课本上这些数据中发现什么规律吗?
6遗传机理中的统计规律
四、反思总结
1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.
2.孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.
3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养
五、当堂检测
1.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?
2. 围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再
放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.
3.“一个骰子掷一次得到2的概率是1/6,这说明一个骰子掷6次会出现一次2”,这种说法对吗?说说你的理由。
4.某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?
参考答案:
1. 天气预报的“降水”是一个随机事件,概率为90%指明了“降水”这个随机事件发生的概率,我们知道:在一次试验中,概率为90%的事件也可能不出现,因此,“昨天没有下雨”并不说明“昨天的降水概率为90%”的天气预报是错误的。
2. 不一定.摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,
所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑子,也可能
没有一次摸到黑子,摸到黑子的概率为1-0.910≈0.6513
3. 这种说法是错误的,因为掷骰子一次得到2是一个随机事件,在依次实验中他可能发生也可能不发生,掷6次骰子就是做6次实验,每次实验的结果都是随机的,可能出现2也可能不出现2,所以6次实验中有可能一次2都不出现,也可能出现1次,2次。。。。6次。
4. 此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;同理, 中10环的概率约为0.2. 。
课后练习与提高
1.一对夫妇前三胎生的都是女孩,则第四胎生一个男孩的概率是 ( )
A.0 B.0.5 C.0.25 D.1
2.某气象局预报说,明天本地降雪概率为90%,则下列解释中正确的是 ( )
A.明天本地有90%的区域下雪,10%的区域不下雪
B.明天下雪的可能性是90%
C.明天本地全天有90%的时间下雪,10%的时间不下雪
D.明天本地一定下雪
3.某位同学在做四选一的12道选择题时,他全不会做,只好在各题中随机选一个答案,若每道题选对得5分,选错得0分,你认为他大约得多少分 ( )
A.30分 B.0分 C.15分 D.20分
4.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是 。
5.在一个试验中。一种血清被注射到500只豚鼠体内。最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞。被注射这种血清之后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染。根据试验结果,估计具有下列类型的细胞的豚鼠被这种血清感染的概率:(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞。
学业分层测评(十六) 概率的意义
(建议用时:45分钟)
[学业达标]
一、选择题
1.从一批准备出厂的电视机中随机抽取10台进行质量检查,其中有1台是次品,若用C表示抽到次品这一事件,则对C的说法正确的是(  )
A.概率为
B.频率为
C.概率接近
D.每抽10台电视机,必有1台次品
【解析】 事件C发生的频率为,由于只做了一次试验,故不能得出概率接近的结论.
【答案】 B
2.高考数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是,某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话(  )
A.正确       B.错误
C.不一定 D.无法解释
【解析】 把解答一个选择题作为一次试验,答对的概率是说明了对的可能性大小是.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题,也可能都选错,或有2,3,4,…甚至12个题都选择正确.
【答案】 B
3.某篮球运动员投篮命中率为98%,估算该运动员投篮1 000次命中的次数为(  )
A.98    B.980
C.20   D.998
【解析】 1 000次命中的次数为98%×1 000=980.
【答案】 B
4.从12件同类产品中(其中10件正品,2件次品),任意抽取6件产品,下列说法中正确的是(  )
A.抽出的6件产品必有5件正品,1件次品
B.抽出的6件产品中可能有5件正品,1件次品
C.抽取6件产品时,逐个不放回地抽取,前5件是正品,第6件必是次品
D.抽取6件产品时,不可能抽得5件正品,1件次品
【解析】 从12件产品中抽到正品的概率为=,抽到次品的概率为=,所以抽出的6件产品中可能有5件正品,1件次品.
【答案】 B
5.蜜蜂包括小蜜蜂和黑小蜜蜂等很多种类.在我国的云南及周边各省都有分布.春暖花开的时候是放蜂的大好季节.养蜂人甲在某地区放养了100箱小蜜蜂和1箱黑小蜜蜂,养蜂人乙在同一地区放养了1箱小蜜蜂和100箱黑小蜜蜂.某中学生物小组在上述地区捕获了1只黑小蜜蜂.那么,生物小组的同学认为这只黑小蜜蜂是哪位养蜂人放养的比较合理(  ) 【导学号:28750052】
A.甲  B.乙
C.甲和乙 D.以上都对
【解析】 从放蜂人甲放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为,而从放蜂人乙放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为,所以,现在捕获的这只小蜜蜂是放蜂人乙放养的可能性较大.故选B.
【答案】 B
二、填空题
6.某家具厂为足球比赛场馆生产观众座椅.质检人员对该厂所生产的2 500套座椅进行抽检,共抽检了100套,发现有2套次品,试问该厂所生产的2 500套座椅中大约有________套次品.
【解析】 设有n套次品,由概率的统计定义,知=,解得n=50,所以该厂所生产的2 500套座椅中大约有50套次品.
【答案】 50
7.对某厂生产的某种产品进行抽样检查,数据如下表所示:
调查件数
50
100
200
300
500
合格件数
47
92
192
285
478
根据表中所提供的数据,若要从该厂生产的此种产品中抽到950件合格品,大约需抽查________件产品.
【解析】 由表中数据知:抽查5次,产品合格的频率依次为0.94,0.92,0.96,0.95,0.956,可见频率在0.95附近摆动,故可估计该厂生产的此种产品合格的概率约为0.95.设大约需抽查n件产品,则=0.95,所以n≈1 000.
【答案】 1 000
8.下面有三个游戏规则,袋子中分别装有球.
游戏1
游戏2
游戏3
3个黑球和1个白球
1个黑球和1个白球
2个黑球和2个白球
取1个球,再取1个球
取1个球
取1个球,再取1个球
取出的两个球同色→甲胜
取出的球是黑球→甲胜
取出的两个球同色→甲胜
取出的两个球不同色→乙胜
取出的球是白球→乙胜
取出的两个球不同色→乙胜
若从袋中无放回地取球,问其中不公平的游戏是________.
【解析】 游戏1中,取两球的所有可能情况是(黑1,黑2)(黑1,黑3)(黑2,黑3)(黑1,白)(黑2,白)(黑3,白),
∴甲胜的概率为,游戏是公平的.
游戏2中,显然甲胜的概率为,游戏是公平的.
游戏3中,取两球的所有可能情况是(黑1,黑2)(黑1,白1)(黑2,白1)(黑1,白2)(黑2,白2)(白1,白2),甲胜的概率为,游戏是不公平的.
【答案】 游戏3
三、解答题
9.为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上记号,不影响其存活,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量.
【解】 设保护区中天鹅的数量为n,假设每只天鹅被捕到的可能性是相等的,从保护区中任捕一只.
设事件A={带有记号的天鹅},则P(A)=,
第二次从保护区中捕出150只天鹅,其中有20只带有记号,
由概率的统计定义可知P(A)=,
∴=,
解得n=1 500,
∴该自然保护区中约有天鹅1 500只.
10.社会调查人员希望从对人群的随机抽样调查中得到对他们所提问题诚实的回答,但是被采访者常常不愿意如实做出应答.
1965年Stanley·l·Warner发明了一种应用概率知识来消除这种不愿意情绪的方法.Warner的随机化应答方法要求人们随机地回答所提问题中的一个,而不必告诉采访者回答的是哪个问题,两个问题中有一个是敏感的或者是令人为难的,另一个是无关紧要的,这样应答者将乐意如实地回答问题,因为只有他知道自己回答的是哪个问题.
假如在调查运动员服用兴奋剂情况的时候,无关紧要的问题是:你的身份证号码的尾数是奇数吗;敏感的问题是:你服用过兴奋剂吗.然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.
例如我们把这个方法用于200个被调查的运动员,得到56个“是”的回答,请你估计这群运动员中大约有百分之几的人服用过兴奋剂.
【解】 因为掷硬币出现正面的概率是0.5,大约有100人回答了第一个问题,
因为身份证号码尾数是奇数或偶数的可能性是相同的,
因而在回答第一个问题的100人中大约有一半人,即50人,回答了“是”,其余6个回答“是”的人服用过兴奋剂,
由此我们估计这群人中大约有6%的人服用过兴奋剂.
[能力提升]
1.甲、乙两人做游戏,下列游戏中不公平的是(  )
A.抛掷一枚骰子,向上的点数为奇数则甲获胜,向上的点数为偶数则乙获胜
B.同时抛掷两枚硬币,恰有一枚正面向上则甲获胜,两枚都正面向上则乙获胜
C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则甲获胜,扑克牌是黑色的则乙获胜
D.甲、乙两人各写一个数字1或2,如果两人写的数字相同则甲获胜,否则乙获胜
【解析】 B中,同时抛掷两枚硬币,恰有一枚正面向上的概率为,两枚都正面向上的概率为,所以对乙不公平.
【答案】 B
2.“某彩票的中奖概率为”意味着(  )
A.买1 000张彩票就一定能中奖
B.买1 000张彩票中一次奖
C.买1 000张彩票一次奖也不中
D.购买彩票中奖的可能性是
【解析】 概率只是度量事件发生的可能性的大小不能确定是否发生.
【答案】 D
3.将一枚质地均匀的硬币连掷两次,则至少出现一次正面与两次均出现反面的概率比为________.
【解析】 将一枚质地均匀的硬币连掷两次有以下情形:
(正,正),(正,反),(反,正),(反,反).
至少出现一次正面有3种情形,两次均出现反面有1种情形,故答案为3∶1.
【答案】 3∶1
4.有一个转盘游戏,转盘被平均分成10等份(如图3-1-1所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:
图3-1-1
A.猜“是奇数”或“是偶数”.
B.猜“是4的整数倍数”或“不是4的整数倍数”.
C.猜“是大于4的数”或“不是大于4的数”.
请回答下列问题:
(1)如果你是乙,为了尽可能获胜,你会选哪种猜数方案,并且怎样猜?为什么?
(2)为了保证游戏的公平性,你认为应选哪种猜数方案?为什么?
(3)请你设计一种其他的猜数方案,并保证游戏的公平性.
【解】 (1)可以选择B,猜“不是4的整数倍数”.或选择C,猜“是大于4的数”.“不是4的整数倍数”的概率为=0.8,“是大于4的数”的概率为=0.6,它们都超过了0.5,故乙获胜希望较大.
(2)为了保证游戏的公平性,应当选择方案A.因为方案A猜“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的.
(3)可以设计为猜“是大于5的数”或“小于6的数”,也可以保证游戏的公平性.
3.1.2 概率的意义
课时目标 1.通过实例,进一步理解概率的意义.2.会用概率的意义解释生活中的实例.3.了解“极大似然法”和遗传机理中的统计规律.
1.对概率的正确理解
随机事件在一次试验中发生与否是随机的,但随机性中含有________,认识了这种随机性中的________,就能比较准确地预测随机事件发生的________.
2.游戏的公平性
(1)裁判员用抽签器决定谁先发球,不管哪一名运动员先猜,猜中并取得发球的概率均为______,所以这个规则是______的.
(2)在设计某种游戏规则时,一定要考虑这种规则对每个人都是______的这一重要原则.
3.决策中的概率思想
如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“_____________”可以作为决策的准则,这种判断问题的方法称为极大似然法,极大似然法是统计中重要的统计思想方法之一.
4.天气预报的概率解释
天气预报的“降水”是一个________,“降水概率为90%”指明了“降水”这个随机事件发生的______为90%,在一次试验中,概率为90%的事件也________,因此,“昨天没有下雨”并不能说明“昨天的降水概率为90%”的天气预报是______的.
5.孟德尔与遗传机理中的统计规律
孟德尔在自己长达七、八年的试验中,观察到了遗传规律,这种规律是一种统计规律.
一、选择题
1.某气象局预报说,明天本地降雪的概率为90%,下列解释正确的是(  )
A.明天本地有90%的区域下雪,10%的区域不下雪.
B.明天本地下雪的可能性是90%.
C.明天本地全天有90%的时间下雪,10%的时间不下雪.
D.明天本地一定下雪.
2.已知某厂的产品合格率为90%,现抽出10件产品检查,则下列说法正确的是(  )
A.合格产品少于9件
B.合格产品多于9件
C.合格产品正好是9件
D.合格产品可能是9件
3.每道选择题有4个选择项,其中只有1个选择项是正确的,某次考试共有12道选择题,某人说:“每个选择项正确的概率是,我每题都选择第一个选择项,则一定有3道题选择结果正确”,这句话(  )
A.正确 B.错误
C.不一定 D.无法解释
4.同时向上抛掷100个质量均匀的铜板,落地时这100个铜板全都正面向上,则这100个铜板更可能是下面哪种情况(  )
A.这100个铜板两面是一样的
B.这100个铜板两面是不一样的
C.这100个铜板中有50个两面是一样的,另外50个两面是不一样的
D.这100个铜板中有20个两面是一样的,另外80个两面是不一样的
5.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车,乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应先调查哪个公司的车辆较合理(  )
A.甲公司 B.乙公司
C.甲与乙公司 D.以上都对
6.从12个同类产品(其中10个正品,2个次品),任意抽取6件产品,下列说法中正确的是(  )
A.抽出的6件产品中必有5件正品,一件次品
B.抽出的6件产品中可能有5件正品,一件次品
C.抽取6件产品时逐个不放回抽取,前5件是正品,第6件必是次品
D.抽取6件产品时,不可能抽得5件正品,一件次品
题 号
1
2
3
4
5
6
答 案
二、填空题
7.盒中装有4只白球5只黑球,从中任意取出1只球.
(1)“取出的球是黄球”是________事件,它的概率是________;
(2)“取出的球是白球”是________事件,它的概率是________;
(3)“取出的球是白球或黑球”是________事件,它的概率是________.
8.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上数据可以估计该池塘约有________条鱼.
9.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):
492 496 494 495 498
497 501 502 504 496
497 503 506 508 507
492 496 500 501 499
根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g~501.5 g之间的概率约为________.
三、解答题
10.解释下列概率的含义:
(1)某厂生产产品合格的概率为0.9;
(2)一次抽奖活动中,中奖的概率为0.2.
11.在一个试验中,一种血清被注射到500只豚鼠体内,最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞,被注射这种血清之后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染.根据试验结果,估计具有(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞的豚鼠分别被这种血清感染的概率.
能力提升
12.掷一枚骰子得到6点的概率是,是否意味着把它掷6次一定能得到一次6点?
13.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵化8513尾鱼苗,根据概率的统计定义解答下列问题:
(1)这种鱼卵的孵化概率(孵化率)是多少?
(2)30 000个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5 000尾鱼苗,大概需备多少个鱼卵?(精确到百位)
1.事件A发生的概率P(A)=,在实际生活中并不意味着n次试验中,事件A一定发生m次,有可能多于m次,也有可能少于m次,甚至有可能不发生或发生n次.
2.大概率事件经常发生,小概率事件很少发生.反之,一次试验中已发生了的事件其概率也必然很大,利用这一点可以推断事情的发展趋势,做出正确的决策.
3.概率广泛应用于体育运动、管理决策、天气预报以及某些科学实验中,它在这些应用中起着极其重要的作用.
答案:
3.1.2 概率的意义
知识梳理
1.规律性 规律性 可能性 2.(1)0.5 公平
(2)公平 3.使得样本出现的可能性最大 4.随机事件 概率 可能不出现 错误
作业设计
1.B [概率的本质是从数量上反映一个事件发生的可能性的大小.]
2.D
3.B [解答一个选择题作为一次试验,每次试验选择的正确与否都是随机的,经过大量的试验其结果呈随机性,即选择正确的概率是.做12道选择题,即进行12次试验,每个结果都是随机的,不能保证每题的结果选择正确,但有3道题选择结果正确的可能性比较大.同时也有可能都选错,或有2道题,4道题,甚至12道题都选择正确.故这句话是错误的.]
4.A [一枚质量均匀的铜板,抛掷一次正面向上的概率为0.5,从题意中知抛掷100枚结果正面都向上,因此这100个铜板两面是一样的可能性最大.]
5.B [由于甲公司桑塔纳的比例为=,
乙公司桑塔纳的比例为=,根据极大似然法可知应选B.]
6.B
7.(1)不可能 0 (2)随机  (3)必然 1
8.750
解析 设池塘约有n条鱼,则含有标记的鱼的概率为,由题意得:×50=2,∴n=750.
9.0.25
解析 袋装食盐质量在497.5 g~501.5 g之间的共有5袋,所以其概率约为=0.25.
10.解 (1)说明该厂产品合格的可能性为90%.也就是说每100件该厂的产品中大约有90件是合格品.
(2)说明参加抽奖的人中有20%的人可能中奖,也就是说,若有100个人参加抽奖,约有20人中奖.
11.解 (1)记“圆形细胞的豚鼠被感染”为事件A,由题意知,A为不可能事件,∴P(A)=0.
(2)记“椭圆形细胞的豚鼠被感染”为事件B,
由题意知P(B)===0.2.
(3)记“不规则形状细胞的豚鼠被感染”为事件C,由题意知事件C为必然事件,所以P(C)=1.
12.解 抛掷一枚骰子得到6点的概率是,多次抛掷骰子,出现6点的情况大约占,并不意味着掷6次一定得到一次6点,实际上,掷6次作为抛掷骰子的6次试验,每一次结果都是随机的.
13.解 (1)这种鱼卵的孵化概率
P==0.851 3.
(2)30 000个鱼卵大约能孵化
30 000×=25 539(尾)鱼苗.
(3)设大概需备x个鱼卵,
由题意知=.
∴x==5 900(个).
∴大概需备5 900个鱼卵.