高中数学(人教版A版必修三)配套课件3份、教案、学案、同步练习题,补习复习资料:3.2.1古典概型

文档属性

名称 高中数学(人教版A版必修三)配套课件3份、教案、学案、同步练习题,补习复习资料:3.2.1古典概型
格式 zip
文件大小 3.5MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-21 10:17:00

文档简介

§3.2.1 古典概型(一)
学习目标
通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.
重点难点
重点: 理解基本事件的概念、理解古典概型及其概率计算公式.
难点: 古典概型是等可能事件概率.
学法指导
1、基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A可以是基本事件,也可以是有几个基本事件组合而成的.
2、基本事件数的探求方法:
(1)列举法(2)树状图法:(3)列表法(4)排列组合
3、本节主要研究了古典概型的概率求法,解题时要注意两点:
(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;
①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式
P(A)=此公式只对古典概型适用.
知识链接
随机事件,基本事件的概率值和概率加法公式.
问题探究
通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.
【探究新知】(一):基本事件
思考1:连续抛掷两枚质地均匀的硬币,可能结果有 ;
连续抛掷三枚质地均匀的硬币,可能结果

.
思考2:上述试验中的每一个结果都是随机事件,我们把这类试验中不能再分的最简单的,且其他事件可以用它们来描述的随机事件事件称为基本事件,通俗地叫试验结果. 在一次试验中,任何两个基本事件是___ 关系.
所有基本事件构成的集合成为基本事件空间。基本事件空间常用大些字母表示.
例1:试验“连续抛掷两枚质地均匀的硬币”的基本事件空间
.
思考3:在连续抛掷三枚质地均匀的硬币的试验中,随机事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?
思考4:综上分析,基本事件的两个特征是:
(1) 任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
【探究新知】(二):古典概型

思考1:抛掷一枚质地均匀的骰子有 ________ 基本事件.每个基本事件出现的可能性相等吗?
思考2:抛掷一枚质地不均匀的硬币有________ 基本事件?每个基本事件出现的可能性相等吗?
思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?

思考4:如果一次试验中所有可能出现的基本事件只有有限个(有限性),且每个基本事件出现的可能性相等(等可能性),则具有这两个特点的概率模型称为古典概型.
例2:下列事件中哪些是古典概型:
明天是否下雨
射击运动员在一次比赛中能否击中10环
某时间内路段是否发生交通事故
抛掷一枚骰子朝上的点数是奇数.

思考5:随机抛掷一枚质地均匀的骰子是古典概型吗?
每个基本事件出现的概率是多少?
你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?
思考6:一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验中发生的概率为多少?为什么呢?
思考7:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶
数点”的概率如何计算?“出现不小于2点” 的
概率如何计算?
思考8:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?
思考9:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?

思考10:从集合的观点分析,如果在一次试验中,等可能出现的所有n个基本事件组成全集U,事件A包含的m个基本事件组成子集A,那么事件A发生的概率 P(A)等于什么?特别地,当A=U,A=Ф时,P(A)等于什么?
重要结论:一般地,对于古典概型,基本事件共有n个,随机事件A包含的基本事件是m.由互斥事件的概率加法公式可得, 所以在古典概型中
这一定义被成为概率的古典定义,其中该公式称为古典概型的概率计算公式.
【例题讲评】
例1 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
这些基本事件构成的基本事件空间是什么?
事件“取到字母a”是哪些基本事件的和?
例2 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
例3: 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
例4 同时掷两个不同的骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
目标检测
在下列试验中,哪些试验给 出的随机事件是等可能的? ( )
投掷一枚均匀的硬币,“出现正面”与“出现反面”
一个盘子中有三个大小完全相同的球,其中红球、黄球、黑球各一个,从中任取一个球,“取出的是红球”,“取出的是黄球”,“取出的是黑球”
一个盒子中有四个大小完全相同的球,其中红球、黄球各一个,黑球两个,从中任取一球, “取出的是红球”,“取出的是黄球”,“取出的是黑球”。
2、从一副扑克牌(54张)中抽到牌“K”的概率是( )
A. B. C. D.
3、将一枚硬币抛两次,恰好出现一次正面的概率是 ( )
A. B. C. D.
4、从教室到逸夫楼有A1,A2,A3,A4共4条路线,从逸夫楼到礼堂有B1,B2共两条路线,其中A2B1是从教室到礼堂的最短路线,某同学任选一条从教室到礼堂的路线,此路线正好是最短路线的概率是 ( )

A. B. C. D.
5、从A,B,C三个同学中选2名代表学校到省里参加奥林匹克数学竞赛,A被选中的概率是
( )
A. B. C. D.1
6、在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是 ( )
A. B. C. D.以上都不对
7.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是 ( )
A. B. C. D.
8、抛掷一枚质地均匀的正方体骰子,若前三次连续抛到“6点朝上”,则对于第四次抛掷结果的预测,下列说法中正确的是 ( )
A.出现“6点朝上”的概率大 于;
B.出现“6点朝上”的概率等于;
C.一定出现“6点朝上”;
D.无法预测“6点朝上”的概率.
9、做试验“从0,1,2 这三个数字中,不放回地取两次,每次取一个,构成有序实数对( x, y),x为第一次取到的数字,y为第二次取到的数字”.
(1)写出这个试验的基本事件;
(2)求这个试验基本事件的总数;
(3)写出“第一次取出的数字是2”这一事件,并求其发生的概率。
10、抛掷2颗质地均匀的骰子,求点数和为8的概率。
纠错矫正
总结反思
§3.2.1 古典概型(二)
学习目标
通过典型例题,较为深入地理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.
重点难点
重点: 理解基本事件的概念、理解古典概型及其概率计算公式.
难点: 古典概型是等可能事件概率.
学法指导
对于条件中含有“至少”等字眼的古典概型,它包含的互斥事件或基本事件的个数往往较多,计数比较麻烦,这时,可考虑其对立事件,减少计算量;
灵活构造等概样本空间,简化运算;
区别对待“不放回”与“有放回”抽样问题。
知识链接
随机事件,基本事件,对立事件,互斥事件和概率加法公式

【例题讲评】
例1 一盒中装有质地相同的各色球12只,其中5红、4黑、2白、1绿,从中取1球。求:
(1)取出球的颜色是红或黑的概率;
(2)取出球的颜色是红或黑或白的概率.
例2 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.
例3 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求下列两个事件的概率:
(1)事件A:取出的两件产品都是正品;
(2)事件B:取出的两件产品中恰有一件次品。
变形:从含有两件正品a1,a2和一件次品b1的三件产品中,一次取两件,求下列两个事件的概率:
(1)事件A:取出的两件产品都是正品;
(2)事件B:取出的两件产品中恰有一件次品。
例4 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
解法一分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
解法二分析:也可以把试验的所有可能结果取为{点数是奇数}和{点数为偶数}两个样本事件,它们互为对立事件,并且组成等概样本空间。
变形:一次掷两颗骰子,观察掷出的点数,求掷得点数和是奇数的概率。
例5 现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率.
分析:(1)为返回抽样;(2)为不返回抽样.
小结:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.
例6 盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一个;
(3)取到的2只中至少有一只次品。
目标检测
1 、先后抛掷2枚均匀的硬币.
①一共可能出现多少种不同的结果?
②出现“1枚正面,1枚反面”的结果有多少种?
③出现“1枚正面,1枚反面”的概率是多少?
④有人说:“一共可能出现‘2枚正面’、‘2枚反面’、‘1枚正面,1枚反面’这3种结果,因此出现‘1枚正面,1枚反面’的概率是.”这种说法对不对?
2、从标有1,2,3,4,5,6,7,8,9 的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概率为( )
A. B. C. D.
3、把10卡片分别写上0,1,2,3,4,5,6,7,8,9后,任意搅乱放入一纸箱内,从中任取一张,则所抽取的卡片上数字不小于3的概率为( )
A. B. C. D.
4、掷两个面上分别记有数字1至6的正方体玩具,设事件A为“点数之和恰好为6”,则事件A所包含的基本事件个数为 ( )
A. 2个 B. 3个
C. 4个 D. 5个
5、从1,2,3,4中任取两个数,组成没有重复数字的两位数,则这个两位数大于21的概率是______。
6、从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。
7、在5件产品中,有三件是一级品,二件是二级品,从中任取二件,其中至少有一件为二级品的概率是___ .
【能力提升】
8、某小组共有10名学生,其中女生3名,现选举2名代表, 至少有1名女生当选的概率 ( )
A. B. C. D. 1
9、某单位36人的血型类别是:A型偶12人,B型10人,AB型8人,O型6人。现在从这36人任取2人,求2人血型不同的概率.
10、若以连续投掷两次骰子分别得到的点数作为的坐标,则
(1)点落在圆内的概率是多少?
(2)点落在圆外的概率是多少?
11、7名学生站成一排,试求下列事件的概率:
(1)甲站在排头;
(2)甲站在排头或排尾;
(3)甲不站在排头;
(4)甲和乙都站在排头或排尾;
(5)甲和乙都不站在排头或排尾;
(6)甲或乙站在排头或排尾.
纠错矫正
总结反思

3. 2.1古典概型
【教学目标】
1.能说出古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;
2.会应用古典概型的概率计算公式:P(A)=
3.会叙述求古典概型的步骤;
【教学重难点】
教学重点:正确理解掌握古典概型及其概率公式
教学难点:会用列举法计算一些随机事件所含的基本事件数及事件发生的概率
【教学过程】
前置测评
1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间
的运算包括和事件、积事件,这些概念的含义分别如何?
若事件A发生时事件B一定发生,则 .
若事件A发生时事件B一定发生,反之亦然,则A=B.若事件A与事件B不同时发
生,则A与B互斥.若事件A与事件B有且只有一个发生,则A与B相互对立.
2。概率的加法公式是什么?对立事件的概率有什么关系?
若事件A与事件B互斥,则 P(A+B)=P(A)+P(B).
若事件A与事件B相互对立,则 P(A)+P(B)=1.
3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.
新知探究
我们再来分析事件的构成,考察两个试验:
(1)掷一枚质地均匀的硬币的试验。
(2)掷一枚质地均匀的骰子的试验。
有哪几种可能结果?
在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中所有可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事件。我们把这类随机事件称为基本事件
综上分析,基本事件有哪两个特征?
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来。
解:所求的基本事件有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};A+B+C.
上述试验和例1的共同特点是:
(1)试验中有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等,
这有我们将具有这两个特点的概率模型称为古典概率模型
思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?
思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗?
思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?无数个
思考4:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点” 的概率如何计算?
思考5:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?
P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;
P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数.
思考6:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?
P(A)=事件A所包含的基本事件的个数÷基本事件的总数
典型例题
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是指选择A,B,C,D的可能性是相等的。
由古典概型的概率计算公式得P(“答对”)=1/4=0.25
点评:在4个答案中随机地选一个符合了古典概型的特点。
变式训练:在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有的正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?
例3 同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
解:(1)掷一个骰子的结果有6种。把两个骰子标上记号1,2以便区分,由于1号投骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种。
(2)在上面的所有结果中,向上点数和为5的结果有如下4种
(1,4),(2,3),(3,2),(4,1)
(3)由古典概型概率计算公式得
P(“向上点数之和为5”)=4/36=1/9
点评:通过本题理解掷两颗骰子共有36种结果
变式训练:一枚骰子抛两次,第一次的点数记为m ,第二次的点数记为n ,计算m-n<2的概率。
例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
解:一个密码相当于一个基本事件,总共有10000个基本事件,它们分别是0000,0001,0002,…
9998,9999。随机地试密码,相当于试到任何一个密码的可能性都时相等的,所以这是一个古典概型。事件“试一次密码就能取到钱”有一个基本事件构成,即由正确的密码构成。所以
P(“试一次密码就能取到钱”)=1/10000
点评:这是一个小概率事件在实际生活中的应用。
变式训练:在所有首位不为0的八位电话号码中,任取一个号码。求:头两位数码都是8的概率。
例5 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.
解:合格的4听分别记作:1,2,3,4,不合格的2听分别记作:a.,b,只要检测的2听有1听不合格的,就表示查处了不合格产品。
依次不放回的取2听饮料共有如下30个基本事件:
(1,2),(1,3),(1,4),(1,a),(1,b),(2,1),(2,3),(2,4),(2,a),(2,b),(3,1),(3,2),(3,4),(3,a),(3,b),(4,1),(4,2),(4,3),(4,a),(4,b),(a,1),(a,2),(a,3),(a,4),(a,b),(b,1),(b,2),(b,3),(b,4),(b,a)
P(“含有不合格产品”)=18/30=0.6
点评:本题的关键是对依次不放回抽取总共列多少基本事件的考查。
变式训练:
一个盒子里装有标号为1,2,3,4,5的5张标签,根据下列条件求两张标签上的数字为相邻整数的概率:
标签的选取是无放回的:
标签的选取是有放回的:
归纳小结
1.基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A可以是基本事件,也可以是有几个基本事件组合而成的.
2.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数÷基本事件的总数,只对古典概型适用
反馈测评
1.在20瓶饮料中,有2瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?
2.在夏令营的7名成员中,有3名同学已去过北京。从这7名同学中任取两名同学,选出的这两名同学恰是已去过北京的概率是多少?
3.5本不同的语文书,4本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率为多少?
〖板书设计〗
〖书面作业〗
课本P134,A组4,5,6 B组2
3.2.1古典概型
课前预习学案
一、预习目标:
通过实例,初步理解古典概型及其概率计算公式
二、预习内容:
1、知识回顾:
(1)随机事件的概念
①必然事件:每一次试验 的事件,叫必然事件;
②不可能事件:任何一次试验 的事件,叫不可能事件;
③随机事件:随机试验的每一种 或随机现象的每一种 叫的随机事件,简称为事件.
(2)事件的关系
①如果A B为不可能事件(A B ), 那么称事件A与事件B互斥.
其含意是: 事件A与事件B在任何一次实验中 同时发生.
②如果A B为不可能事件,且A B为必然事件,那么称事件A与事件B互为对立事件.其含意是: 事件A与事件B在任何一次实验中 发生.
2. 基本事件的概念: 一个事件如果 事件,就称作基本事件.
基本事件的两个特点: 10.任何两个基本事件是 的;
20.任何一个事件(除不可能事件)都可以 .
例如(1) 试验②中,随机事件“出现偶数点”可表示为基本事件 的和.
(2) 从字母中, 任意取出两个不同字母的这一试验中,
所有的基本事件是: ,共有 个基本事件.
3. 古典概型的定义
古典概型有两个特征:
10.试验中所有可能出现的基本事件 ;
20.各基本事件的出现是 ,即它们发生的概率相同.
将具有这两个特征的概率模型称为古典概型(classical models of probability).
4.古典概型的概率公式, 设一试验有n个等可能的基本事件,而事件A恰包含其中的m个
基本事件,则事件A的概率P(A)定义为:

例如
随机事件A =“出现偶数点”包含有 基本事件.所以
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标:
1. 通过实例,叙述古典概型定义及其概率计算公式;
2. 会用列举法计算一些随机事件所含的基本事件数及事件发生的概率
二、学习内容
1.古典概型的定义
思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?
思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗?
思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?无数个
结论:如果一次试验中所有可能出现的基本事件只有有限个(有限性),且每个基本事件出现的可能性相等(等可能性),则具有这两个特点的概率模型称为古典概型.
2. 古典概型的概率计算公式
思考4:随机抛掷一枚质地均匀的骰子是古典概型吗?每个基本事件出现的概率是多少?你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?
P(“1点”)= P(“2点”)= P(“3点”)= P(“4点”)=P(“5点”)= P(“6点”)
P(“1点”)+P(“2点”)+ P(“3点”)+ P(“4点”)+P(“5点”)+ P(“6点”)=1.
思考5:一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验
中发生的概率为多少?
思考6:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点” 的概率如何计算?
思考7:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?
P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;
P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数.
思考8:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?
3.典型例题
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
例3 同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?

例5 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.
三、反思总结
1.基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A可以是基本事件,也可以是有几个基本事件组合而成的.
2.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数÷基本事件的总数,只对古典概型适用
四、当堂检测
1.在20瓶饮料中,有2瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?
2.在夏令营的7名成员中,有3名同学已去过北京。从这7名同学中任取两名同学,选出的这两名同学恰是已去过北京的概率是多少?
3.5本不同的语文书,4本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率为多少?
课后练习与提高
1.从一副扑克牌(54张)中抽一张牌,抽到牌“K”的概率是 。
2.将一枚硬币抛两次,恰好出现一次正面的概率是 。
3.一个口袋里装有2个白球和2个黑球,这4 个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是 。
4.先后抛3枚均匀的硬币,至少出现一次正面的概率为 。
5.口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,四个人按顺序依次从中摸出一球,试求“第二个人摸到白球”的概率。
6.袋中有红、白色球各一个,每次任取一个,有放回地抽三次,写出所有的基本事件,并计算下列事件的概率:(1)三次颜色恰有两次同色; (2)三次颜色全相同;
(3)三次抽取的球中红色球出现的次数多于白色球出现的次数。
7 .从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概 参考答案:
1、答案: 2、答案: 3、答案: 4、答案:
从上面的树形图可以看出,试验的所有可能结果数为24,第二人摸到白球的结果有12种,记“第二个人摸到白球”为事件A,则。
6、答案:(红红红)(红红白)(红白红)(白红红)(红白白)(白红白)(白白红)(白白白)
(1) (2) (3)
7、解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则
A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因而,P(A)==
课件34张PPT。新知自解互斥的基本事件的和答案: C答案: B课堂探究答案: (1)C答案: ①②④
谢谢观看!学业分层测评(十八) 古典概型
(建议用时:45分钟)
[学业达标]
一、选择题
1.下列试验中,属于古典概型的是(  )
A.种下一粒种子,观察它是否发芽
B.从规格直径为250 mm±0.6 mm的一批合格产品中任意抽一根,测量其直径d
C.抛一枚硬币,观察其出现正面或反面
D.某人射击中靶或不中靶
【解析】 依据古典概型的特点判断,只有C项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同.
【答案】 C
2.集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是(  )
A.  B.
C. D.
【解析】 从A,B中各任取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中两个数之和为4的有(2,2),(3,1),故所求概率为=.故选C.
【答案】 C
3.四条线段的长度分别是1,3,5,7,从这四条线段中任取三条,则所取出的三条线段能构成一个三角形的概率是(  )
A. B.
C. D.
【解析】 从四条长度各异的线段中任取一条,每条被取出的可能性均相等,所以该问题属于古典概型.又所有基本事件包括(1,3,5),(1,3,7),(1,5,7),(3,5,7)四种,而能构成三角形的基本事件只有(3,5,7)一种,所以所取出的三条线段能构成一个三角形的概率是P=.
【答案】 A
4.已知集合A={2,3,4,5,6,7},B={2,3,6,9},在集合A∪B中任取一个元素,则该元素是集合A∩B中的元素的概率为(  )
A. B.
C. D.
【解析】 A∪B={2,3,4,5,6,7,9},A∩B={2,3,6},所以由古典概型的概率公式得,所求的概率是.
【答案】 C
5.把一枚骰子投掷两次,观察出现的点数,记第一次出现的点数为a,第二次出现的点数为b,则方程组只有一个解的概率为(  )
A. B.
C. D.
【解析】 点(a,b)取值的集合共有36个元素.方程组只有一个解等价于直线ax+by=3与x+2y=2相交,即≠,即b≠2a,而满足b=2a的点只有(1,2),(2,4),(3,6),共3个,故方程组只有一个解的概率为=.
【答案】 B
二、填空题
6.(2016·石家庄高一检测)一只蚂蚁在如图3-2-1所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为________.
图3-2-1
【解析】 该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为=.
【答案】 
7.在平面直角坐标系中,从五个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三个,这三点能构成三角形的概率是________(结果用分数表示).
【解析】 从五个点中任取三个点,构成基本事件的总数为n=10;
而A,C,E三点共线,B,C,D三点共线,所以这五个点可构成三角形的个数为10-2=8.
设“从五个点中任取三个点,这三点能构成三角形”为事件A,则A所包含的基本事件数为m=8,故由古典概型概率的计算公式得所求概率为P(A)===.
【答案】 
8.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9.若从中一次抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为________. 【导学号:28750058】
【解析】 基本事件共有(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9)10种情况.相差0.3 m的共有(2.5,2.8),(2.6,2.9)两种情况,
所以P==.
【答案】 
三、解答题
9.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.
【解】 设“中三等奖”为事件A,“中奖”为事件B,
从四个小球中有放回地取两个有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共16种不同的结果.
(1)取出的两个小球号码相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1),(3,0),共7种结果,
则中三等奖的概率为P(A)=.
(2)由(1)知两个小球号码相加之和等于3或4的取法有7种;
两个小球号码相加之和等于5的取法有2种:(2,3),(3,2).
两个小球号码相加之和等于6的取法有1种:(3,3).
则中奖概率为P(B)==.
10.(2016·长沙联考)某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该地停车,两人停车都不超过4小时.
(1)若甲停车1小时以上且不超过2小时的概率为,停车费多于14元的概率为,求甲的停车费为6元的概率;
(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.
【解】 (1)设“一次停车不超过1小时”为事件A,“一次停车1到2小时”为事件B,“一次停车2到3小时”为事件C,“一次停车3到4小时”为事件D.
由已知得P(B)=,P(C+D)=.
又事件A,B,C,D互斥,所以P(A)=1--=.
所以甲的停车费为6元的概率为.
(2)易知甲、乙停车时间的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个;
而“停车费之和为28元”的事件有(1,3),(2,2),(3,1),共3个,
所以所求概率为.
[能力提升]
1.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是(  )
A.  B.
C. D.
【解析】 个位数与十位数之和为奇数,则个位数与十位数中必有一个奇数一个偶数,所以可以分两类:
(1)当个位为奇数时,有5×4=20(个),符合条件的两位数.
(2)当个位为偶数时,有5×5=25(个),符合条件的两位数.
因此共有20+25=45(个)符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P==.
【答案】 D
2.(2015·广东高考)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为(  )
A.0.4 B.0.6
C.0.8 D.1
【解析】 记3件合格品为a1,a2,a3,2件次品为b1,b2,则任取2件构成的基本事件空间为Ω={(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},共10个元素.
记“恰有1件次品”为事件A,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2)},共6个元素.
故其概率为P(A)==0.6.
【答案】 B
3.(2016·南阳高一检测)若以连续掷两次骰子分别得到的点数m,n作为点P的坐标,则点P落在圆x2+y2=16上或其内部的概率是________.
【解析】 连续掷两次骰子,得到点数m,n记作P(m,n),共有36种情况,其中点P(m,n)落在圆x2+y2=16上或其内部的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8种情况,所以P==.
【答案】 
4.(2015·山东高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团
未参加书法社团
参加演讲社团
8
5
未参加演讲社团
2
30
(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;
(2)在既参加书法社团又参加演讲 社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.
【解】 (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,
故至少参加上述一个社团的共有45-30=15(人),
所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P==.
(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:
{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{A5,B1},{A5,B2},{A5,B3},共15个.
根据题意,这些基本事件的出现是等可能的.
事件“A1被选中且B1未被选中”所包含的基本事件有:{A1,B2},{A1,B3},共2个.
因此A1被选中且B1未被选中的概率为P=.
课件23张PPT。第三章 §3.2 古典概型3.2.1 古典概型(一)1.理解基本事件的概念并会罗列某一事件包含的所有基本事件;
2.理解古典概型的概念及特点;
3.会应用古典概型概率公式解决简单的概率计算问题.问题导学题型探究达标检测学习目标知识点一 基本事件问题导学     新知探究 点点落实思考 一枚硬币抛一次,基本事件有2个:正面向上,反面向上.试从集合并、交的角度分析这两个事件的关系.答案 两个事件的交事件为不可能事件,并事件为必然事件.答案(1)任何两个基本事件是 的;
(2)任何事件(除不可能事件)都可以表示成基本事件的 .互斥和思考 一枚矿泉水瓶盖抛一次,出现正面向上与反面向上的概率相同吗?知识点二 古典概型答案 因为瓶盖重心的原因,正面向上和反面向上的可能性是不一样的.由此可以看出基本事件不一定等可能.答案如果某概率模型具有以下两个特点:
(1)试验中所有可能出现的基本事件 ;
(2)每个基本事件出现的 ;
那么我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.只有有限个可能性相等知识点三 古典概型的概率公式思考 在抛掷硬币试验中,如何求正面朝上及反面朝上的概率?答案返回?类型一 基本事件的罗列方法题型探究 重点难点 个个击破解析答案例1 从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件? 事件“取到字母a”是哪些基本事件的和? 解 所求的基本事件有6个, A={a,b},B={a,c},C={a,d}, D={b,c},E={b,d},F={c,d};
“取到字母a”是基本事件A、B、C的和,即A+B+C. 反思与感悟罗列基本事件时首先要考虑元素间排列有无顺序,其次罗列时不能毫无规律,而要按照某种规律罗列,比如树状图.反思与感悟跟踪训练1 做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第2颗骰子出现的点数.写出:
(1)试验的基本事件;解析答案解 这个试验的基本事件共有36个,如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).(2)事件“出现点数之和大于8”;解析答案解 “出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).(3)事件“出现点数相等”;解析答案解 “出现点数相等”包含以下6个基本事件:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).(4)事件“出现点数之和等于7”.解析答案解 “出现点数之和等于7”包含以下6个基本事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1).类型二 古典概型的判定例2 某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、……、命中5环和不中环.你认为这是古典概型吗?为什么? 解析答案解 不是古典概型,
因为试验的所有可能结果只有7个,
而命中10环、命中9环、……、命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件. 反思与感悟判断一个试验是不是古典概型要抓住两点:一是有限性;二是等可能性.反思与感悟跟踪训练2 从所有整数中任取一个数的试验中“抽取一个整数”是古典概型吗? 解析答案解 不是,因为基本事件是无数个. 类型三 古典概型概率的计算例3 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,则他答对的概率是多少?解析答案?反思与感悟解答概率题要有必要的文字叙述,一般要用字母设出所求的随机事件,要写出所有的基本事件及个数,写出随机事件所包含的基本事件及个数,然后应用公式求出.反思与感悟跟踪训练3 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回地从某箱中随机抽出2听,求检测出不合格产品的概率.解析答案?返回1.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有(  )
A.1个 B.2个 C.3个 D.4个达标检测     12345解析答案解析 该生选报的所有可能情况:{数学和计算机},{数学和航空模型}、{计算机和航空模型},所以基本事件有3个.C12345解析 A、B、D为古典概型,
因为都适合古典概型的两个特征:有限性和等可能性,
而C不适合等可能性,
故不为古典概型.解析答案2.下列不是古典概型的是(  )
A.从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小
B.同时掷两颗骰子,点数和为7的概率
C.近三天中有一天降雨的概率
D.10个人站成一排,其中甲、乙相邻的概率C?12345C?解析答案12345?C?解析答案12345B答案规律与方法?返回课件31张PPT。3.2.1 古典概型(二)第三章 §3.2 古典概型1.加深对基本事件与古典概型概念的理解;
2.进一步熟悉用列举法写出随机事件所包含的基本事件及个数;
3.能应用古典概型计算公式求复杂事件的概率.问题导学题型探究达标检测学习目标知识点一 与顺序有关的古典概型问题导学     新知探究 点点落实思考 同时掷两枚质地均匀的硬币,出现“一正一反”的概率与“两枚正面”的概率哪个大??答案思考 口袋里有标号为1,2,3的3个球,从中不放回地摸取2个,两球都是奇数的概率是多少?知识点二 与顺序无关的古典概型?答案知识点三 古典概型的解题步骤?答案基本事件基本事件返回类型一 树状图题型探究 重点难点 个个击破解析答案例1 有A、B、C、D四位贵宾,应分别坐在a、b、c、d四个席位上,现在这四人均未留意,在四个席位上随便就坐,
(1)求这四人恰好都坐在自己的席位上的概率;
(2)求这四人恰好都没坐在自己的席位上的概率;
(3)求这四人恰好有1位坐在自己的席位上的概率.反思与感悟解 将A、B、C、D四位贵宾就座情况用下面图形表示出来:?解析答案反思与感悟?反思与感悟借助树状图罗列基本事件,书写量小且不重不漏,是一个不错的方法.反思与感悟跟踪训练1 先后抛掷两枚大小相同的骰子.
(1)求点数之和出现7点的概率;
(2)求出现两个4点的概率;
(3)求点数之和能被3整除的概率.解析答案解 用树状图列举基本事件如下:?解析答案?类型二 与顺序有关的古典概型例2 同时掷两个骰子,计算:
(1)一共有多少种不同的结果?解析答案解 掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如下表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(可由列表法得到)由表中可知同时掷两个骰子的结果共有36种.(2)其中向上的点数之和是5的结果有多少种?解析答案解 在上面的结果中,向上的点数之和为5的结果有4种,分别为(1,4),(2,3),(3,2),(4,1).(3)向上的点数之和是5的概率是多少?解析答案?反思与感悟因为掷两粒骰子会出现相同元素(1,1),(2,2),…,故罗列事件要按有序罗列,把(1,2),(2,1)当成不同事件,否则就不是古典概型了.反思与感悟跟踪训练2 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,……,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他在自动取款机上随机试一次密码就能取到钱的概率是多少?解析答案?类型三 与顺序无关的古典概型例3 现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求A1被选中的概率;解析答案解 从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间
Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}有18个基本事件组成.
由于每一个基本事件被抽取的机会均等,
因此这些基本事件的发生是等可能的.解析答案?(2)求B1和C1不全被选中的概率.解析答案解 用N表示“B1和C1不全被选中”这一事件,反思与感悟本例相当于从8个不同元素中不放回地抽取3个,故可按无序罗列基本事件.反思与感悟跟踪训练3 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.
(1)共有多少个基本事件?解析答案解 分别记白球为1、2、3号,黑球为4、5号,从中摸出2只球,有如下基本事件(摸到1、2号球用(1,2)表示):
(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).
因此,共有10个基本事件.(2)摸出的2只球都是白球的概率是多少?解析答案?返回1.右图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为(  )达标检测     12345解析答案A.0.2 B.0.4
C.0.5 D.0.6?B12345C?解析答案?12345答案D123454.已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件A={点落在x轴上}与事件B={点落在y轴上}的概率关系为(  )
A.P(A)>P(B) B.P(A)C.P(A)=P(B) D.P(A)与P(B)大小不确定答案C12345?C答案规律与方法1.在求概率时,通常把全体基本事件列表或用平面直角坐标系中的点来表示,以方便更直接、准确地找出某个事件所包含的基本事件的个数,然后再根据古典概型的概率公式,求出相应的概率即可.
2.解题时,将所有基本事件全部列出是避免重复或者遗漏的有效方法.对于用直接方法难以解决的问题,可以求其对立事件的概率,进而求得其概率,以降低难度.返回3.2.1 古典概型
课时目标 1.了解基本事件的特点.2.理解古典概型的定义.3.会应用古典概型的概率公式解决实际问题.
1.基本事件
(1)基本事件的定义:
一次试验中可能出现的试验结果称为一个基本事件.基本事件是试验中不能再分的最简单的随机事件.
(2)基本事件的特点:
①任何两个基本事件是__________;
②任何事件(除不可能事件)都可以表示成________的和.
2.古典概型
如果某类概率模型具有以下两个特点:
(1)试验中所有可能出现的基本事件__________.
(2)每个基本事件出现的__________.
将具有这两个特点的概率模型称为古典概率模型.
3.古典概型的概率公式
对于任何事件A,P(A)=________________________________.
一、选择题
1.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有(  )
A.1个 B.2个
C.3个 D.4个
2.下列是古典概型的是(  )
(1)从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小;
(2)同时掷两颗骰子,点数和为7的概率;
(3)近三天中有一天降雨的概率;
(4)10个人站成一排,其中甲、乙相邻的概率.
A.(1)、(2)、(3)、(4) B.(1)、(2)、(4)
C.(2)、(3)、(4) D.(1)、(3)、(4)
3.下列是古典概型的是(  )
A.任意抛掷两枚骰子,所得点数之和作为基本事件时
B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时
C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率
D.抛掷一枚均匀硬币至首次出现正面为止
4.甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(  )
A. B.
C. D.
5.一袋中装有大小相同的八个球,编号分别为1,2,3,4,5,6,7,8,现从中有放回地每次取一个球,共取2次,记“取得两个球的编号和大于或等于14”为事件A,则P(A)等于(  )
A. B.
C. D.
6.有五根细木棒,长度分别为1,3,5,7,9 (cm),从中任取三根,能搭成三角形的概率是(  )
A. B. C. D.
题 号
1
2
3
4
5
6
答 案
二、填空题
7.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是________.
8.甲,乙两人随意入住三间空房,则甲、乙两人各住一间房的概率是________.
9.从1,2,3,4,5这5个数字中,不放回地任取两数,两数都是奇数的概率是________.
三、解答题
10.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:
(1)A:取出的两球都是白球;
(2)B:取出的两球1个是白球,另1个是红球.
11.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n能力提升
12.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是黑球的概率为P1,第10个人摸出黑球的概率是P10,则(  )
A.P10=P1 B.P10=P1
C.P10=0 D.P10=P1
13.田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A、B、C,田忌的三匹马分别为a、b、c;三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛优、劣程度可以用以下不等式表示:A>a>B>b>C>c.
(1)正常情况下,求田忌获胜的概率;
(2)为了得到更大的获胜机会,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马A,于是田忌采用了最恰当的应对策略,求这时田忌获胜的概率.
1.判断一个概率问题是否为古典概型,关键看它是否同时满足古典概型的两个特征——有限性和等可能性.
2.古典概型的概率公式:如果随机事件A包含m个基本事件,则
P(A)=++…+=,
即P(A)=.
3.应用公式P(A)=求古典概型的概率时,应先判断它是否是古典概型,再列举、计算基本事件数代入公式计算,列举时注意要不重不漏,按一定顺序进行,或采用图表法、树图法进行.


答案:
3.2.1 古典概型
知识梳理
1.(2)①互斥的 ②基本事件 2.(1)只有有限个 (2)可能性相等 3.
作业设计
1.C [该生选报的所有可能情况是:{数学和计算机},{数学和航空模型},{计算机和航空模型},所以基本事件有3个.]
2.B [(1)(2)(4)为古典概型,因为都适合古典概型的两个特征:有限性和等可能性,而(3)不适合等可能性,故不为古典概型.]
3.C [A项中由于点数的和出现的可能性不相等,故A不是;B中的基本事件是无限的,故B不是;C项满足古典概型的有限性和等可能性,故C是;D项中基本事件既不是有限个也不具有等可能性.]
4.C [正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件,两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于.]
5.C [事件A包括(6,8),(7,7),(7,8),(8,6),(8,7),(8,8)这6个基本事件,由于是有放回地取,基本事件总数为8×8=64(个),∴P(A)==.]
6.D [任取三根共有10种情况,构成三角形的只有3、5、7,5、7、9,3、7、9三种情况,故概率为.]
7.
解析 可重复地选取两个数共有4×4=16(种)可能,
其中一个数是另一个数的2倍的有1,2;2,1;2,4;4,2共4种,故所求的概率为=.
8.
解析 设房间的编号分别为A、B、C,事件甲、乙两人各住一间房包含的基本事件为:甲A乙B,甲B乙A,甲B乙C,甲C乙B,甲A乙C,甲C乙A共6个,基本事件总数为3×3=9,所以所求的概率为=.
9.
解析 基本事件(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),而两数都是奇数的有3种,
故所求概率P=.
10.解 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取2个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.
(1)从袋中的6个球中任取两个,所取的两球全是白球的方法总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).
∴取出的两个球全是白球的概率为
P(A)==.
(2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种.
∴取出的两个球一个是白球,另一个是红球的概率为P(B)=.
11.解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.
从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.因此所求事件的概率为P==.
(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:
(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.
又满足条件n≥m+2的事件有:(1,3),(1,4),(2,4),共3个.
所以满足条件n≥m+2的事件的概率为P1=.
故满足条件n1-P1=1-=.
12.D [摸球与抽签是一样的,虽然摸球的顺序有先后,但只需不让后人知道先抽的人抽出的结果,那么各个抽签者中签的概率是相等的,并不因抽签的顺序不同而影响到其公平性.所以P10=P1.]
13.解 比赛配对的基本事件共有6个,它们是:(Aa,Bb,Cc),(Aa,Bc,Cb),(Ab,Ba,Cc),(Ab,Bc,Ca),(Ac,Ba,Cb),(Ac,Bb,Ca).
(1)经分析:仅有配对为(Ac,Ba,Cb)时,田忌获胜,且获胜的概率为.
(2)田忌的策略是首场安排劣马c出赛,基本事件有2个:(Ac,Ba,Cb),(Ac,Bb,Ca),配对为(Ac,Ba,Cb)时,田忌获胜且获胜的概率为.
答 正常情况下,田忌获胜的概率为,获得信息后,田忌获胜的概率为.