高中数学(人教版A版必修三)配套课件2份、教案、学案、同步练习题,补习复习资料:3.3.2均匀随机数的产生

文档属性

名称 高中数学(人教版A版必修三)配套课件2份、教案、学案、同步练习题,补习复习资料:3.3.2均匀随机数的产生
格式 zip
文件大小 2.5MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-21 10:17:26

文档简介

§3.3.2 几何概型的应用与均匀随机数的产生
学习目标
1.理解并掌握几何概型的概率公式和其应用解题的关键;
2.掌握利用计算器(计算机)产生均匀随机数的方法;
3.会利用均匀随机数解决具体的有关概率的问题.
重点难点
重点: 1.应用几何概型概率公式解决几何概型问题;
2.掌握利用计算器(计算机)产生均匀随机数的方法
难点: 利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.
学法指导
通过例题和练习在应用中巩固几何概型概率公式解题的关键(即时刻明确构成事件A的基本要素是“点”,而试验的全部结果是一个几何图形);通过模拟试验,感知应用数字解决问题的方法。
知识链接
几何概型的定义,以及相关的古典概型中的随机模拟方法.
问题探究
【提出问题】
1.随机试验的结果有无限多个,当再满足
时,
我们称这样的概率模型为几何概型.
2.几何概型中,事件A的概率计算公式为:
P(A)=.
【巩固提高】
例1 如图1所示,平面上画了一些彼此相距的平行线,把一枚半径的硬币任意掷在这个平面上,求硬币不与任一条平行相碰的概率.
分析:硬币不与直线相碰,可以看作硬币的中心到直线的距离,这样就可以把问题转化为中心到较近的一条直线的距离满足的
概率问题。因为硬币是任意掷在平面上的,所以硬币中心到较近一条直线的距离在到之间是等可能的任意一个值,所以这符合几何概型的条件。
注:解决本题的关键是把硬币与直线的关系转化为硬币中心到直线的距离,从而转化为长度型的几何概率问题.
例2 在区间上随机取两个数,求关于的一元二次方程有实根的概率.
分析:题目中有两个随机变量,这时一般构造二维几何模型(即利用直角坐标系),将问题转化为面积型的几何概率问题求解.
注:要注意对“等可能”的理解.
【探究新知】
我们可以利用计算器或计算机产生整数值随机数,还可以通过随机模拟方法求古典概型的概率近似值,对于几何概型,我们也可以进行上述工作.
一个人到单位的时间可能是8:00~9:00之间的任何一个时刻,若设定他到单位的时间为8点过X分种,则X可以是0~60之间的任何一刻,并且是等可能的.我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.
思考1:一般地,X为[a,b]上的均匀随机数的含义如何?X的取值是离散的,还是连续的?
我们常用的是[0,1]上的均匀随机数,可以利用计算器产生(见教材P137).
思考2:如何利用计算机产生0~1之间的均匀随机数?
计算机只能产生[0,1]上的均匀随机数,如果试验的结果是区间[a,b]上等可能出现的任何一个值,那么就需要产生[a,b]上的均匀随机数.
思考3:请问你有什么好办法利用计算机来产生[2,6]上的均匀随机数?[a,b]上的均匀随机数又如何产生呢?(行胜于言,试一试吧!)
【理论迁移】
认真阅读思考教材例2的解析,尤其是方法二.
例3 在正方形中随机撒一把豆子,如何用随机模拟的方法估计圆周率的值.
提示:每个豆子落在正方形内任何一点是等可能的,那么落在每个区域的豆子数就与这个区域的面积成正比,这样出现了一个关键的等量关系.
例4 利用随机模拟方法计算由y=1和y=x2 所围成的图形的面积.
提示:面积比等于落在其中点的个数比.
例题要点:
1.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.
2.用随机模拟试验不规则图形的面积的基本思想是,构造一个包含这个图形的规则图形作为参照,通过计算机产生某区间内的均匀随机数,再利用两个图形的面积之比近似等于分别落在这两个图形区域内的均匀随机点的个数之比来解决.
【课堂小结】
1.在区间[a,b]上的均匀随机数与整数值随机数的共同点都是等可能取值,不同点是均匀随机数可以取区间内的任意一个实数,整数值随机数只取区间内的整数.
2.利用计算机和线性变换Y=X*(b-a)+a,可以产生任意区间[a,b]上的均匀随机数,其操作方法要通过上机实习才能掌握.
目标检测
1.设A为圆周上一定点,在圆周上等可能地任取一点与A连结,则弦长超过半径和半径倍的概率分分别为 .
2.(选做)已知半圆O的直径AB=2R,作平行于AB的弦MN,则MN3.有一个半径为5的圆,现将一枚半径为1的硬币向圆投去,如果不考虑硬币完全落在圆外的情况,则硬币完全落在圆内的概率是 .
4.将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数,需实施的变换为( )
A. B.
C. D.
5.在图的正方形中随机撒一把芝麻, 用随机模拟的方法来估计圆周率的值.如果撒了1000个芝麻,落在圆内的芝麻总数是776颗,那么这次模拟中的估计值是_________.(精确0.001)
6. (选做) 若过正三角形的顶点任作一条直线,则与线段相交的概率为 .
7.例4 随机地向半圆内掷一点,点落在半圆内任何区域的概率均与该区域的面积成正比,求该点与原点连线与x轴的夹角小于的概率 .
8.教材第4题.
纠错矫正
总结反思
3. 3.2几何概型及均匀随机数的产生
一、教材分析
1.几何概型是不同于古典概型的又一个最基本、最常见的概率模型,其概率计算原理通俗、简单,对应随机事件及试验结果的几何量可以是长度、面积或体积.
2.如果一个随机试验可能出现的结果有无限多个,并且每个结果发生的可能性相等,那么该试验可以看作是几何概型.通过适当设置,将随机事件转化为几何问题,即可利用几何概型的概率公式求事件发生的概率.
二、教学目标
(1)正确理解几何概型的概念;
(2)掌握几何概型的概率公式;
(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;
(4)了解均匀随机数的概念;
(5)掌握利用计算器(计算机)产生均匀随机数的方法;
(6)会利用均匀随机数解决具体的有关概率的问题.
三、教学重点难点
1、几何概型的概念、公式及应用;
2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.
四、学情分析

五、教学方法
1.自主探究,互动学习
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学.七、课时安排:1课时
七、教学过程
1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
(2)几何概型的概率公式:
P(A)=;
(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
3、例题分析:
课本例题略
例1 判下列试验中事件A发生的概度是古典概型,还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;
(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率。
分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性。而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关。
解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;
(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.
例2 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.
分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.
解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)= =,即此人等车时间不多于10分钟的概率为.
小结:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.
练习:1.已知地铁列车每10min一班,在车站停1min,求乘客到达站台立即乘上车的概率。
2.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率.
解:1.由几何概型知,所求事件A的概率为P(A)= ;
2.记“灯与两端距离都大于2m”为事件A,则P(A)= =.
例3 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?
分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的而40平方千米可看作构成事件的区域面积,有几何概型公式可以求得概率。
解:记“钻到油层面”为事件A,则P(A)= ==0.004.
答:钻到油层面的概率是0.004.
例4 在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。
解:取出10毫升种子,其中“含有病种子”这一事件记为A,则
P(A)= ==0.01.
答:取出的种子中含有麦诱病的种子的概率是0.01.
例5 取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?
分析:在任意位置剪断绳子,则剪断位置到一端点的距离取遍[0,3]内的任意数,并且每一个实数被取到都是等可能的。因此在任意位置剪断绳子的所有结果(基本事件)对应[0,3]上的均匀随机数,其中取得的[1,2]内的随机数就表示剪断位置与端点距离在[1,2]内,也就是剪得两段长都不小于1m。这样取得的[1,2]内的随机数个数与[0,3]内个数之比就是事件A发生的概率。
解法1:(1)利用计算器或计算机产生一组0到1区间的均匀随机数a1=RAND.
(2)经过伸缩变换,a=a1*3.
(3)统计出[1,2]内随机数的个数N1和[0,3] 内随机数的个数N.
(4)计算频率fn(A)=即为概率P(A)的近似值.
解法2:做一个带有指针的圆盘,把圆周三等分,标上刻度[0,3](这里3和0重合).转动圆盘记下指针在[1,2](表示剪断绳子位置在[1,2]范围内)的次数N1及试验总次数N,则fn(A)=即为概率P(A)的近似值.
小结:用随机数模拟的关键是把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围。解法2用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大;解法1用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.
例6 在长为12cm的线段AB上任取一点M,并以线段AM为边作正方形,求这个正方形的面积介于36cm2?与81cm2之间的概率.
分析:正方形的面积只与边长有关,此题可以转化为在12cm长的线段AB上任取一点M,求使得AM的长度介于6cm与9cm之间的概率.
解:(1)用计算机产生一组[0,1]内均匀随机数a1=RAND.
(2)经过伸缩变换,a=a1*12得到[0,12]内的均匀随机数.
(3)统计试验总次数N和[6,9]内随机数个数N1
?(4)计算频率.
记事件A={面积介于36cm2?与81cm2之间}={长度介于6cm与9cm之间},则P(A)的近似值为fn(A)=.
八、反思总结,当堂检测。
九、发导学案、布置预习。
完成本节的课后练习及课后延伸拓展作业。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
十、板书设计
十一、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
1、几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例;
2、均匀随机数在日常生活中,有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数 )有关,然后设计适当的试验,并通过这个试验的结果来确定这些量。
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
十二、学案设计(见下页)
3.3.2几何概型及均匀随机数的产生
课前预习学案
一、预习目标
1. 了解几何概型的概念及基本特点;
2. 掌握几何概型中概率的计算公式;
3. 会进行简单的几何概率计算.
二、预习内容
1. 基本事件的概念: 一个事件如果 事件,就称作基本事件.
基本事件的两个特点:
10.任何两个基本事件是 的;
20.任何一个事件(除不可能事件)都可以 .
2. 古典概型的定义:古典概型有两个特征:
10.试验中所有可能出现的基本事件 ;
20.各基本事件的出现是 ,即它们发生的概率相同.
具有这两个特征的概率称为古典概率模型. 简称古典概型.
3. 古典概型的概率公式, 设一试验有n个等可能的基本事件,而事件A恰包含其中的m个基本事件,则事件A的概率P(A)定义为:

问题情境:
试验1.取一根长度为的绳子,拉直后在任意位置剪断.
试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.
奥运会的比赛靶面直径为,靶心直径为.运动员在外射箭.假设射箭都能射中靶面内任何一点都是等可能的.
问题:对于试验1:剪得两段的长都不小于的概率有多大?
试验2:射中黄心的概率为多少?
新知生成:
1.几何概型的概念:
2.几何概型的基本特点:
3.几何概型的概率公式:
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标
1. 了解几何概型的概念及基本特点;
2. 掌握几何概型中概率的计算公式;
3. 会进行简单的几何概率计算.
学习重难点:
重点:概率的正确理解
难点:用概率知识解决现实生活中的具体问题。
二、学习过程
例题学习:
例1判下列试验中事件A发生的概度是古典概型,还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;
(2)如课本P135图中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率。
例2某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,
求此人等车时间不多于10分钟的概率.
例3在1万平方千米的海域中有40平方千米的大陆架储藏着石油,
假设在海域中任意一点钻探,钻到油层面的概率是多少?
例4在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,
则取出的种子中含有麦诱病的种子的概率是多少?
例题参考答案:
例1分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性。而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关。
解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;
(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.
例2分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.
解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)= =,即此人等车时间不多于10分钟的概率为.
小结:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.
例3分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的, 而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率。
解:记“钻到油层面”为事件A,则P(A)= ==0.004.
答:钻到油层面的概率是0.004.
例4
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。
解:取出10毫升种子,其中“含有病种子”这一事件记为A,则
P(A)= ==0.01.
答:取出的种子中含有麦诱病的种子的概率是0.01.
(三)反思总结
(四)当堂检测
1.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是( )
A.0.5 B.0.4 C.0.004 D.不能确定
2.平面上画了一些彼此相距2a的平行线,把一枚半径r3.某班有45个,现要选出1人去检查其他班的卫生,若每个人被选到的机会均等,则恰好选中学生甲主机会有多大?
4.如图3-18所示,曲线y=-x2+1与x轴、y轴围成一个区域A,直线x=1、直线y=1、x轴围成一个正方形,向正方形中随机地撒一把芝麻,利用计算机来模拟这个试验,并统计出落在区域A内的芝麻数与落在正方形中的芝麻数。
参考答案:
1.C(提示:由于取水样的随机性,所求事件A:“在取出2ml的水样中有草履虫”的概率等于水样的体积与总体积之比=0.004)
2.解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM,垂足为M,如图所示,这样线段OM长度(记作OM)的取值范围就是[o,a],只有当r<OM≤a时硬币不与平行线相碰,所以所求事件A的概率就是P(A)==
3.提示:本题应用计算器产生随机数进行模拟试验,请按照下面的步骤独立完成。
(1)用1~45的45个数来替代45个人;
(2)用计算器产生1~45之间的随机数,并记录;
(3)整理数据并填入下表
试 验
次 数
50
100
150
200
250
300
350
400
450
500
600
650
700
750
800
850
900
1000
1050
1出现
的频数
1出现
的频率
(4)利用稳定后1出现的频率估计恰好选中学生甲的机会。
4.解:如下表,由计算机产生两例0~1之间的随机数,它们分别表示随机点(x,y)的坐标。如果一个点(x,y)满足y≤-x2+1,就表示这个点落在区域A内,在下表中最后一列相应地就填上1,否则填0。
x
y
计数
0.598895
0.940794
0
0.512284
0.118961
1
0.496841
0.784417
0
0.112796
0.690634
1
0.359600
0.371441
1
0.101260
0.650512
1



0.947386
0.902127
0
0.117618
0.305673
1
0.516465
0.222907
1
0.596393
0.969695
0
课后练习与提高
1.已知地铁列车每10min一班,在车站停1min,求乘客到达站台立即乘上车的概率
2.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率 。
3.在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?
4.某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。
5.取一根长为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不少于1米的概率有多大?
课件31张PPT。新知自解任意实数等可能RANDRAND试验模拟法Excel答案: C答案: C答案: ④课堂探究答案: (1)B
谢谢观看!学业分层测评(二十一) 
均匀随机数的产生
(建议用时:45分钟)
[学业达标]
一、选择题
1.与均匀随机数特点不符的是(  )
A.它是[0,1]内的任何一个实数
B.它是一个随机数
C.出现的每一个实数都是等可能的
D.是随机数的平均数
【解析】 A、B、C是均匀随机数的定义,均匀随机数的均匀是“等可能”的意思,并不是“随机数的平均数”.
【答案】 D
2.要产生[-3,3]上的均匀随机数y,现有[0,1]上的均匀随机数x,则y可取为(  )
A.-3x B.3x 
C.6x-3 D.-6x-3
【解析】 法一:利用伸缩和平移变换进行判断;
法二:由0≤x≤1,得-3≤6x-3≤3,故y可取6x-3.
【答案】 C
3.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为1.5 cm的圆,中间有边长为0.5 cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为(  )
A. B.
C. D.
【解析】 由题意知所求的概率为P==.
【答案】 A
4.一次试验:向如图3-3-12所示的正方形中随机撒一大把豆子,经查数,落在正方形的豆子的总数为N粒,其中有m(m图3-3-12
A. B.
C. D.
【解析】 设正方形的边长为2a,依题意,P==,得π=,故选D.
【答案】 D
5.(2014·辽宁高考)若将一个质点随机投入如图3-3-13所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是(  )
图3-3-13
A. B.
C. D.
【解析】 设质点落在以AB为直径的半圆内为事件A,则P(A)===.
【答案】 B
二、填空题
6.如图3-3-14,矩形的长为6,宽为3,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆为125颗,则我们可以估计出阴影部分的面积约为________.
图3-3-14
【解析】 ∵矩形的长为6,宽为3,则S矩形=18,
∴==,∴S阴=.
【答案】 
7.利用计算机产生0~1之间的均匀随机数a,则使关于x的一元二次方程x2-x+a=0无实根的概率为________.
【导学号:28750067】
【解析】 ∵方程无实根,∴Δ=1-4a<0,∴a>,即所求概率为.
【答案】 
8.如图3-3-15,在一个两边长分别为a,b(a>b>0)的矩形内画一个梯形,梯形的上、下底分别为a与a,高为b,向该矩形内随机投一点,那么所投点落在梯形内部的概率为________.
图3-3-15
【解析】 ∵图中梯形的面积为s=××b=ab,矩形的面积为S=ab,
∴落在梯形内部的概率为:P===.
【答案】 
三、解答题
9.箱子里装有5个黄球,5个白球,现在有放回地取球,求取出的是黄球的概率,如果用计算机模拟该试验,请写出算法.
【解】 P==,用计算机模拟法时可认为0~1之间的随机数x与事件的对应是:当x在0~0.5时,确定为摸到黄球;当x在0.5~1之间时,确定为摸到白球.具体算法如下:第一步,用计数器n记录做了多少次摸球的试验,用计算器m记录其中有多少次显示的黄球,置n=0,m=0;
第二步,用函数RAND产生一个0~1的随机数x;
第三步,如果这个随机数在0~0.5之间,我们认为是摸到黄球,判断x是不是在0~0.5之间,如果是,则m的值加1,即m=m+1;否则m的值保持不变;
第四步,表示随机试验次数的记录器n加1,即n=n+1,如果还需要继续试验,则返回第二步继续执行;否则,执行下一步;
第五步,摸到黄球发生的频率作为概率的近似值.
10.对某人某两项指标进行考核,每项指标满分100分,设此人每项得分在[0,100]上是等可能出现的.单项80分以上,且总分170分以上才合格,求他合格的概率.
【解】 设某人两项的分数分别为x分、y分,
则0≤x≤100,0≤y≤100,
某人合格的条件是80<x≤100,
80<y≤100,x+y>170,
在同一平面直角坐标系中,作出上述区域(如图阴影部分所示).
由图可知:0≤x≤100,0≤y≤100构成的区域面积为100×100=10 000,
合格条件构成的区域面积为
S五边形BCDEF=S矩形ABCD-S△AEF=400-×10×10=350,
所以所求概率为P==.
该人合格的概率为.
[能力提升]
1.P为圆C1:x2+y2=9上任意一点,Q为圆C2:x2+y2=25上任意一点,PQ中点组成的区域为M,在C2内部任取一点,则该点落在区域M上的概率为(  )
A.  B.  
C. D.
【解析】 设Q(x0,y0),中点M(x,y),则P(2x-x0,2y-y0),代入x2+y2=9,得(2x-x0)2+(2y-y0)2=9,化简得+=,故M轨迹是以为圆心,以为半径的圆,又点(x0,y0)在圆x2+y2=25上,所以区域M为在以原点为圆心、宽度为3的圆环带,即应有x2+y2=r2(1≤r≤4),所以在C2内部任取一点落在M内的概率为=,故选B.
【答案】 B
2.(2016·广州模拟)如图3-3-16,已知圆的半径为10,其内接三角形ABC的内角A,B分别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角形ABC内的概率为(  )
图3-3-16
A. B.
C. D.
【解析】 由正弦定理==2R(R为圆的半径)??
那么S△ABC=×10×10sin 75°=×10×10×=25(3+).
于是,豆子落在三角形ABC内的概率为==.
【答案】 B
3.(2016·保定模拟)在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为________.
【解析】 如图,与点O距离等于1的点的轨迹是一个半球面,其体积V1=×π×13=.
事件“点P与点O距离大于1的概率”对应的区域体积为23-,
根据几何概型概率公式得,点P与点O的距离大于1的概率P==1-.
【答案】 1-
4.从甲地到乙地有一班车在9:30到10:00到达,若某人从甲地坐该班车到乙地转乘9:45到10:15出发的汽车到丙地去,问他能赶上车的概率是多少?
【解】 记事件A={能赶上车}.
(1)利用计算机或计算器产生两组[0,1]上的均匀随机数,x1=RAND,y1=RAND.
(2)经过平移和伸缩变换,x=x1*0.5+9.5,y=y1*0.5+9.75,得到一组[9.5,10],一组[9.75,10.25]上的均匀随机数.
(3)统计试验总次数N及赶上车的次数N1(满足x(4)计算频率fn(A)=,即为能赶上车的概率的近似值.
课件25张PPT。3.3.2 均匀随机数的产生第三章 §3.3 几何概型1.了解均匀随机数的意义,会利用计算器(计算机)产生均匀随机数;
2.理解用模拟方法估计概率的实质,会用模拟方法估计概率;
3.会利用均匀随机数解决具体的有关概率的问题.问题导学题型探究达标检测学习目标知识点一 均匀随机数的意义问题导学     新知探究 点点落实思考 回忆一下在古典概型中我们是如何利用整数值随机数来模拟古典概型的?能不能用它来模拟几何概型?答案 我们用整数值随机数对应古典概型中的基本事件,通过大量产生随机数来代替试验,通过统计产生的随机数中代表事件A发生的那些数的个数,进而计算频率来估计事件A发生的概率.
因为几何概型的基本事件无限多,代表总的基本事件以及事件A包含的基本事件是连续的区域,所以不能用整数值随机数来模拟几何概型.要想用随机数对应几何概型中的基本事件,也需要用连续的.答案一般地,在取值区间 上的任何一个 出现的可能性都是 的.我们把这样的随机数叫均匀随机数.[a,b]实数答案相等1.计算器上产生[0,1]的均匀随机数的函数是 函数.
2.Excel软件产生[0,1]的均匀随机数的函数为“ ”.
3.[a,b]上均匀随机数的产生.
利用计算器或计算机产生[0,1]上的均匀随机数x=RAND,然后利用伸缩和平移交换,x= 就可以得到[a,b]内的均匀随机数,试验的结果是[a,b]上的任何一个实数,并且任何一个实数都是等可能的.知识点二 均匀随机数的产生答案RANDrand()x1*(b-a)+a思考 我们已经有了几何概型概率公式,为什么还要估计概率?知识点三 用模拟方法估计概率答案返回答案 原因有两个:一个是几何概型涉及的区域不规则,难以度量;另一个是用计算机产生随机数样本容量可以很大,而且统计结果方便快捷,可操作性强.
用模拟方法估计概率的步骤:
①把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围;
②用计算机(或计算器)产生指定范围内的随机数;
③统计试验的结果,代入几何概型概率公式估得概率.
利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题.类型一 均匀随机数的产生题型探究 重点难点 个个击破解析答案例1 取一根长度为5 m的绳子,拉直后在任意位置剪断,用均匀随机模拟方法估计剪得两段的长都不小于2 m的概率有多大??反思与感悟均匀随机数的产生都是以[0,1]上的均匀随机数为基础,通过平移和伸缩变换得到目标区间上的随机数.反思与感悟跟踪训练1 如图所示,向边长为2的正方形内投飞镖,用计算机随机模拟这个试验,求飞镖落在中央边长为1的正方形内的概率.解析答案解 用计算机随机模拟这个试验,步骤如下:
(1)利用计算器或计算机产生两组[0,1]上的均匀随机数a1=RAND,b1=RAND.
(2)经过伸缩平移变换,a=(a1-0.5)*4,b=(b1-0.5)*4得到两组[-2,2]上的均匀随机数.
(3)统计出试验总次数N,落在阴影部分的次数N1.?类型二 随机模拟方法例2 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间在早上7:00~8:00之间,如果把“你父亲在离开家之前能得到报纸”称为事件A,你能设计一种随机模拟的方法近似计算事件A发生的概率吗?解析答案?反思与感悟用随机数模拟的关键是把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围.用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大.
用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内进行多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.反思与感悟跟踪训练2 在下图的正方形中随机撒一把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比并以此估计圆周率的值. 解析答案解析答案由于落在每个区域的豆子数是可能数出来的,所以就得到了π的近似值.类型三 用模拟法估计面积例3 利用随机模拟方法计算由y=1和y=x2所围成的图形的面积.解析答案反思与感悟解 以直线x=1,x=-1,y=0,y=1为边界作矩形,
(1)利用计算器或计算机产生两组0~1区间的均匀随机数,
a1=RAND,b=RAND;
(2)进行平移和伸缩变换,a=2(a1-0.5);
(3)数出落在阴影内的样本点数N1,用几何概型公式计算阴影部分的面积.
例如做1 000次试验,即N=1 000,模拟得到N1=698,解决本题的关键是利用随机模拟法和几何概率公式分别求得几何概率,然后通过解方程求得阴影部分面积的近似值,解决此类问题时注意两点:一是选取合适的对应图形;二是由几何概型正确计算概率.反思与感悟跟踪训练3 利用随机模拟的方法近似计算图中阴影部分(y=2-2x-x2与x轴围成的图形)的面积.解析答案返回?解析答案?返回1.用均匀随机数进行随机模拟,可以解决(  )
A.只能求几何概型的概率,不能解决其他问题
B.不仅能求几何概型的概率,还能计算图形的面积
C.不但能估计几何概型的概率,还能估计图形的面积
D.最适合估计古典概型的概率达标检测     12345答案C12345答案2.关于用Excel软件产生均匀随机数,下列说法错误的是(  )
A.只能产生[0,1]区间上的随机数
B.产生均匀随机数的函数是RAND
C.产生的均匀随机数是伪随机数
D.用Excel软件不但能产生大量均匀随机数,还方便统计结果.B3.将[0,1]内的均匀随机数转化为[-3,4]内的均匀随机数,需要实施的变换为(  )
A.a=a1*7 B.a=a1*7+3
C.a=a1*7-3 D.a=a1*4 12345C解析 根据伸缩和平移变换a=a1*[4-(-3)]+(-3)= a1*7-3解析答案12345D解析答案4.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则(  )
A.m>n B.mC.m=n D.m是n的近似值解析 随机模拟法求其概率,只是对概率的估计.12345C答案?规律与方法1.在区间[a,b]上的均匀随机数与整数值随机数的共同点都是等可能取值,不同点是均匀随机数可以取区间内的任意一个实数,整数值随机数只取区间内的整数.
2.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.返回3.3.2 均匀随机数的产生
课时目标 1.了解均匀随机数的产生方法与意义.2.会用模拟实验求几何概型的概率.3.能利用模拟实验估计不规则图形的面积.
1.均匀随机数的产生
(1)计算器上产生[0,1]的均匀随机数的函数是______________函数.
(2)Excel软件产生[0,1]区间上均匀随机数的函数为“rand()”.
2.用模拟的方法近似计算某事件概率的方法
(1)____________的方法:制作两个转盘模型,进行模拟试验,并统计试验结果.
(2)____________的方法:用Excel软件产生[0,1]区间上均匀随机数进行模拟.注意操作步骤.
3.[a,b]上均匀随机数的产生.
利用计算器或计算机产生[0,1]上的均匀随机数x=RAND,然后利用伸缩和平移交换,x=x1*(b-a)+a就可以得到[a,b]内的均匀随机数,试验的结果是[a,b]上的任何一个实数,并且任何一个实数都是等可能的.
一、选择题
1.将[0,1]内的均匀随机数转化为[-3,4]内的均匀随机数,需要实施的变换为(  )
2.在线段AB上任取三个点x1,x2,x3,则x2位于x1与x3之间的概率是(  )
A. B.
C. D.1
3.与均匀随机数特点不符的是(  )
A.它是[0,1]内的任何一个实数
B.它是一个随机数
C.出现的每一个实数都是等可能的
D.是随机数的平均数
4.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为,则阴影区域的面积为(  )
A. B.
C. D.无法计算
5.在长为12 cm的线段AB上任取一点M,并以线段AM为边作正方形.这个正方形的面积介于36 cm2与81 cm2之间的概率为(  )
A. B. C. D.
6.将一个长与宽不等的长方形,沿对角线分成四个区域,如图所示涂上四种颜色,中间装个指针,使其可以自由转动,对指针停留的可能性下列说法正确的是(  )
A.一样大 B.蓝白区域大
C.红黄区域大 D.由指针转动圈数决定
题 号
1
2
3
4
5
6
答 案
二、填空题
7.在圆心角为90°的扇形中,以圆心O为起点作射线OC,使得∠AOC和∠BOC都不小于30°的概率为______.
8.在区间[-1,2]上随机取一个数x,则|x|≤1的概率为________.
9.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________.
三、解答题
10.利用随机模拟法近似计算图中阴影部分(曲线y=log3x与x=3及x轴围成的图形)的面积.
11.假设小军、小燕和小明所在的班级共有50名学生,并且这50名学生早上到校先后的可能性是相同的.设计模拟方法估计下列事件的概率:
(1)小燕比小明先到校;
(2)小燕比小明先到校,小明比小军先到校.
能力提升
12.如图所示,曲线y=x2与y轴、直线y=1围成一个区域A(图中的阴影部分),用模拟的方法求图中阴影部分的面积(用两种方法).
13.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去.求两人能会面的概率(用两种方法).
1.[0,1]或[a,b]上均匀随机数的产生
利用计算器的RAND函数可以产生[0,1]的均匀随机数,试验的结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是等可能的,因此,可以用计算器产生的0到1之间的均匀随机数进行随机模拟.
计算器不能直接产生[a,b]区间上的随机数,但可利用伸缩和平移变换得到:如果Z是[0,1]区间上的均匀随机数,则a+(b-a)Z就是[a,b]区间上的均匀随机数.
2.随机模拟试验是研究随机事件概率的重要方法.用计算机或计算器模拟试验,首先把实际问题转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数刻画影响随机事件结果的量.我们可以从以下几个方面考虑:
(1)由影响随机事件结果的量的个数确定需要产生的随机数的组数.如长度、角度型只用一组,面积型需要两组.
(2)由所有基本事件总体对应区域确定产生随机数的范围.
(3)由事件A发生的条件确定随机数所应满足的关系式.

答案:
3.3.2 均匀随机数的产生
知识梳理
1.(1)RAND 2.(1)试验模拟 (2)计算机模拟
作业设计
1.C [根据伸缩、平移变换a=a1*[4-(-3)]+(-3)=a1*7-3.]
2.B [因为x1,x2,x3是线段AB上任意的三个点,任何一个数在中间的概率相等且都是.]
3.D [A、B、C是均匀随机数的定义,均匀随机数的均匀是“等可能”的意思,并不是“随机数的平均数”.]
4.B [∵=,∴S阴影=S正方形=.]
5.D [由题意知,66.B [指针停留在哪个区域的可能性大,即表明该区域的张角大,显然,蓝白区域大.]
7.
解析 作∠AOE=∠BOD=30°,如图所示,随机试验中,射线OC可能落在扇面AOB内任意一条射线上,而要使∠AOC和∠BOC都不小于30°,则OC落在扇面DOE内,
∴P(A)=.
8.
解析 由|x|≤1,得-1≤x≤1.
由几何概型的概率求法知,所求的概率P==.
9. 
解析 以A、B、C为圆心,以1为半径作圆,与△ABC交出三个扇形,
当P落在其内时符合要求.
∴P==.
10.解 设事件A:“随机向正方形内投点,所投的点落在阴影部分”.
(1)利用计算器或计算机产生两组[0,1]上的均匀随机数,x1=RAND,y1=RAND.
(2)经过伸缩变换x=x1*3,y=y(1*3,得到两组[0,3]上的均匀随机数.
(3)统计出试验总次数N和满足条件y(4)计算频率fn(A)=,即为概率P(A)的近似值.
设阴影部分的面积为S,正方形的面积为9,由几何概率公式得P(A)=,所以≈.
所以S≈即为阴影部分面积的近似值.
11.解 记事件A“小燕比小明先到校”;记事件B“小燕比小明先到校且小明比小军先到校”.
①利用计算器或计算机产生三组0到1区间的均匀随机数,a=RAND,b=RAND,c=RAND分别表示小军、小燕和小明三人早上到校的时间;
②统计出试验总次数N及其中满足b③计算频率fn(A)=,fn(B)=,即分别为事件A,B的概率的近似值.
12.解 方法一 我们可以向正方形区域内随机地撒一把豆子,数出落在区域A内的豆子数与落在正方形内的豆子数,根据
,即可求区域A面积的近似值.例如,假设撒1 000粒豆子,落在区域A内的豆子数为700,则区域A的面积S≈=0.7.
方法二 对于上述问题,我们可以用计算机模拟上述过程,步骤如下:
第一步,产生两组0~1内的均匀随机数,它们表示随机点(x,y)的坐标.如果一个点的坐标满足y≥x2,就表示这个点落在区域A内.
第二步,统计出落在区域A内的随机点的个数M与落在正方形内的随机点的个数N,可求得区域A的面积S≈.
13. 解 方法一 以x轴和y轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x-y|≤15.在如图所示平面直角坐标系下,(x,y)的所有可能结果是边长为60的正方形区域,而事件A“两人能够会面”的可能结果由图中的阴影部分表示.
由几何概型的概率公式得:
P(A)====.
所以两人能会面的概率是.
方法二 设事件A={两人能会面}.
(1)利用计算器或计算机产生两组0到1区间的均匀随机数,x1=RAND,y1=RAND;
(2)经过伸缩变换,x=x1*60,y=y1*60,得到两组[0,60]上的均匀随机数;
(3)统计出试验总次数N和满足条件|x-y|≤15的点(x,y)的个数N1;
(4)计算频率fn(A)= ,即为概率P(A)的近似值.