高中数学(人教版A版必修四)配套课件、教案、学案、同步练习题,补习复习资料:1.1.1 任意角

文档属性

名称 高中数学(人教版A版必修四)配套课件、教案、学案、同步练习题,补习复习资料:1.1.1 任意角
格式 zip
文件大小 714.9KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-21 18:01:42

文档简介

1. 1.1任意角
一、教材分析
“任意角的三角函数”是本章教学内容的基本概念,它又是学好本章教学内容的关键。它是学生在学习了锐角三角函数后,对三角函数有一定的了解的基础上,进行的推广。它又是下面学习平面向量、解析几何等内容的必要准备。并且,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念。
二、教学目标
1.理解任意角的概念;
2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。
三、教学重点难点
1.判断已知角所在象限;
2.终边相同的角的书写。
四、学情分析
五、教学方法
1.本节教学方法采用教师引导下的讨论法,通过多媒体课件在教师的带领下,学生发现就概念、就方法的不足之处,进而探索新的方法,形成新的概念,突出数形结合思想与方法在概念形成与形式化、数量化过程中的作用,是一节体现数学的逻辑性、思想性比较强的课.
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
七、课时安排:1课时
八、教学过程
(一)复习引入:
1.初中所学角的概念。
2.实际生活中出现一系列关于角的问题。
(二)新课讲解:
1.角的定义:一条射线绕着它的端点,从起始位置旋转到终止位置,形成
一个角,点 是角的顶点,射线分别是角的终边、始边。
说明:在不引起混淆的前提下,“角”或“”可以简记为.
2.角的分类:
正角:按逆时针方向旋转形成的角叫做正角;
负角:按顺时针方向旋转形成的角叫做负角;
零角:如果一条射线没有做任何旋转,我们称它为零角。
说明:零角的始边和终边重合。
3.象限角:
在直角坐标系中,使角的顶点与坐标原点重合,角的始边与轴的非负轴重合,则
(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例如:都是第一象限角;是第四象限角。
(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。例如:等等。
说明:角的始边“与轴的非负半轴重合”不能说成是“与轴的正半轴重合”。因为
轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。
4.终边相同的角的集合:由特殊角看出:所有与角终边相同的角,连同角
自身在内,都可以写成的形式;反之,所有形如的角都与角的终边相同。 从而得出一般规律:
所有与角终边相同的角,连同角在内,可构成一个集合,
即:任一与角终边相同的角,都可以表示成角与整数个周角的和。
说明:终边相同的角不一定相等,相等的角终边一定相同。
5.例题分析:
例1 在与范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?
(1) (2) (3)
解:(1),
所以,与角终边相同的角是,它是第三象限角;
(2),
所以,与角终边相同的角是角,它是第四象限角;
(3),
所以,角终边相同的角是角,它是第二象限角。
例2 若,试判断角所在象限。
解:∵
∴与终边相同, 所以,在第三象限。
写出下列各边相同的角的集合,并把中适合不等式的元素
写出来: (1); (2); (3).
解:(1),
中适合的元素是

(2),
S中适合的元素是

(3)
S中适合的元素是

(三)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(四)发导学案、布置预习。
九、板书设计
十、教学反思
以学生的学习为视角,可以对这节课的教学进行如下反思:
(1)学生对课堂提问,回答是否积极?学生能否独立或通过合作探索出问题的结果?
(2)学生处理课堂练习题情况如何?可能的原因是什么?
(3)教学任务是否完成?
下面我们着重分析一下提问的效果。
在回答教学设计中的各项提问时,大多数学生存在一定困难,特别是“问题1:任意画一个锐角α,借助三角板,找出sinα的近似值.”和“问题5:现在,角的范围扩大了,由锐角扩展到了0°~360°内的角,又扩展到了任意角,并且在直角坐标系中,使得角的顶点与原点重合,始边与x轴的正半轴重合.在这样的环境中,你认为,对于任意角α,sinα怎样定义好呢?”
对于问题1,除了由于时间久而遗忘有关知识外,学生不熟悉独立地由一个锐角α,构造直角三角形并求锐角三角函数的过程是主要原因,他们更习惯于在给定的直角三角形中解决问题。
对于问题5,教师强调“在坐标系下怎么样?”后,有学生开始尝试回答。这说明这个问题要求的思维概括水平较高,学生仅利用锐角三角函数的有关知识,难以形成当前研究任意角三角函数的思想方法。因此,教师必须要提供必要的脚手架。
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
十一、学案设计(见下页)
1.1.1任意角
课前预习学案
一、预习目标
1、认识角扩充的必要性,了解任意角的概念,与过去学习过的一些容易混淆的概念相区分;
2、能用集合和数学符号表示终边相同的角,体会终边相同角的周期性;
3、能用集合和数学符号表示象限角;
4、能用集合和数学符号表示终边满足一定条件的角.
二、预习内容
1.回忆:初中是任何定义角的?
一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α。旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。
在体操比赛中我们经常听到这样的术语:“转体720o” (即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?
2.角的概念的推广:?
3.正角、负角、零角概念
4.象限角
思考三个问题:
1.定义中说:角的始边与x轴的非负半轴重合,如果改为与x轴的正半轴重合行不行,为什么?
2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字?
3.是不是任意角都可以归结为是象限角,为什么?
4.已知角的顶点与坐标系原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角?
(1)4200; (2)-750; (3)8550; (4)-5100.
5.终边相同的角的表示
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标
(1)推广角的概念,理解并掌握正角、负角、零角的定义;
(2)理解任意角以及象限角的概念;
(3)掌握所有与角a终边相同的角(包括角a)的表示方法;
学习重难点:
重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示方法及判断。
难点: 把终边相同的角用集合和数学符号语言表示出来。
二、学习过程
例1. 例1在范围内,找出与角终边相同的角,并判定它是第几象限角.(注:是指)
例2.写出终边在轴上的角的集合.
例3.写出终边直线在上的角的集合,并把中适合不等式
的元素写出来.
(三)【回顾小结】
1.尝试练习
(1)教材第3、4、5题.
(2)补充:时针经过3小时20分,则时针转过的角度为 ,分针转过的角度为 。
注意: (1);(2)是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差的整数倍.
2.学习小结
你知道角是如何推广的吗?
象限角是如何定义的呢?
(3)你熟练掌握具有相同终边角a的表示了吗?
(四)当堂检测
1.设, ,那么有(? ).
A.B.C.( )D.
2.用集合表示:
(1)各象限的角组成的集合.(2)终边落在 轴右侧的角的集合.
3.在~ 间,找出与下列各角终边相同的角,并判定它们是第几象限角
(1) ;(2) ;(3) .
3.解:(1)∵
∴与 角终边相同的角是 角,它是第三象限的角;
(2)∵
∴与 终边相同的角是 ,它是第四象限的角;
(3)
所以与 角终边相同的角是 ,它是第二象限角.
课后练习与提高
1. 若时针走过2小时40分,则分针走过的角是多少?
2. 下列命题正确的是: ( )
(A)终边相同的角一定相等。 (B)第一象限的角都是锐角。
(C)锐角都是第一象限的角。 (D)小于的角都是锐角。
3. 若a是第一象限的角,则是第 象限角。
4.一角为 ,其终边按逆时针方向旋转三周后的角度数为_ _.
5.集合M={α=k,k∈Z}中,各角的终边都在(?? )
A.轴正半轴上,B.轴正半轴上,
C. 轴或 轴上,D. 轴正半轴或 轴正半轴上
6.设 ,
C={α|α= k180o+45o ,k∈Z} ,

则相等的角集合为_ _.
参考答案
1. 解:2小时40分=小时,
故分针走过的角为480。
2. C 3. 一或三 4. 5. C 6. _B=D,C=E
课件22张PPT。第一章 1.1.1 任意角1.在初中角是如何定义的?定义1:有公共端点的两条射线组成的几何图形叫做角。顶点边边定义2:平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角。ABo顶点始边 终边2.角是如何度量的?角的单位是度.规定:周角的1/360为1度的角.3.我们学过那些角?它们的大小是多少?锐角:大于0度小于90度 直角等于90度
钝角:大于90度小于180度 平角等于180度
周角等于360度 我们以前所学过的角都是大于0度小于或等于360度的角. 思考:
生活中的角是不是都在范围[00 ,3600 ]内 体操运动员转体720o,跳水运动员向内、向外转体1080o 经过1小时时针、分针、秒针转了多少度? 这些例子所提到的角不仅不在范围[00 ,3600 ] 中,而且方向不同,有必要将角的概念推广到任意角运动 逆时针 顺时针1.任意角定义:正角:按逆时针方向旋转形成的角负角:按顺时针方向旋转形成的角 零角:射线不作旋转时形成的角任意角新 课说明:1:角的正负由旋转方向决定2:角可以任意大小,绝对值大小由旋转次数及终边位置决定2.象限角的定义1)将角的顶点与原点重合2)始边重合于X轴的非负半轴终边落在第几象限就是第几象限角坐标轴上的角: 如果角的终边落在了坐标轴上,就认为这个角不属于任何象限。例如:角的终边落在X轴或Y轴上。轴线角的定义:终边落在坐标轴上的角叫做轴线角.巩固练习:1、锐角是第几象限的角?2、第一象限的角是否都是锐角?3、小于90°的角都是锐角吗?答:锐角是第一象限的角。答:第一象限的角并不都是锐角。答:小于90°的角并不都是锐角,它也有可能是零角或负角。
4.在坐标平面内作出下列各角:30°,390°,-330°;它们是 象限的角,可以统一表示为 .?
一α=k·3600+300(k=-1,0.1)猜想:与300终边相同的角可表示为?39003900=300+3600-3300=300-3600=300+1x3600 =300 -1x3600300 =300+0x3600300+2x3600 ,
300-2x3600 300+3x3600 ,
300-3x3600 …… …,与300终边相同的角的
一般形式为300+K·3600,K ∈ Z-3300与α终边相同的角的一般形式为α+K · 3600,K ∈ Z注意:(1) K ∈ Z(2) α是任意角 (3)K·360°与α 之间是“+”号,
如K·360°-30 °
应看成K·360 °+(-30) ° (4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍例1、在0到360度范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角?(1)-120°(2)640 °(3) -950 ° 12'解(1)-120°=-360 °+240 °
所以与-120 °角终边相同的角是240 °角,它是第三象限角。 (2)640°=360°+280°
所以与640°角终边相同的角是280°角,它是第四象限角。 (3)-950°12’ = -3×360°+129°48'
所以与-950°12’ 角终边相同的角是129°48 ’ 角,它是第二象限角。 (1) 600(2)-210(3)363014’β=k·3600+600其中k=-1,0,1.β=k·3600+(-21)0其中k=0,1,2.β=k·3600+363014ˊ其中k=-2,-1,0.课堂小结:1.任意角
的概念正角:射线按逆时针方向旋转形成的角负角:射线按顺时针方向旋转形成的角零角:射线不作旋转形成的角1)置角的顶点于原点2)始边重合于X轴的非负半轴2.象限角终边落在第几象限就是第几象限角3 . 终边与 角a相同的角α+K·3600,K∈Z 4:判断一个角是第几象限角,方法是:所给角a改写成α0+k ·3600 ( K∈Z,00≤α0<3600)的形式,α0在第几象限α就是第几象限角备用题写出终边落在Y轴上的角的集合。终边落在坐标轴上的情形0090018002700+K · 3600+K ·3600+K· 3600+K· 3600或3600+K ·3600课件30张PPT。§1.1 任意角和弧度制
1.1.1 任意角明目标
知重点填要点
记疑点探要点
究所然内容
索引010203当堂测
查疑缺 041.了解角的概念.
2.掌握正角、负角和零角的概念,理解任意角的意义.
3.熟练掌握象限角、终边相同的角的概念,会用集合符号表示这些角.明目标、知重点1.角的概念
(1)角的概念:角可以看成平面内 绕着 从一个位置 到另一个位置所成的图形.一条射线填要点·记疑点端点旋转逆时针方向旋转(2)角的分类:按旋转方向可将角分为如下三类顺时针方向旋转没有作任何旋转2.象限角
角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是 .如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.
3.终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β= },即任一与角α终边相同的角,都可以表示成角α与 的和.第几象限角α+k·360°,k∈Z整数个周角探要点·究所然情境导学过去我们学习了0°~360°范围的角,但在实际问题中还会遇到其他角.如在体操、花样滑冰、跳台跳水等比赛中,常常听到“转体1080°”、“踺子后手翻转体180°接前直空翻540°”等这样的解说.因此,仅有0°~360°范围内的角是不够的,我们必须将角的概念进行推广. 探究点一 角的概念的推广思考1 我们在初中已经学习过角的概念,角可以看作从同一点出发的两条射线组成的平面图形.这种定义限制了角的范围,也不能表示具有相反意义的旋转量.那么,从“旋转”的角度,对角如何重新定义?正角、负角、零角是怎样规定的?
答 一条射线OA绕着端点O旋转到OB的位置所形成的图形叫做角,射线OA叫角的始边,OB叫角的终边,O叫角的顶点.
按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角,如果一条射线没有作任何旋转,我们称它形成了一个零角.思考2 如图,已知角α=120°,根据角的定义,则
β、-α、-β、γ分别等于多少度?
答 -240°;-120°;240°;480°.思考3 经过10小时,分别写出时针和分针各自旋转所形成的角.
答 经过10小时,时针旋转形成的角是-300°,分针旋转形成的角是-3 600°.探究点二 象限角与终边落在坐标轴上的角思考1 象限角定义中说:角的始边与x轴的非负半轴重合,如果改为与x轴的正半轴重合行不行,为什么?
答  不行,因为始边包括端点(原点).思考2 是不是任意角都可以归结为是象限角,为什么?终边落在坐标轴上的角经常用到,下表是终边落在x轴、y轴各半轴上的角,请完成下表.
答 不是,因为一些特殊角终边可能落在坐标轴上;如果角的终边落在坐标轴上,就认为这个角不属于任何一个象限.{α|α=k·360°,k∈Z}{α|α=k·360°+180°,k∈Z}{α|α=k·360°+90°,k∈Z}{α|α=k·360°+270°,k∈Z}思考3 下表是终边落在各个象限的角的集合,请补充完整.{α|k·360°<α答  终边相同,并相差360°的整数倍.
思考2 对于任意一个角α,与它终边相同的角的集合应如何表示?
答 所有与α终边相同的角,连同α在内,可以构成一个集合
S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和.思考3 集合S={α|α=k·360°-30°,k∈Z}表示与角-30°终边相同的角,其中最小的正角是多少度?已知集合S={α|α=45°+k·180°,k∈Z},则角α的终边落在坐标系中的什么位置?
答 330°;第一或第三象限的角平分线上.例1 在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.
(1)-150°;(2)650°;(3)-950°15′.
解 (1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.
(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.
(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.反思与感悟 解答本题可先利用终边相同的角的关系β=α+k·360°,k∈Z,把所给的角化归到0°~360°范围内,然后利用0°~360°范围内的角分析该角是第几象限角.跟踪训练1 判断下列角的终边落在第几象限内:
(1)1 400°; (2)-2 016°.
解 (1)1 400°=3×360°+320°,∵320°是第四象限角,
∴1 400°也是第四象限角.
(2)-2 016°=-6×360°+144°,∴-2 016°与144°终边相同.
∴-2 016°是第二象限角.例2 写出终边在y轴上的角的集合.
解 所有与90°终边相同的角构成集合
S1={β|β=90°+k·360°,k∈Z}.
所有与270°角终边相同的角构成集合
S2={β|β=270°+k·360°,k∈Z}.
于是,终边在y轴上的角的集合S=S1∪S2
={β|β=90°+k·360°,k∈Z}∪{β|β=270°+k·360°,k∈Z}
={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}
={β|β=90°+n·180°,n∈Z}.反思与感悟 利用终边相同的角写出符合条件的所有角的集合,如果集合能化简的还要化成最简.跟踪训练2 写出终边落在x轴上的角的集合S.
解 S={α|α=k·360°,k∈Z}∪{α|α=k·360°+180°,k∈Z}
={α|α=2k·180°,k∈Z}∪{α|α=(2k+1)·180°,k∈Z}
={α|α=n·180°,n∈Z}.例3 写出终边落在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.
解 直线y=x与x轴的夹角是45°,在0°~360°范围内,终边在直线y=x上的角有两个:45°,225°.因此,终边在直线y=x上的角的集合:
S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}={β|β=45°+2k·180°,k∈Z}∪{β|β=45°+(2k+1)·180°,k∈Z}={β|β=45°+n·180°,n∈Z}.
∴S中适合-360°≤β<720°的元素是:
45°-2×180°=-315°;45°-1×180°=-135°;
45°+0×180°=45°;45°+1×180°=225°;
45°+2×180°=405°;45°+3×180°=585°.反思与感悟 当角的集合的表达式分两种或两种以上情形时,能合并的尽量合并,注意把最后角的集合化成最简的形式.跟踪训练3 求终边在直线y=-x上的角的集合S.
解 由于直线y=-x是第二、四象限的角平分线,在0°~360°间所对应的两个角分别是135°和315°,
从而S={α|α=k·360°+135°,k∈Z}∪{α|α=k·360°+315°,k∈Z}={α|α=2k·180°+135°,k∈Z}∪{α|α=(2k+1)·180°+135°,k∈Z}={α|α=n·180°+135°,n∈Z}.当堂测·查疑缺 12341.-361°的终边落在(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限D12342.下列各角中与330°角终边相同的角是(  )
A.510° B.150° C.-150° D.-390°D12343.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,那么角α=________.
解析 由于5α与α的始边和终边相同,所以这两角的差应是360°的整数倍,即5α-α=4α=k·360°(k∈Z).又180°<α<360°,所以2解 终边落在x轴上的角的集合:
S1={β|β=k·180°,k∈Z};
终边落在y轴上的角的集合:
S2={β|β=k·180°+90°,k∈Z};
∴终边落在坐标轴上的角的集合:
S=S1∪S2={β|β=k·180°,k∈Z}∪{β|β=k·180°+90°,k∈Z}={β|β=2k·90°,k∈Z}∪{β|β=(2k+1)·90°,k∈Z}={β|β=n·90°,n∈Z}.1234呈重点、现规律1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.
2.关于终边相同的角的认识
一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.注意:(1)α为任意角;
(2)k·360°与α之间是“+”号,k·360°-α可理解为k·360°+(-α);
(3)相等的角终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍;
(4)k∈Z这一条件不能少.课时达标检测(一) 任 意 角
一、选择题
1.-435°角的终边所在的象限是(  )
A.第一象限         B.第二象限
C.第三象限 D.第四象限
答案:D
2.终边在第二象限的角的集合可以表示为(  )
A.{α|90°<α<180°}
B.{α|90°+k·180°<α<180°+k·180°,k∈Z}
C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}
D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}
答案:D
3.若α是第四象限角,则-α一定是(  )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
答案:A
4.集合M={α|α=k·90°,k∈Z}中各角的终边都在(  )
A.x轴非负半轴上
B.y轴非负半轴上
C.x轴或y轴上
D.x轴非负半轴或y轴非负半轴上
答案:C
5.角α与角β的终边关于y轴对称,则α与β的关系为(  )
A.α+β=k·360°,k∈Z
B.α+β=k·360°+180°,k∈Z
C.α-β=k·360°+180°,k∈Z
D.α-β=k·360°,k∈Z
答案:B
二、填空题
6.已知角α=-3 000°,则与角α终边相同的最小正角是________.
答案:240°
7.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.
答案:-5 -60
8.已知角2α的终边在x轴的上方,那么α是第________象限角.
答案:一或三
三、解答题
9.如果θ为小于360°的正角,这个角θ的4倍角的终边与这个角的终边重合,求θ的值.
解:由题意得4θ=θ+k·360°,k∈Z,
∴3θ=k·360°,θ=k·120°,
又0°<θ<360°,∴θ=120°或θ=240°.
10.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.
解:由题意可知,
α+β=-280°+k·360°,k∈Z.
∵α,β都是锐角,∴0°<α+β<180°.
取k=1,得α+β=80°.①
α-β=670°+k·360°,k∈Z,
∵α,β都是锐角,
∴-90°<α-β<90°.
取k=-2,得α-β=-50°.②
由①②,得α=15°,β=65°.
11.写出终边在下列各图所示阴影部分内的角的集合.
解:先写出边界角,再按逆时针顺序写出区域角,则得
(1){α|30°+k·360°≤α≤150°+k·360°,k∈Z};
(2){α|150°+k·360°≤α≤390°+k·360°,k∈Z}.
第一章 三角函数
本章教材分析
1.本章知识结构如下:
2.本章学习的内容主要是:三角函数的定义、图象、性质及应用.三角函数是高中教材中的一种重要函数,与其他的函数相比,具有许多重要的特征:它以角为自变量,是周期函数.三角函数是解决其他问题的重要工具,是高中阶段学习的最后一个基本初等函数,是深化函数性质的极好素材.本章的认知基础主要是几何中圆的性质、相似形的有关知识,特别强调了单位圆的直观作用,借助单位圆直观地认识任意角、任意角的三角函数.
3.本章教学的重点是三角函数的定义,同角三角函数的基本关系式,正弦函数的图象及基本性质.难点是弧度制和图象变换的准确理解和掌握.关键是学好三角函数定义.从实际教学情况来看,教学中应重视学生的画图.“五点画图”虽然简单,但却易学难掌握.在本章教学中,教师应根据学生的生活经验和已有的数学知识,通过列举熟知的实例,创设丰富的情境,使学生体会三角函数模型的意义.教学时,可结合本章引言的章头图,让学生围绕这些问题展开讨论,通过思考,让学生知道三角函数可以刻画这些周期变化规律,从而激发学生的求知欲.
4.三角函数的内容一直是高考的重要内容,特别是三角函数的图象和性质,及结合三角形的基础知识为背景的三角函数知识,频频在各省高考试题中出现,难度虽有降低,却是经久不衰的高考考查内容.
5.本章教学时间约需16课时,具体分配如下(仅供参考):
标 题
课 时
1.1任意角和弧度制
约2课时
1.2任意角的三角函数
约3课时
1.3三角函数的诱导公式
约2课时
1.4三角函数的图象与性质
约4课时
1.5函数y=Asin(ωx+φ)的图象
约2课时
1.6三角函数模型的简单应用
约2课时
本章复习
约1课时
1.1 任意角和弧度制
1.1.1 任意角
整体设计
教学分析
教材首先通过实际问题的展示,引发学生的认知冲突,然后通过具体例子,将初中学过的角的概念推广到任意角,在此基础上引出终边相同的角的集合的概念.这样可以使学生在已有经验(生活经验、数学学习经验)的基础上,更好地认识任意角、象限角、终边相同的角等概念.让学生体会到把角推广到任意角的必要性,引出角的概念的推广问题.本节充分结合角和平面直角坐标系的关系,建立了象限角的概念.使得任意角的讨论有一个统一的载体.教学中要特别注意这种利用几何的直观性来研究问题的方法,引导学生善于利用数形结合的思想方法来认识问题、解决问题.让学生初步学会在平面直角坐标系中讨论任意角.能熟练写出与已知角终边相同的角的集合,是本节的一个重要任务.
学生的活动过程决定着课堂教学的成败,教学中应反复挖掘“探究”栏目及“探究”示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地、更好地归纳出终边相同的角的一般形式.也就自然地理解了集合S={β|β=α+k·360°,k∈Z}的含义.如能借助信息技术,则可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会,既要知道旋转量,又要知道旋转方向,才能准确刻画角的形成过程的道理,更好地了解任意角的深刻涵义.
三维目标
1.通过实例的展示,使学生理解角的概念推广的必要性,理解并掌握正角、负角、零角、象限角、终边相同角的概念及表示,树立运动变化的观点,并由此深刻理解推广之后的角的概念.
2.通过自主探究、合作学习,认识集合S中k、α的准确含义,明确终边相同的角不一定相等,终边相同的角有无限多个,它们相差360°的整数倍.这对学生的终身发展,形成科学的世界观、价值观具有重要意义.
3.通过类比正、负数的规定,让学生认识正角、负角并体会类比、数形结合等思想方法的运用,为今后的学习与发展打下良好的基础.
重点难点
教学重点:将0°—360°范围的角推广到任意角,终边相同的角的集合.
教学难点:用集合来表示终边相同的角.
课时安排
1课时
教学过程
导入新课
图1
思路1.(情境导入)如图1,在许多学校的门口都有摆设的一些游戏机,只要指针旋转到阴影部分即可获得高额奖品.由此发问:指针怎样旋转,旋转多少度才能赢?还有我们所熟悉的体操运动员旋转的角度,自行车车轮旋转的角度,螺丝扳手的旋转角度,这些角度都怎样解释?在学生急切想知道的渴望中引入角的概念的推广.进而引入角的概念的推广的问题.
思路2.(复习导入)回忆初中我们是如何定义一个角的?所学的角的范围是什么?用这些角怎样解释现实生活的一些现象,比如你原地转体一周的角度,应怎样修正角的定义才能解释这些现象?由此让学生展开讨论,进而引入角的概念的推广问题.
推进新课
新知探究
提出问题
①你的手表慢了5分钟,你将怎样把它调整准确?假如你的手表快了1.25小时,你应当怎样将它调整准确?当时间调整准确后,分针转过了多少度角?
②体操运动中有转体两周,在这个动作中,运动员转体多少度?
③请两名男生(或女生、或多名男女学生)起立,做由“面向黑板转体背向黑板”的动作.在这个过程中,他们各转体了多少度?
活动:让学生到讲台利用准备好的教具——钟表,实地演示拨表的过程.让学生站立原地做转体动作.教师强调学生观察旋转方向和旋转量,并思考怎样表示旋转方向.对回答正确的学生及时给予鼓励、表扬,对回答不准确的学生提示引导考虑问题的思路.
角可以看作是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形,设一条射线的端点是O,它从起始位置OA按逆时针方向旋转到终止位置OB,则形成了一个角α,点O是角的顶点,射线OA、OB分别是角α的始边和终边.
我们规定:一条射线绕着它的端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.钟表的时针和分针在旋转过程中所形成的角总是负角,为了简便起见,在不引起混淆的前提下,“角α”或“∠α”可以简记作“α”.
如果一条射线没有作任何旋转,我们称它形成了一个零角,零角的始边和终边重合,如果α是零角,那么α=0°.
讨论结果:①顺时针方向旋转了30°;逆时针方向旋转了450°.
②顺时针方向旋转了720°或逆时针方向旋转了720°.
③-180°或+180°或-540°或+540°或900°或1 080°……
提出问题
①能否以同一条射线为始边作出下列角:210°,-45°,-150°.
②如何在坐标系中作出这些角,象限角是什么意思? 0°角又是什么意思?
活动:先让学生看书、思考、并讨论这些问题,教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生,教师提示、引导考虑问题的思路.学生作这样的角,使用一条射线作为始边,没有固定的参照,所以会作出很多形式不同的角.教师可以适时地提醒学生:如果将角放到平面直角坐标系中,问题会怎样呢?并让学生思考讨论在直角坐标系内讨论角的好处:使角的讨论得到简化,还能有效地表现出角的终边“周而复始”的现象.
今后我们在坐标系中研究和讨论角,为了讨论问题的方便,我们使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.那么角的终边在第几象限,我们就说这个角是第几象限角.要特别强调角与直角坐标系的关系——角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.
讨论结果:①能.
②使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.角的终边在第几象限,我们就说这个角是第几象限角.这样:
210°角是第三象限角;
-45°角是第四象限角;
-150°角是第三象限角.
特别地,终边落在坐标轴上的角不属于任何一个象限,比如0°角.
可以借此进一步设问:
锐角是第几象限角?钝角是第几象限角?直角是第几象限角?反之如何?
将角按照上述方法放在直角坐标系中,给定一个角,就有唯一一条终边与之对应,反之,对于直角坐标系中的任意一条射线OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系?
提出问题
①在直角坐标系中标出210°,-150°的角的终边,你有什么发现?它们有怎样的数量关系?328°,-32°,-392°角的终边及数量关系是怎样的?终边相同的角有什么关系?
②所有与α终边相同的角,连同角α在内,怎样用一个式子表示出来?
活动:让学生从具体问题入手,探索终边相同的角的关系,再用所准备的教具或是多媒体给学生演示:演示象限角、终边相同的角,并及时地引导:终边相同的一系列角与0°到360°间的某一角有什么关系,从而为终边相同的角的表示作好准备.
为了使学生明确终边相同的角的表示方法,还可以用教具作一个32°角,放在直角坐标系内,使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,形成-32°角后提问学生这是第几象限角?是多少度角?学生对后者的回答是多种多样的.
至此,教师因势利导,予以启发,学生对问题探究的结果已经水到渠成,本节难点得以突破.同时学生也在这一学习过程中,体会到了探索的乐趣,激发起了极大的学习热情,这是比学习知识本身更重要的.
讨论结果:①210°与-150°角的终边相同;328°,-32°,-392°角的终边相同.终边相同的角相差360°的整数倍.
设S={β|β=-32°+k·360°,k∈Z},则328°,-392°角都是S的元素,-32°角也是S的元素(此时k=0).因此,所有与-32°角的终边相同的角,连同-32°在内,都是集合S的元素;反过来,集合S的任何一个元素显然与-32°角终边相同.
②所有与α终边相同的角,连同角α在内,可以构成一个集合S={β|β=k·360°+α,k∈Z}.
即任一与角α终边相同的角,都可以表示成α与整数个周角的和.
适时引导学生认识:①k∈Z;②α是任意角;③终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.
应用示例
例1 在0°—360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角.
解:-950°12′=129°48′-3×360°,所以在0°—360°的范围内,与-950°12′角终边相同的角是129°48′,它是第二象限的角.
点评:教师可引导学生先估计-950°12′大致是360°的几倍,然后再具体求解.
例2 写出终边在y轴上的角的集合.
活动:终边落在y轴上,应分y轴的正方向与y轴的负方向两个.
学生很容易分别写出所有与90°,270°的终边相同的角构成集合,这时应启发引导学生进一步思考:能否化简这两个式子,用一个式子表示出来.
让学生观察、讨论、思考,并逐渐形成共识,教师再规范地板书出来.并强调数学的简捷性.在数学表达式子不唯一的情况下,注意采用简约的形式.
图2
解:在0°—360°范围内,终边在y轴上的角有两个,
即90°和270°角,如图2.
因此,所有与90°的终边相同的角构成集合
S1={β|β=90°+k·360°,k∈Z}.
而所有与270°角的终边相同的角构成集合
S2={β|β=270°+k·360°,k∈Z}.
于是,终边在y轴上的角的集合
S=S1∪S2
={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+180°+2k·180°,k∈Z}
={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}
={β|β=90°+n·180°,n∈Z}.
点评:本例是让学生理解终边在坐标轴上的角的表示.教学中,应引导学生体会用集合表示终边相同的角时,表示方法不唯一,要注意采用简约的形式.
变式训练
①写出终边在x轴上的角的集合.
②写出终边在坐标轴上的角的集合.
答案:①S={β|β=(2n+1)·180°,n∈Z}.
②S={β|β=n·90°,n∈Z}.
例3 写出终边在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.
图3
解:如图3,在直角坐标系中画出直线y=x,可以发现它与x轴夹角是45°,在0°—360°范围内,终边在直线y=x上的角有两个:45°和225°,因此,终边在直线y=x上的角的集合
S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}.
S中适合-360°≤β<720°的元素是:
45°-2×180°=-315°,
45°-1×180°=-135°,
45°+0×180°=45°,
45°+1×180°=225°,
45°+2×180°=405°,
45°+3×180°=585°.
点评:本例是让学生表示终边在已知直线的角,并找出某一范围的所有的角,即按一定顺序取k的值,应训练学生掌握这一方法.
例4 写出在下列象限的角的集合:
①第一象限; ②第二象限;
③第三象限; ④第四象限.
活动:本题关键是写出第一象限的角的集合,其他象限的角的集合依此类推即可,如果学生阅读例题后没有解题思路,或者把①中的范围写成0°—90°,可引导学生分析360°—450°范围的角是不是第一象限的角呢?进而引导学生写出所有终边相同的角.
解:①终边在第一象限的角的集合:{β|n·360°<β②终边在第二象限的角的集合:{β|n·360°+90°<β③终边在第三象限的角的集合:{β|n·360°+180°<β④终边在第四象限的角的集合:{β|n·360°+270°<β 点评:教师给出以上解答后可进一步提问:以上的解答形式是唯一的吗?充分让学生思考、讨论后形成共识,并进一步深刻理解终边相同角的意义.
知能训练
课本本节练习.
解答:
1.锐角是第一象限角,第一象限角不一定是锐角;
直角不属于任何一个象限,不属于任何一个象限的角不一定是直角;
钝角是第二象限角,但是第二象限角不一定是钝角.
点评:要深刻认识锐角、直角、钝角和象限角的区别与联系,并理解记忆.为弄清概念的本质属性,还可以再进一步启发设问:
锐角一定小于90°吗?小于90°的角一定是锐角吗?
钝角一定大于90°吗?大于90°的角一定是钝角吗?
答案当然是:不一定.
让学生展开讨论,在争论中,将对问题的认识进一步升华,并牢牢的记忆这些基础知识.
2.三、三、五.
点评:本题的目的是将终边相同的角的符号表示应用到其他周期性问题上.题目联系实际,把教科书中除数360换成每个星期的天数7,利用了“同余”来确定7k天后、7k天前也是星期三,这样的练习难度不大,可以口答.
3.(1)第一象限角.
(2)第四象限角.
(3)第二象限角.
(4)第三象限角.
点评:能作出给定的角,并判断是第几象限的角.
4.(1)305°42′,第四象限角.
(2)35°8′,第一象限角.
(3)249°30′,第三象限角.
点评:能在给定的范围内找出与指定角终边相同的角,并判断是第几象限的角.
5.(1){β|β=1 303°8′+k·360°,k∈Z},-496°42′,-136°42′,223°18′.
(2){β|β=-225°+k·360°,k∈Z},-585°,-225°,135°.
点评:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定的范围内找出与指定的角的终边相同的角.
课堂小结
以提问的方式与学生一起回顾本节所学内容并简要总结:
让学生自己回忆:本节课都学习了哪些新知识?你是怎样获得这些新知识的?你从本节课上都学到了哪些数学方法?让学生自己得到以下结论:
本节课推广了角的概念,学习了正角、负角、零角的定义,象限角的概念以及终边相同的角的表示方法,零角是射线没有作任何旋转.一个角是第几象限的角,关键是看这个角的终边落在第几象限,终边相同的角的表示有两方面的内容:(1)与角α终边相同的角,这些角的集合为S={β|β=k·360°+α,k∈Z};(2)在0°—360°内找与已知角终边相同的角α,其方法是用所给的角除以360°,所得的商为k,余数为α(α必须是正数),α即为所找的角.
数形结合思想、运动变化观点都是学习本课内容的重要思想方法.
作业
①课本习题1.1 A组1、3、5.
②预习下一节:弧度制.
设计感想
1.本节课设计的容量较大,学生的活动量也较大,若用信息技术辅助教学效果会很好.教师可充分利用多媒体做好课件,在课堂上演示给学生;有条件的学校,可以让学生利用计算机或计算器进行探究,让学生在动态中掌握知识、提炼方法.
2.本节设计的指导思想是加强直观.利用几何直观有利于对抽象概念的理解.在学生得出象限角的概念后,可以充分让学生讨论在直角坐标系中研究角的好处.前瞻性地引导学生体会:在直角坐标系中角的“周而复始”的变化规律,为研究三角函数的周期性奠定基础.
3.几点说明:
(1)列举不在0°—360°的角时,应注意所有的角在同一个平面内,且终边在旋转的过程中,角的顶点不动.
(2)在研究终边相同的两个角的关系时,k的正确取值是关键,应让学生独立思考领悟.
(3)在写出终边相同的角的集合时,可根据具体问题,对相应的集合内容进行复习.
第一章 三角函数
§1.1 任意角和弧度制
1.1.1 任意角
课时目标 1.了解任意角的概念,能正确区分正角、负角与零角.2.理解象限角与终边相同的角的定义.掌握终边相同的角的表示方法,并会判断角所在的象限.
1.角
(1)角的概念:角可以看成平面内______________绕着____________从一个位置________到另一个位置所成的图形.
(2)角的分类:按旋转方向可将角分为如下三类:
类型
定义
图示
正角
按________________形成的角
负角
按________________形成的角
零角
一条射线________________,称它形成了一个零角
2.象限角
角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是______________.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.
3.终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=________________},即任一与角α终边相同的角,都可以表示成角α与______________的和.
一、选择题
1.与405°角终边相同的角是(  )
A.k·360°-45°,k∈Z B.k·180°-45°,k∈Z
C.k·360°+45°,k∈Z D.k·180°+45°,k∈Z
2.若α=45°+k·180° (k∈Z),则α的终边在(  )
A.第一或第三象限 B.第二或第三象限
C.第二或第四象限 D.第三或第四象限
3.设A={θ|θ为锐角},B={θ|θ为小于90°的角},C={θ|θ为第一象限的角},D={θ|θ为小于90°的正角},则下列等式中成立的是(  )
A.A=B B.B=C
C.A=C D.A=D
4.若α是第四象限角,则180°-α是(  )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
5.集合M=,
P=,则M、P之间的关系为(  )
A.M=P B.M?P
C.M?P D.M∩P=?
6.已知α为第三象限角,则所在的象限是(  )
A.第一或第二象限 B.第二或第三象限
C.第一或第三象限 D.第二或第四象限
二、填空题
7.若角α与β的终边相同,则α-β的终边落在________.
8.经过10分钟,分针转了________度.
9.如图所示,终边落在阴影部分(含边界)的角的集合是______________________________.
10.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________.
三、解答题
11.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.
(1)-150°;(2)650°;(3)-950°15′.
12.如图所示,写出终边落在阴影部分的角的集合.
能力提升
13.如图所示,写出终边落在直线y=x上的角的集合(用0°到360°间的角表示).
14.设α是第二象限角,问是第几象限角?
1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.
2.关于终边相同角的认识
一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.
注意:(1)α为任意角.
(2)k·360°与α之间是“+”号,k·360°-α可理解为k·360°+(-α).
(3)相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.
(4)k∈Z这一条件不能少.
第一章 三角函数
§1.1 任意角和弧度制
1.1.1 任意角
答案
知识梳理
1.(1)一条射线 端点 旋转 (2)逆时针方向旋转 顺时针方向旋转 没有作任何旋转
2.第几象限角 3.α+k·360°,k∈Z 整数个周角
作业设计
1.C 2.A
3.D [锐角θ满足0°<θ<90°;而B中θ<90°,可以为负角;C中θ满足k·360°<θ4.C [特殊值法,给α赋一特殊值-60°,
则180°-α=240°,
故180°-α在第三象限.]
5.B [对集合M来说,x=(2k±1)45°,即45°的奇数倍;对集合P来说,x=(k±2)45°,即45°的倍数.]
6.D [由k·360°+180°<α得·360°+90°<<·360°+135°,k∈Z.
当k为偶数时,为第二象限角;
当k为奇数时,为第四象限角.]
7.x轴的正半轴
8.-60
9.{α|k·360°-45°≤α≤k·360°+120°,k∈Z}
10.-110°或250°
解析 ∵α=1 690°=4×360°+250°,∴θ=k·360°+250°,k∈Z.∵-360°<θ<360°,
∴k=-1或0.
∴θ=-110°或250°.
11.解 (1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.
(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.
(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.
12.解 设终边落在阴影部分的角为α,角α的集合由两部分组成.
①{α|k·360°+30°≤α②{α|k·360°+210°≤α∴角α的集合应当是集合①与②的并集:
{α|k·360°+30°≤α∪{α|k·360°+210°≤α∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}
={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}
={α|k·180°+30°≤α13.解 终边落在y=x (x≥0)上的角的集合是S1={α|α=60°+k·360°,k∈Z},终边落在
y=x (x≤0) 上的角的集合是S2={α|α=240°+k·360°,k∈Z},于是终边在y=x上角的集合是S={α|α=60°+k·360°,k∈Z}∪{α|α=240°+k·360°,k∈Z}={α|α=60°+2k·180°,
k∈Z}∪{α|α=60°+(2k+1)·180°,k∈Z}={α|α=60°+n·180°,n∈Z}.
14.解 当α为第二象限角时,
90°+k·360°<α<180°+k·360°,k∈Z,
∴30°+·360°<<60°+·360°,k∈Z.
当k=3n时,30°+n·360°<<60°+n·360°,此时为第一象限角;
当k=3n+1时,150°+n·360°<<180°+n·360°,此时为第二象限角;
当k=3n+2时,270°+n·360°<<300°+n·360°,此时为第四象限角.综上可知是第一、二、四象限角.