高中数学(人教版A版必修三)配套课件19张PPT、教案、学案、同步练习题,补习复习资料:3.2.2(整数值)随机数(random numbers)的产生

文档属性

名称 高中数学(人教版A版必修三)配套课件19张PPT、教案、学案、同步练习题,补习复习资料:3.2.2(整数值)随机数(random numbers)的产生
格式 zip
文件大小 828.6KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-21 10:16:39

文档简介

3. 2.2古典概型及随机数的产生
一、教学目标:
1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;
(2)掌握古典概型的概率计算公式:P(A)=
(3)了解随机数的概念;
(4)利用计算机产生随机数,并能直接统计出频数与频率。
二、重点与难点:1、正确理解掌握古典概型及其概率公式;
2、正确理解随机数的概念,并能应用计算机产生随机数.
三、学法与教学用具:1、与学生共同探讨,应用数学解决现实问题;2、通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.
四、教学过程:
1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的结果,即标号为1,2,3…,10。
师生共同探讨:根据上述情况,你能发现它们有什么共同特点?
2、基本概念:
(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本P121~126;
(2)古典概型的概率计算公式:P(A)=.
3、例题分析:
例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点)
所以基本事件数n=6,事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),
其包含的基本事件数m=3
所以,P(A)====0.5
例2 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]
事件A由4个基本事件组成,因而,P(A)==。
例3 现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率.
分析:(1)为返回抽样;(2)为不返回抽样.
解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以试验结果有10×10×10=103种;设事件A为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P(A)= =0.512.
(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件B为“3件都是正品”,则事件B包含的基本事件总数为8×7×6=336, 所以P(B)= ≈0.467.
解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为8×7×6÷6=56,因此P(B)= ≈0.467.
例4 利用计算器产生10个1~100之间的取整数值的随机数。
解:具体操作如下:
键入
反复操作10次即可得之
例5 某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?
分析:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%。
解:我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以生产0到9之间的取整数值的随机数。
我们用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%。因为是投篮三次,所以每三个随机数作为一组。
例如:产生20组随机数:
812,932,569,683,271,989,730,537,925,
907,113,966,191,431,257,393,027,556.
这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为=25%。
例6 你还知道哪些产生随机数的函数?请列举出来。
解:(1)每次按SHIFT RNA# 键都会产生一个0~1之间的随机数,而且出现0~1内任何一个数的可能性是相同的。
(2)还可以使用计算机软件来产生随机数,如Scilab中产生随机数的方法。Scilab中用rand()函数来产生0~1之间的随机数,每周用一次rand()函数,就产生一个随机数,如果要产生a~b之间的随机数,可以使用变换rand()*(b-a)+a得到.
4、课堂小结:本节主要研究了古典概型的概率求法,解题时要注意两点:
(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;
①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式P(A)=
(3)随机数量具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中。
5课堂练习:
1.在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是( )
A. B. C. D.以上都不对
2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是
A. B. C. D.
3.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 。
4.抛掷2颗质地均匀的骰子,求点数和为8的概率。
5.利用计算器生产10个1到20之间的取整数值的随机数。
6.用0表示反面朝上,1表正面朝上,请用计算器做模拟掷硬币试验。
6、课堂练习答案:
1.B[提示:在40根纤维中,有12根的长度超过30mm,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为,因此选B.]
2.C[提示:(方法1)从盒中任取一个铁钉包含基本事件总数为10,其中抽到合格铁订(记为事件A)包含8个基本事件,所以,所求概率为P(A)==.(方法2)本题还可以用对立事件的概率公式求解,因为从盒中任取一个铁钉,取到合格品(记为事件A)与取到不合格品(记为事件B)恰为对立事件,因此,P(A)=1-P(B)=1-=.]
3.[提示;记大小相同的5个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红1,白1),(红1,白2)(红1,白3),(红2,白3),共10个,其中至少有一个红球的事件包括7个基本事件,所以,所求事件的概率为.本题还可以利用“对立事件的概率和为1”来求解,对于求“至多”“至少”等事件的概率头问题,常采用间接法,即求其对立事件的概率P(A),然后利用P(A)1-P(A)求解]。
4.解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,…,6点6种不同的结果,我们把两颗骰子标上记号1,2以便区分,由于1号骰子的一个结果,因此同时掷两颗骰子的结果共有6×6=36种,在上面的所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2)5种,所以,所求事件的概率为.
5.解:具体操作如下
键入
反复按 键10次即可得到。
6.解:具体操作如下:
键入
7、作业:根据情况安排
8板书设计:
3.2.2古典概型及随机数的产生
基本概念: 例3 例5
例1 例4 例6
例2
3.2.2古典概型及随机数的产生
课前预习学案
一、预习目标:
1、正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;
2、掌握古典概型的概率计算公式:P(A)=
3、了解随机数的概念;
二、预习内容:1、基本事件
2、古典概率模型
3、随机数
4、伪随机数的概念
5、古典概型的概率计算公式:P(A)= .
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标:(1)正确理解古典概型的两大特点
(2)掌握古典概型的概率计算公式:P(A)=
(3)了解随机数的概念
二、重点与难点:1、正确理解掌握古典概型及其概率公式;
2、正确理解随机数的概念,并能应用计算机产生随机数.
三、学习过程:
1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的结果,即标号为1,2,3…,10。
根据上述情况,你能发现它们有什么共同特点?
2、例题:
例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
解:
例2 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
解:
例3 现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率.
解:
例4 利用计算器产生10个1~100之间的取整数值的随机数。

例5 某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?
解:
例6 你还知道哪些产生随机数的函数?请列举出来。
解:
3、反思总结
(1)、数学知识:
(2)、数学思想方法:
4、当堂检测:
一、选择题
1.在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是( )
A. B. C. D.以上都不对
2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是
A. B. C. D.
3将骰子抛2次,其中向上的数之和是5的概率是( )
A、 B、 C、 D、9
二、填空题
4在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 。
5.抛掷2颗质地均匀的骰子,则点数和为8的概率为 。
三、解答题
6.用0表示反面朝上,1表正面朝上,请用计算器做模拟掷硬币试验。
4.[提示;记大小相同的5个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红1,白1),(红1,白2)(红1,白3),(红2,白3),共10个,其中至少有一个红球的事件包括7个基本事件,所以,所求事件的概率为.本题还可以利用“对立事件的概率和为1”来求解,对于求“至多”“至少”等事件的概率头问题,常采用间接法,即求其对立事件的概率P(A),然后利用P(A)1-P(A)求解]。
5.解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,…,6点6种不同的结果,我们把两颗骰子标上记号1,2以便区分,由于1号骰子的一个结果,因此同时掷两颗骰子的结果共有6×6=36种,在上面的所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2)5种,所以,所求事件的概率为.
6.解:具体操作如下:
键入
课后练习与提高
一、选择题
1、从长度为1,3,5,7,9五条线段中任取三条能构成三角形的概率是( )
A、 B、 C、 D、
2、将8个参赛队伍通过抽签分成A、B两组,每组4队,其中甲、乙两队恰好不在同组的概率为( )
A、 B、 C、 D、
3、袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为( )
A、 B、 C、 D、
二、填空题
4、接连三次掷一硬币,正反面轮流出现的概率等于 ,
5、在100个产品中,有10个是次品,若从这100个产品中任取5个,其中恰有2个次品的概率等于 。
三、解答题
6在第1,3,5,8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有1位乘客等候第1路或第3路汽车、假定当时各路汽车首先到站的可能性相等,求首先到站正好是这位乘客所要乘的汽车的概率、
答案
一、选择题
1、B 2、A 3、D
二、填空题
4、
5、
三解答题解:记“首先到站的汽车正好是这位乘客所要乘的汽车”为事件A,则事件A的概率P(A)=
答:首先到站正好是这位乘客所要乘的汽车的概率为

§3.2.2 (整数值)随机数(randon numbers)的产生
学习目标
让学生学会用计算机产生随机数.
重点难点
重点: 理解古典概型及其概率计算公式.
难点: 设计和运用模拟方法近似计算概率.
学法指导
1.用计算机或计算器产生的随机数,是依照确定的算法产生的数,具有周期性(周期很长),这些数有类似随机数的性质,但不是真正意义上的随机数,称为伪随机数.
2.随机模拟方法是通过将一次试验所有等可能发生的结果数字化,由计算机或计算器产生的随机数,来替代每次试验的结果,其基本思想是用产生整数值随机数的频率估计事件发生的概率,这是一种简单、实用的科研方法,在实践中
有着广泛的应用.
知识链接
古典概型的概念、意义和基本性质
问题探究
【创设情境】
通过大量重复试验,反复计算事件发生的频率,再由频率的稳定值估计概率,是十分费时的.对于实践中大量(非)古典概型的事件概率,又缺乏相关原理和公式求解.因此,我们设想通过计算机模拟试验解决这些矛盾.
【探究新知】(一):随机数的产生
思考1:对于某个指定范围内的整数,每次从中有放回随机取出的一个数都称为随机数. 那么你有什么办法产生1~20之间的随机数 .
思考2:随机数表中的数是0~9之间的随机数,你有什么办法得到随机数表?
方法一:我们可以利用计算器产生随机数,其操作方法见教材P130及计算器使用说明书.
方法二:我们也可以利用计算机产生随机数,
用Excel演示:
(1)选定Al格,键人___ ___ ,按Enter键,则在此格中的数是随机产生数;
(2)选定Al格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A1至A100的数均为随机产生的0~9之间的数,这样我们就很快就得到了100个0~9之间的随机数,相当于做了100次随机试验.
思考3:若抛掷一枚均匀的骰子30次,如果没有骰子,你有什么办法得到试验的结果?
思考5:一般地,如果一个古典概型的基本事件总数为n,在没有试验条件的情况下,你有什么办法进行m次实验,并得到相应的试验结果?
将n个基本事件编号为1,2,…,n,由计算器或计算机产生m个1~n之间的随机数.
【探究新知】(二):随机模拟方法
思考1:对于古典概型,我们可以将随机试验中所有基本事件进行编号,利用计算器或计算机产生随机数,从而获得试验结果.这种用计算器或计算机模拟试验的方法,称为随机模拟方法或蒙特卡罗方法(Monte Carlo).你认为这种方法的最大优点是什么?
思考2:用随机模拟方法抛掷一枚均匀的硬币100次,那么如何统计这100次试验中“出现正面朝上”的频数和频率.
除了计数统计外,我们也可以利用计算机统计频数和频率,用Excel演示:
(1)选定C1格,键人频数函数___ ___ ___ ___ ,按Enter键,则此格中的数是统计Al至Al00中比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数;
(2)选定Dl格,键人“=1-C1/1OO”,按Enter键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率.
思考3:把抛掷两枚均匀的硬币作为一次试验,则一次试验中基本事件的总数为多少?若把这些基本事件数字化,可以怎样设置?
可以用0表示第一枚出现正面,第二枚出现反面,1表示第一枚出现反面,第二枚出现正面,2表示两枚都出现正面,3表示两枚都出现反面.
【知识迁移】

例 天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟方法估计这三天中恰有两天下雨的概率约是多少?
要点分析:
(1)设计模型:今后三天的天气状况是随机的,共有四种可能结果,每个结果的出现不是等可能的.用数字1,2,3,4表示下雨,数字5,6,7,8,9,0表示不下雨,体现下雨的概率是40%.
(2)模拟试验:用计算机产生三组随机数,代表三天的天气状况.产生30组随机数,相当于做30次重复试验.
(3)统计试验结果:以其中表示恰有两天下雨的随机数的频率作为这三天中恰有两天下雨的概率的近似值. Excel演示.
事实上,高二学习了有关概率原理(二项分布)后易知,这三天中恰有两天下雨的概率
.
练习 某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?
分析:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%。
小结:(1)利用计算机或计算器做随机模拟试验,可以解决非古典概型的概率的求解问题。
(2)对于上述试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间。(3)随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数。
【例题荟萃】
例1 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?
分析:利用方程的思想及互斥事件、对立事件的概率公式求解.
例2已知关于x的一元二次方程,其系数可以分别在1,2,5三个数中任意取值,求该方程有实数根的概率.
例3 有1号、2号、3号3个信箱和A、B、C、D四个信封,若四个信封可以任意投入信箱,投完为至.求信封A投入1号或2号信箱的概率.
分析:由于每个信封可以任意投入信箱,对于A信封投入各个信箱的可能性相等,这是古典概型问题.
目标检测
1.下列每对事件是互斥事件的个数 (  )                   
(1)将一枚均匀的硬币抛2次, 记事件A:两次出现正面;
事件B:只有一次出现正面.
(2)某人射击一次,记事件A:中靶;事件B:射中9环.
(3)某人射击一次,记事件A:射中环数大于5;事件B:射中环数小于5.
 A.0个 B.1个 C.2个 D.3个
2.用1,2,3组成无重复数字的三位数,求 这些数被2整除的概率为 ( )
A. B. C. D.
3.从一个不透明的口袋中摸出红球的概率为,已知袋中红球有3个,则袋中共有质地相同但颜色不同的球的个数为( ) A. 5 B. 8 C. 10 D.15
4.房间里有四个人,至少有两个人的生日是同一个月的概率是 ( )
A. B. C. D.
5.在由1、2、3组成的不多于三位 的自然数(可以有重复数字)中任意取一个,正好抽出两位自然数的概率是 ( )
A. B. C. D.
6.一批零件共有10个,其中8个正品,2个次品,每次任取一个零件装配机器,若第二次取到合格品的概率为,第三次取到合格品的概率为,则 ( )
A. > B. =
C. < D. 二者大小关系不确定
7.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 。
8.在10000张有奖储蓄的奖券中,设有1个一等奖,5个二等奖,10个三等奖,从中买1张奖券,求:
⑴分别获得一等奖、二等奖、在三等奖的概率;
⑵中奖的概率.
纠错矫正
总结反思
学业分层测评(十九) 
(整数值)随机数(random numbers)的产生
(建议用时:45分钟)
[学业达标]
一、选择题
1.下列不能产生随机数的是(  )
A.抛掷骰子试验
B.抛硬币
C.计算器
D.正方体的六个面上分别写有1,2,2,3,4,5,抛掷该正方体
【解析】 D项中,出现2的概率为,出现1,3,4,5的概率均是,则D项不能产生随机数.
【答案】 D
2.某银行储蓄卡上的密码是一个6位数号码,每位上的数字可以在0~9这10个数字中选取.某人未记住密码的最后一位数字,如果随意按密码的最后一位数字,则正好按对密码的概率是(  )
A.  B.
C. D.
【解析】 只考虑最后一位数字即可,从0到9这10个数字中随机选一个的概率为.
【答案】 D
3.袋子中有四个小球,分别写有“幸”“福”“快”“乐”四个字,有放回地从中任取一个小球,取到“快”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“幸”“福”“快”“乐”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
13 24 12 32 43 14 24 32 31 21
23 13 32 21 24 42 13 32 21 34
据此估计,直到第二次就停止的概率为(  )
A. B.
C. D.
【解析】 由随机模拟产生的随机数可知,直到第二次停止的有13,43,23,13,13共5个基本事件,故所求的概率为P==.
【答案】 B
4.某班准备到郊外野营,为此向商店订了帐蓬,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是(  )
A.一定不会淋雨 B.淋雨机会为
C.淋雨机会为 D.淋雨机会为
【解析】 用A、B分别表示下雨和不下雨,用a、b表示帐篷运到和运不到,则所有可能情形为(A,a),(A,b),(B,a),(B,b),则当(A,b)发生时就会被雨淋到,∴淋雨的概率为P=.
【答案】 D
5.已知某运动员每次投篮命中的概率为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示没有命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为(  ) 【导学号:28750061】
A.0.35 B.0.25
C.0,20 D.0.15
【解析】 恰有两次命中的有191,271,932,812,393,共有5组,则该运动员三次投篮恰有两次命中的概率近似为=0.25.
【答案】 B
二、填空题
6.抛掷两枚相同的骰子,用随机模拟方法估计向上面的点数和是6的倍数的概率时,用1,2,3,4,5,6分别表示向上的面的点数,用计算器或计算机分别产生1到6的两组整数随机数各60个,每组第i个数组成一组,共组成60组数,其中有一组是16,这组数表示的结果是否满足向上面的点数和是6的倍数:________.(填“是”或“否”)
【解析】 16表示第一枚骰子向上的点数是1,第二枚骰子向上的点数是6,则向上的面的点数和是1+6=7,不表示和是6的倍数.
【答案】 否
7.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.
【解析】 共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为=.
【答案】 
8.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.
先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数.
034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751
据此估计乙获胜的概率为________.
【解析】 就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707,共11个.所以采用三局两胜制,乙获胜的概率约为≈0.367.
【答案】 0.367
三、解答题
9.一个袋中有7个大小、形状相同的小球,6个白球1个红球.现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取.试设计一个模拟试验,计算恰好第三次摸到红球的概率.
【解】 用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间取整数值的随机数,因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组.例如,产生20组随机数.
666 743 671 464 571
561 156 567 732 375
716 116 614 445 117
573 552 274 114 622
就相当于做了20次试验,在这组数中,前两个数字不是7,第三个数字恰好是7,就表示第一次、第二次摸的是白球,第三次恰好是红球,它们分别是567和117共两组,因此恰好第三次摸到红球的概率约为=0.1.
10.一个学生在一次竞赛中要回答8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47.
【解】 利用计算器的随机函数RANDI(1,15)产生3个不同的1~15之间的整数随机数(如果有一个重复,则重新产生一个);再利用计算器的随机函数RANDI(16,35)产生3个不同的16~35之间的整数随机数(如果有一个重复,则重新产生一个);再用计算器的随机函数RANDI(36,47)产生2个不同的36~47之间的整数随机数(如果有一个重复,则重新产生一个),这样就得到8道题的序号.
[能力提升]
1.已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至多击中1次的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:
5 727 0 293 7 140 9 857 0 347
4 373 8 636 9 647 1 417 4 698
0 371 6 233 2 616 8 045 6 011
3 661 9 597 7 424 6 710 4 281
据此估计,该射击运动员射击4次至多击中1次的概率为(  )
A.0.95 B.0.1 
C.0.15 D.0.05
【解析】 该射击运动员射击4次至多击中1次,故看这20组数据中含有0和1的个数多少,含有3个或3个以上的有:6011,故所求概率为=0.05.
【答案】 D
2.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出两个小球,则取出的小球标注的数字之和为3或6的概率是(  )
A. B.
C. D.
【解析】 随机取出两个小球有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种情况,和为3只有1种情况(1,2),和为6可以是(1,5),(2,4),共2种情况.所以P=.
【答案】 A
3.在利用整数随机数进行随机模拟试验中,整数a到整数b之间的每个整数出现的可能性是________.
【解析】 [a,b]中共有b-a+1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是.
【答案】 
4.一份测试题包括6道选择题,每题只有一个选项是正确的.如果一个学生对每一道题都随机猜一个答案,用随机模拟方法估计该学生至少答对3道题的概率.
【解】 我们通过设计模拟试验的方法来解决问题.利用计算机或计算器可以产生0到3之间取整数值的随机数.我们用0表示猜的选项正确,1,2,3表示猜的选项错误,这样可以体现猜对的概率是25%.因为共猜6道题,所以每6个随机数作为一组.例如,产生25组随机数:
330130 302220 133020 022011 313121 222330
231022 001003 213322 030032 100211 022210
231330 321202 031210 232111 210010 212020
230331 112000 102330 200313 303321 012033
321230
就相当于做了25次试验,在每组数中,如果恰有3个或3个以上的数是0,则表示至少答对3道题,它们分别是001003,030032,210010,112000,即共有4组数,我们得到该同学6道选择题至少答对3道题的概率近似为=0.16.
课件19张PPT。3.2.2 (整数值)随机数(random numbers)
的产生第三章 §3.2 古典概型1.了解随机数的意义;
2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率;
3.理解用模拟方法估计概率的实质.问题导学题型探究达标检测学习目标知识点一 随机数问题导学     新知探究 点点落实思考 体彩中心往往用一个透明容器,里面装上标有数字的小球,搅拌均匀后随机取出一个来产生中奖号码.容器中每个小球被取出的机会均等吗?每次取出小球前能否预知取出的数字?答案 采用这种方法,每个小球被取出的机会均等,产生的数字不可预期.随机数的产生:
一般地 ,要产生1~n(n∈N*)之间的随机整数,把n个 相同的小球分别标上1,2,3,…,n,放入一个袋中,把它们 ,然后从中摸出一个,这个球上的数就称为随机数.答案大小形状充分搅拌产生随机数的常用方法:
① ,② ,③ .
其中,计算机或计算器产生的随机数是依照 产生的数,具有__
( 很长),它们具有类似 的性质.因此,计算机或计算器产生的并不是真正的随机数,我们称它们为 .答案用计算器产生用计算机产生抽签法确定算法周期性周期随机数伪随机数思考 为了得到某一随机事件发生的概率,我们要做大量重复试验,有的同学可能觉得这样做试验花费的时间太多了,那么,有没有其他方法可以代替试验呢?知识点二 模拟方法答案 可以用数字代表试验结果.通过产生随机数代替试验.答案一般地,对于古典概型,我们可以将随机试验中所有基本事件进行编号,利用计算器或计算机产生随机数,从而获得试验结果.这种用计算器或计算机模拟试验的方法,称为 或 .这种方法的最大优点是不需要对试验进行具体操作,可以广泛应用到各个领域.随机模拟方法蒙特卡罗方法返回类型一 随机数的产生题型探究 重点难点 个个击破解析答案例1 要产生1~25之间的随机整数,你有哪些方法?解 方法一 可以把25个大小形状相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌,然后从中摸出一个,这个球上的数就称为随机数.放回后重复以上过程,就得到一系列的1~25之间的随机整数.
方法二 可以利用计算机产生随机数,以Excel为例:
(1)选定A1格,键入“=RANDBETWEEN(1,25)”,按Enter键,则在此格中的数是随机产生的;
(2)选定A1格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A2至A100的格中均为随机产生的1~25之间的数,这样我们就很快就得到了100个1~25之间的随机数,相当于做了100次随机试验.反思与感悟(1)抽签法产生的是真正意义上的随机数,但难以大量产生;
(2)随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数,是伪随机数.反思与感悟跟踪训练1 抛掷一枚均匀的骰子30次,可以得到30个1~6之间的随机数.如果没有骰子,你有什么办法得到试验的结果?解析答案解 可以由计算器或计算机产生30个1~6之间的随机数.类型二 随机模拟方法例2 某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,若该篮球爱好者连续投篮4次,求至少投中3次的概率.用随机模拟的方法估计上述概率.解析答案?反思与感悟整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:
(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;
(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;
(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.反思与感悟跟踪训练2 种植某种树苗成活率为0.9,若种植这种树苗5棵,求恰好成活4棵的概率.设计一个试验,随机模拟估计上述概率.解析答案返回解 利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9,因为是种植5棵,所以每5个随机数作为一组可产生30组随机数,例如,
69801 66097 77124 22961 74235 
31516 29747 24945 57558 65258 
74130 23224 37445 44344 33315 
27120 21782 58555 61017 45241
44134 92201 70362 83005 94976 
56173 34783 16624 30344 01117解析答案?返回1.与大量重复试验相比,随机模拟方法的优点是(  )
A.省时、省力 B.能得概率的精确值
C.误差小 D.产生的随机数多达标检测     12345答案A12345解析 随机数容量越大,实际数越接近概率,故选B.解析答案2.用随机模拟方法估计概率时,其准确程度决定于(  )
A.产生的随机数的大小 B.产生的随机数的个数
C.随机数对应的结果 D.产生随机数的方法B3.在用计算器模拟抛硬币试验时,假设计算器只能产生0~9之间的随机数,则下列说法错误的是(  )
A.可以用0,2,4,6,8来代表正面
B.可以用1,2,3,6,8来代表正面
C.可以用4,5,6,7,8,9来代表正面
D.产生的100个随机数中不一定恰有50个偶数12345答案C123454.抛掷两枚均匀的正方体骰子,用随机模拟方法估计出现点数之和为10的概率时,产生的整数随机数中,每几个数字为一组(  )
A.1 B.2 C.10 D.12答案B12345?答案D规律与方法1.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们做大量重复试验.通过本节课的学习,我们要熟练掌握随机数产生的方法以及随机模拟试验的步骤:(1)设计概率模型;(2)进行模拟试验;(3)统计试验结果.
2.计算器和计算机产生随机数的方法
用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.返回
3.2.2 (整数值)随机数(random numbers)的产生
课时目标 1.了解随机数的意义.2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率.3.理解用模拟方法估计概率的实质.
1.随机数
要产生1~n(n∈N*)之间的随机整数,把n个____________相同的小球分别标上1,2,3,…,n,放入一个袋中,把它们__________,然后从中摸出一个,这个球上的数就称为随机数.
2.伪随机数
计算机或计算器产生的随机数是依照__________产生的数,具有________(________很长),它们具有类似________的性质.因此,计算机或计算器产生的并不是______,我们称它们为伪随机数.
3.利用计算器产生随机数的操作方法:
用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.
4.利用计算机产生随机数的操作程序
每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:
(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.
(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.
(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.
(4)选定D1格,键入“=1-C1/100”按Enter键,在此格中的数是这100次试验中出现1的频率.
一、选择题
1.从含有3个元素的集合的所有子集中任取一个,所取的子集是含有2个元素的集合的概率是(  )
A. B.
C. D.
2.用计算机随机模拟掷骰子的试验,估计出现2点的概率,下列步骤中不正确的是(  )
A.用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x,如果x=2,我们认为出现2点
B.我们通常用计算器n记录做了多少次掷骰子试验,用计数器m记录其中有多少次出现2点,置n=0,m=0
C.出现2点,则m的值加1,即m=m+1;否则m的值保持不变
D.程序结束,出现2点的频率作为概率的近似值
3.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
93 28 12 45 85 69 68 34 31 25
73 93 02 75 56 48 87 30 11 35
据此估计,该运动员两次掷镖恰有一次正中靶心的概率为(  )
A.0.50 B.0.45
C.0.40 D.0.35
4.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是(  )
A. B.
C. D.
5.从1,2,3,…,30这30个数中任意选一个数,则事件“是偶数或能被5整除的数”的概率是(  )
A. B.
C. D.
6.任取一个三位正整数N,对数log2N是一个正整数的概率为(  )
A. B. C. D.
题 号
1
2
3
4
5
6
答 案
二、填空题
7.对一部四卷文集,按任意顺序排放在书架的同一层上,则各卷自左到右或由右到左卷号恰为1,2,3,4顺序的概率等于________.
8.盒子里共有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,则它们颜色不同的概率是________.
9.通过模拟试验,产生了20组随机数:
6830 3013 7055 7430 7740 4422 7884 2604 3346 0952
6807 9706 5774 5725 6576 5929 9768 6071 9138 6754
如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为________.
三、解答题
10.掷三枚骰子,利用Excel软件进行随机模拟,试验20次,计算出现点数之和是9的概率.
11.某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,那么在连续三次投篮中,三次都投中的概率是多少?
能力提升
12.从4名同学中选出3人参加物理竞赛,其中甲被选中的概率为(  )
A. B.
C. D.以上都不对
13.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,试用随机模拟的方法求乙获胜的概率.
1.(1)常用的随机数的产生方法主要有抽签法,利用计算器或计算机.
(2)利用摸球或抽签得到的数是真正意义上的随机数,用计算器或计算机得到的是伪随机数.
2.用整数随机模拟试验时,首先要确定随机数的范围,利用哪个数字代表哪个试验结果:
(1)试验的基本结果等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;
(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及范围.
答案:
3.2.2 (整数值)随机数(random numbers)的产生
知识梳理
1.大小、形状 充分搅拌 2.确定算法 周期性 周期 随机数 真正的随机数
作业设计
1.D [所有子集共8个,?,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c},含两个元素的子集共3个,故所求概率为.]
2.A [计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生的是1到7之间的整数,包括7,共7个整数.]
3.A [两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的之一.它们分别是93,28,45,25,73,93,02,48,30,35共10个,因此所求的概率为=0.5.]
4.D [由题意知基本事件为从两个集合中各取一个数,因此基本事件总数为5×3=15.
满足b>a的基本事件有(1,2),(1,3),(2,3)共3个,
∴所求概率P==.]
5.B
6.C [N取[100,999]中任意一个共900种可能,当N=27,28,29时,log2N为正整数,∴P
=.]
7.
解析 用树形图可以列举基本事件的总数.
①②③④ ②①③④ ③①②④ ④①②③
①②④③ ②①④③ ③①④② ④①③②
①③②④ ②③①④ ③②①④ ④②③①
①③④② ②③④① ③②④① ④②①③
①④②③ ②④①③ ③④①② ④③①②
①④③② ②④③① ③④②① ④③②①
总共有24种基本事件,故其概率为P==.
8.
解析 给3只白球分别编号为a,b,c,1只黑球编号为d,基本事件为ab,ac,ad,bc,bd,cd共6个,颜色不同包括事件ad,bd,cd共3个,因此所求概率为=.
9.
解析 由题意四次射击中恰有三次击中对应的随机数有3个数字在1,2,3,4,5,6中,这样的随机数有3013,2604,5725,6576,6754共5个,所求的概率约为=.
10.解 操作步骤:
(1)打开Excel软件,在表格中选择一格比如A1,在菜单下的“=”后键入“=RANDBETWEEN(1,6)”,按Enter键,则在此格中的数是随机产生的1~6中的数.
(2)选定A1这个格,按Ctrl+C快捷键,然后选定要随机产生1~6的格,如A1∶T3,按Ctrl+V快捷键,则在A1∶T3的数均为随机产生的1~6的数.
(3)对产生随机数的各列求和,填入A4∶T4中.
(4)统计和为9的个数S;最后,计算概率S/20.
11.解 我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以产生0到9之间的取整数值的随机数.
我们用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%.因为是投篮三次,所以每三个随机数作为一组.
例如,产生20组随机数:
812 932 569 683 271 989 730 537 925
834 907 113 966 191 432 256 393 027
556 755
这就相当于做了20次试验,在这组数中,如果3个数均在1,2,3,4,5,6中,则表示三次都投中,它们分别是113,432,256,556,即共有4个数,我们得到了三次投篮都投中的概率近似为=20%.
12.C [4名同学选3名的事件数等价于4名同学淘汰1名的事件数,即4种情况,
甲被选中的情况共3种,∴P=.]
13.解 利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数(可借助教材103页的随机数表).
034 743 738 636 964 736 614 698 637
162 332 616 804 560 111 410 959 774
246 762 428 114 572 042 533 237 322
707 360 751
就相当于做了30次试验.如果恰有2个或3个数在6,7,8,9中,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为≈0.367.