课件9张PPT。同角三角函数关系同角三角函数的基本关系:1.利用同角三角函数的基本关系求某个角的三角函数值所以若角所在象限不确定时,一般要
进行分类讨论已知正切值,1)求关于正弦余弦的齐次式,可把每一项除以余弦,构造出正切2)巧用“1”
3)知正切还可以准确求
同角三角函数的基本关系:常用变形:知识小结:提高:数学应用1. 2.2同角的三角函数的基本关系
一、教学目标:
⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;
2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;
3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.
二、教学重、难点
重点:公式及的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.
难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.
三、学法与教学用具
利用三角函数线的定义, 推导同角三角函数的基本关系式: 及,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.
教学用具:圆规、三角板、投影
四、教学过程
【创设情境】
与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.
【探究新知】
探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一
下同一个角不同三角函数之间的关系吗?
如图:以正弦线,余弦线和半径三者的长构成直角三角形,而且.由勾股定理由,因此,即.
根据三角函数的定义,当时,有.
这就是说,同一个角的正弦、余弦的平方等于1,商等于角的正切.
【例题讲评】
例1化简:
解:原式
例2 已知
解:
(注意象限、符号)
例3求证:
分析:思路1.把左边分子分母同乘以,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx)先满足右式分子的要求;思路3:用作差法,不管分母,只需将分子转化为零;思路4:用作商法,但先要确定一边不为零;思路5:利用公分母将原式的左边和右边转化为同一种形式的结果;思路6:由乘积式转化为比例式;思路7:用综合法.
证法1:左边=右边,
∴原等式成立
证法2:左边==
=右边
证法3:
∵,
∴
证法4:∵cosx≠0,∴1+sinx≠0,∴≠0,
∴===1,
∴.
∴左边=右边 ∴原等式成立.
例4已知方程的两根分别是,
求
解:
(化弦法)
例5已知,
求
解:
【课堂练习】
化简下列各式
3.
练习答案:
解:(1)原式=
=
=
(2)原式=
=
=
【学习小结】
(1)同角三角函数的关系式的前提是“同角”,因此,.
(2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.
作业:习题1.2A组第10,13题.
熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关
系式;注意三角恒等式的证明方法与步骤.
【课后作业】见学案
【板书设计】略
【教学反思】
1.2.2同角的三角函数的基本关系
课前预习学案
预习目标:
通过复习回顾三角函数定义和单位圆中的三角函数线,为本节所要学习的同角三角函数的基本关系式做好铺垫。
预习内容:
复习回顾三角函数定义和单位圆中的三角函数线:
。
提出疑惑:
与初中学习锐角三角函数一样,我们能不能研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化呢?
。
课内探究学案
学习目标:
⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;
2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;
3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.
学习过程:
【创设情境】
与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.
【探究新知】
探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一
下同一个角不同三角函数之间的关系吗?
如图:以正弦线,余弦线和半径三者的长构成直角三角形,而且.由勾股定理由,因此,即 .
根据三角函数的定义,当时,有 .
这就是说,同一个角的正弦、余弦的平方等于1,商等于角的正切.
【例题讲评】
例1化简:
例2 已知
例3求证:
例4已知方程的两根分别是,
求
例5已知,
求
【课堂练习】
化简下列各式
3.
课后练习与提高
1已知sinα+cosα=,且0<α<π,则tanα的值为( )
2若sin4θ+cos4θ=1,则sinθ+cosθ的值为( )
A0 B1 C-1 D±1
3若tanθ+cotθ=2,则sinθ+cosθ的值为( )
A0 B C- D±
4若=10,则tanα的值为
5若tanα+cotα=2,则sin4α+cos4α=
6若tan2α+cot2α=2,则sinαcosα=
同角的三角函数的基本关系
教学目的:
⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;
2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;
3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.
教学重点:同角三角函数的基本关系
教学难点:(1)已知某角的一个三角函数值,求它的其余各三角函数值时正负号的选择;(2)三角函数式的化简;(3)证明三角恒等式.
授课类型:新授课
知识回顾:同角三角函数的基本关系公式:
—————————————————— —————————————————
—————————————————— —————————————————
典型例题:
已知sin=2,求α的其余三个三角函数值.
例2.已知:且,试用定义求的其余三个三角函数值.
例3.已知角的终边在直线y=3x上,求sin和cos的值.
说明:已知某角的一个三角函数值,求该角的其他三角函数值时要注意:
角所在的象限;
用平方关系求值时,所求三角函数的符号由角所在的象限决定;
(3)若题设中已知角的某个三角函数值是用字母给出的,则求其他函数值时,要对该字母分类讨论.
四、小结 几种技巧
五、课后作业:
六、板书设计(略)
七、课后记:
课件43张PPT。§1.2 任意角的三函数
1.2.2 同角三角函数的基本关系明目标
知重点填要点
记疑点探要点
究所然内容
索引010203当堂测
查疑缺 041.能通过三角函数的定义推导出同角三角函数的基本关系式.
2.理解同角三角函数的基本关系式.
3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.明目标、知重点1.同角三角函数的基本关系式
(1)平方关系: .
(2)商数关系: .sin2α+cos2α=1填要点·记疑点?1-cos2α1-sin2αcos αtan α?探要点·究所然情境导学大家都听过一句话:南美洲亚马逊河雨林中的一只蝴蝶,偶尔扇动几下翅膀,可能在两周后引起美国德克萨斯州的一场龙卷风.这就是著名的“蝴蝶效应”,他本意是说事物初始条件的微弱变化可能会引起结果的巨大变化.两个似乎毫不相干的事物,却有着这样的联系.那么“同一个角”的三角函数一定会有非常密切的关系!到底是什么关系呢?这就是本节课所研究的问题.探究点一 同角三角函数的基本关系式思考1 写出下列角的三角函数值,观察他们之间的关系,猜想之间的联系?你能发现什么一般规律?你能否用代数式表示这两个规律?111111?1111tan 30°tan 45°tan 60°tan 150°正切1?思考2 如何利用任意角的三角函数的定义推导同角三角函数的基本关系式?同角三角函数的基本关系式对任意角α都成立吗?答 设点P(x,y)为α终边上任意一点,P与O不重合.P到原点的距离为r=??探究点二 三角函数式的求值思考 已知某角的一个三角函数值,再利用sin2α+cos2α=1求它的其余三角函数值时,要注意角所在的象限,恰当选取开方后根号前面的正负号,一般有以下三种情况:
类型1:如果已知三角函数值,且角的象限已知,那么只有一组解.类型2:如果已知三角函数值,但没有指定角在哪个象限,那么由已知三角函数值的正负确定角可能在的象限,然后求解,这种情况一般有两组解.类型3:如果所给的三角函数值是由字母给出的,且没有确定角在哪个象限,那么就需要进行讨论.
例如:已知cos α=m,且|m|<1,求sin α,tan α.答 ∵cos α=m,且|m|<1,当α终边在y轴上时,sin α=±1,tan α不存在.?如果α是第三象限角,那么cos α<0.反思与感悟 同角三角函数的基本关系揭示了同角之间的三角函数关系,其最基本的应用是“知一求二”,要注意这个角所在的象限,由此来决定所求的是一解还是两解,同时应体会方程思想的应用.?又sin2α+cos2α=1, ②又α是第三象限角,探究点三 三角函数式的化简三角函数式的化简是将三角函数式尽量化为最简单的形式,其基本要求:尽量减少角的种数,尽量减少三角函数的种数,尽量化为同角且同名的三角函数等.三角函数式的化简实质上是一种不指定答案的恒等变形,体现了由繁到简的最基本的数学解题原则.它不仅要求熟悉和灵活运用所学的三角公式,还需要熟悉和灵活运用这些公式的等价形式.同时,这类问题还具有较强的综合性,对其他非三角知识的运用也具有较高的要求,因此在平常学习时要注意经验的积累.反思与感悟 解答此类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系.化简过程中常用的方法有:(1)化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号,达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解.?跟踪训练2 已知tan α=3,则1(2)sin2α-3sin αcos α+1= .1探究点四 三角恒等式的证明证明三角恒等式就是通过转化和消去等式两边差异来促成统一的过程,证明的方法在形式上显得较为灵活,常用的有以下几种:
①直接法:从等式的一边开始直接化为等式的另一边,常从比较复杂、繁杂的一边开始化简到另一边,其依据是相等关系的传递性;
②综合法:由一个已知成立的等式(如公式等)恒等变形得到所要证明的等式,其依据是等价转化的思想;?∴原等式成立.方法二 ∵sin2α+cos2α=1,∴cos2α=1-sin2α.
∴cos2α=(1-sin α)·(1+sin α).∴原等式成立.∵左边=右边,∴原等式成立.反思与感悟 证明三角恒等式的实质是清除等式两端的差异,有目的地进行化简.证明三角恒等式的基本原则:由繁到简.常用方法:从左向右证;从右向左证;左、右同时证.常用技巧:切化弦、整体代换.∴原式成立.∴左边=右边,原式成立.当堂测·查疑缺 1234cos 40°-sin 40°1234?1234解 ∵α是第三象限角,∴sin α<0,
由三角函数线可知-13.在三角函数的变换求值中,已知sin α+cos α,sin αcos α,sin α-cos α中的一个,可以利用方程思想,求出另外两个的值.4.在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当地选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法.
5.在化简或恒等式证明时,注意方法的灵活运用,常用的技巧有:①“1”的代换;②减少三角函数的个数(化切为弦、化弦为切等);③多项式运算技巧的应用(如因式分解、整体思想等);④对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解.第5课时 同角三角函数的基本关系(1)
课时目标
1.理解并掌握同角三角函数的基本关系式.
2.能够利用同角三角函数的基本关系进行简单的化简、求值与恒等证明.
识记强化
1.同角三角函数的基本关系式包括:
①平方关系:sin2α+cos2α=1
②商数关系:tanα=.
2.商数关系tanα=成立的角α的范围是α≠kπ+(k∈Z).
3.sin2α+cos2α=1的变形有sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α等.tanα=的变形有sinα=tanα·cosα,cosα=等.
课时作业
一、选择题
1.已知sinα=,且α是第二象限角,那么tanα的值是( )
A.- B.-
C. D.
答案:A
解析:cosα=-=-,所以tanα==-.
2.化简结果为( )
A.cos B.-cos
C.±cos D.-cos
答案:B
3.已知sinθ+cosθ=1,则sinθ-cosθ的值为( )
A.1 B.-1
C.±1 D.0
答案:C
解析:将sinθ+cosθ=1两边平方得sinθcosθ=0.
即或,
故sinθ-cosθ=±1.
4.已知α、β均为锐角,2tanα+3sinβ=7,tanα-6sinβ=1,则sinα的值是( )
A. B.
C. D.
答案:C
解析:由解得tanα=3.∴=3,
又sin2α+cos2α=1,且α为锐角,∴sinα=.故选C.
5.如果sinα|sinα|+cosα|cosα|=-1,那么角α是( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
答案:C
解析:∵-sin2α+(-cos2α)=-1,
∴只有|sinα|=-sinα,|cosα|=-cosα时,
sinα|sinα|+cosα|cosα|=-1才能成立.
sinα、cosα同时小于零,所以α是第三象限角.
6.若角α的终边落在直线x+y=0上,则+的值为( )
A.-2 B.2
C.-2或2 D.0
答案:D
解析:∵角α的终边在x+y=0上,
∴当α在第二象限时,sinα=-cosα=;
当α在第四象限时,sinα=-cosα=-,
∴原式=+=0.
二、填空题
7.若=,则tanα=________.
答案:-3
解析:==,
∴tanα=-3.
8.化简:=________.
答案:cos20°-sin20°
解析:原式=
==|cos20°-sin20°|
=cos20°-sin20°.
9.如果tanα=,π<α<π,则sinαcosα=________.
答案:
解析:sinαcosα==
====.
三、解答题
10.已知sinα=,求cosα,tanα的值.
解:因为sinα>0,sinα≠1,所以α是第一或第二象限角.
由sin2α+cos2α=1,得cos2α=1-sin2α=.
若α是第一象限角,那么cosα>0,
于是cosα=,
从而tanα==;
若α是第二象限角,那么cosα=-,tanα=-.
11.已知0<α<π,sinα+cosα=,求tanα的值.
解:由sinα+cosα=两边平方,得sinαcosα=-<0,由0<α<π可知:sinα>0,cosα<0,故<α<π,所以(sinα-cosα)2=1-2sinαcosα=1+=.由<α<π知:sinα-cosα>0,所以sinα-cosα=,联立得sinα=,cosα=-,所以,tanα==-.
能力提升
12.若α是三角形的内角,且sinα+cosα=,则这个三角形是( )
A.等边三角形 B.直角三角形
C.锐角三角形 D.钝角三角形
答案:D
解析:等式sinα+cosα=,两边平方得:
1+2sinαcosα=,∴sinαcosα=-,
而α∈(0,π),∴sinα>0,cosα<0,即α是钝角.
13.已知方程8x2+6kx+2k+1=0的两个实根是sinθ和cosθ.
(1)求k的值;
(2)求tanθ的值(其中sinθ>cosθ).
解:(1)由已知得:
∵sin2θ+cos2θ=1,
即(sinθ+cosθ)2-2sinθcosθ=1.
∴将②、③代入后,得-=1,
即9k2-8k-20=0,解之,得k=-或k=2.
∵k=2不满足①式,故舍去,∴k=-.
(2)把k=-,代入②、③
得
解之,得(sinθ>cosθ)
∴tanθ===-=-.
第6课时 同角三角函数的基本关系(2)
课时目标
1.巩固同角三角函数关系式.
2.灵活利用公式进行化简求值证明.
识记强化
1.同角三角函数关系式是根据三角函数定义推导的.
2.同角三角函数的基本关系式包括:
①平方关系:sin2α+cos2α=1
②商数关系:tanα=.
3.商数关系tanα=成立的角α的范围是α≠kπ+(k∈Z).
4.sin2α+cos2α=1的变形有sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α等.tanα=的变形有sinα=tanα·cosα,cosα=等.
课时作业
一、选择题
1.已知cos2θ=,且<θ<2π,那么tanθ的值是( )
A. B.-
C. D.-
答案:D
解析:∵<θ<2π,cos2θ=,∴cosθ=.
∴sinθ=-,故tanθ==-.
2.已知tanα=2,则+的值为( )
A.6 B.10
C.5 D.8
答案:B
解析:先将所求关系式化简,再代入求值.
+==.
∵tanα==2,∴sinα=2cosα,
∴sin2α+cos2α=4cos2α+cos2α=5cos2α=1,
∴cos2α=,∴原式==10.故选B.
3.设cos100°=k,则tan100°=( )
A. B.-
C.± D.±
答案:A
解析:∵100°是第二象限角,cos100°=k,
∴sin100°=,∴tan100°=.
4.已知sinθ=,cosθ=,则m的值为( )
A.0 B.8
C.0或8 D.3<m<9
答案:C
解析:利用sin2θ+cos2θ=1,求m的值.
5.化简cos2x=( )
A.tanx B.sinx
C.cosx D.
答案:D
解析:cos2x=cos2x
=·cos2x==.
6.已知tanα=,且α∈,则sinα的值是( )
A.- B.
C. D.-
答案:A
解析:∵α∈,∴sinα<0.由tanα==,sin2α+cos2α=1,得sinα=-.
二、填空题
7.已知tanα=m,则sinα=________.
答案:-
解析:因为tanα=m,所以=m2,
又sin2α+cos2α=1,所以cos2α=,
sin2α=.又因为π<α<,所以tanα>0,
即m>0.因而sinα=-.
8.若cosα+2sinα=-,则tanα=________.
答案:2
解析:将已知等式两边平方,得cos2α+4sin2α+4sinαcosα=5(cos2α+sin2α),化简得sin2α-4sinαcosα+4cos2α=0,即(sinα-2cosα)2=0,则sinα=2cosα,故tanα=2.
9.若tanα+=3,则sinαcosα=________,tan2α+=________.
答案: 7
解析:∵tanα+=3,∴+=3,即=3,∴sinαcosα=.tan2α+=2-2tanα=9-2=7.
三、解答题
10.求证:=.
证明:左边=
=
=
=
=右边.
11.已知tanα=3,求下列各式的值:
(1);
(2);
(3)sin2α+cos2α.
解:(1)
=
==
(2)
=
==-
(3)sin2α+cos2α
=
=
==
能力提升
12.已知A为锐角,lg(1+cosA)=m,lg=n,则lgsinA的值为( )
A.m+ B.m-n
C. D.(m-n)
答案:D
解析:两式相减得lg(1+cosA)-lg=m-n?
lg[(1+cosA)(1-cosA)]=m-n?lg sin2A=m-n,
∵A为锐角,∴sinA>0.∴2lgsinA=m-n.
∴lgsinA=.
13.已知=k,试用k表示sinα-cosα的值.
解:=
==2sinαcosα=k.
当0<α<时,sinα∴sinα-cosα=-
=-=-.
当≤α<时,sinα≥cosα,此时sinα-cosα≥0,
∴sinα-cosα=
==.
1.2.2 同角三角函数的基本关系
整体设计
教学分析
与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵.
同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin24π+cos24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tanα中的α是使得tanα有意义的值,即α≠kπ+,k∈Z.
已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.
三维目标
1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明.
2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明.
3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法.
重点难点
教学重点:课本的三个公式的推导及应用.
教学难点:课本的三个公式的推导及应用.
课时安排
1课时
教学过程
导入新课
思路1.先请学生回忆任意角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课.计算下列各式的值:
(1)sin290°+cos290°;(2)sin230°+cos230°;(3);(4).
推进新课
新知探究
提出问题
①在以下两个等式中的角是否都可以是任意角?若不能,角α应受什么影响?
图1
如图1,以正弦线MP、余弦线OM和半径OP三者的长构成直角三角形,而且OP=1.
由勾股定理有OM2+MP2=1.
因此x2+y2=1,即sin2α+cos2α=1(等式1).
显然,当α的终边与坐标轴重合时,这个公式也成立.
根据三角函数的定义,当α≠kπ+,k∈Z时,有
=tanα(等式2).
这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.
②对于同一个角的正弦、余弦、正切,至少应知道其中的几个值才能利用基本关系式求出其他的三角函数的值.
活动:问题①先让学生用自己的语言叙述同角三角函数的基本关系,然后教师点拨学生思考这两个公式的用处.同时启发学生注意“同一个角”这个前提条件,及使等式分别有意义的角的取值范围.
问题②可让学生展开讨论,点拨学生从方程的角度进行探究,对思考正确的学生给予鼓励,对没有思路的学生教师点拨其思考的方法,最后得出结论“知一求二”.
讨论结果:
①在上述两个等式中,不是所有的角都可以是任意角,在第一个等式中,α可以是任意角,在第二个等式中α≠kπ+,k∈Z.
②在上述两个等式中,只要知道其中任意一个,就可以求出其余的两个.知道正弦(余弦),就可以先求出余弦(正弦),用等式1;进而用第二个等式2求出正切.
应用示例
思路1例1 已知sinα=,并且α是第二象限的角,求cosα,tanα的值.
活动:同角三角函数的基本关系学生应熟练掌握,先让学生接触比较简单的应用问题,明确和正确地应用同角三角函数关系.可以引导学生观察与题设条件最接近的关系式是sin2α+cos2α=1,故cosα的值最容易求得,在求cosα时需要进行开平方运算,因此应根据角α所在的象限确定cosα的符号,在此基础上教师指导学生独立地完成此题.
解:因为sin2α+cos2α=1,所以
cos2α=1-sin2α=1-()2=.
又因为α是第二象限角,所以cosα<0.于是cosα==,
从而tanα==×()=.
点评:本题是直接应用关系求解三角函数值的问题,属于比较简单和直接的问题,让学生体会关系式的用法.
应使学生清楚tanα=中的负号来自α是第二象限角,这也是根据商数关系直接运算后的结果,它不同于在选用平方关系式的三角函数符号的确定.
例2 已知cosα=,求sinα,tanα的值.
活动:教师先引导学生比较例1、例2题设条件的相异处,根据题设条件得出角的终边只能在第二或第三象限.
启发学生思考仅有cosα<0是不能确定角α的终边所在的象限,它可能在x轴的负半轴上(这时cosα=-1).
解:因为cosα<0,且cosα≠-1,所以α是第二或第三象限角.如果α是第二象限角,那么
sinα===,
tanα==×()=,
如果α是第三象限角,那么sinα=,tanα=.
点评:在已知角的一个三角函数值但是不知道角所在的象限的时候,应先根据题目条件讨论角的终边所在的象限,分类讨论所有的情况,得出所有的解.
思路2
例1 已知tanα为非零实数,用tanα表示sinα、cosα.
活动:引导学生思考讨论:角的终边在什么位置;能否直接利用基本关系式求出sinα或cosα的值.由tanα≠0,只能确定α的终边不在坐标轴上.关于sinα、cosα、tanα的关系式只有tanα=,在这个式子中必须知道其中两个三角函数值,才能求出第三个,因此像这类问题的求解,不能一步到位,需要公式的综合应用.其步骤是:先根据条件判断角的终边的位置,讨论出现的所有情况.然后根据讨论的结果,利用基本关系式求解.分情况求出cosα,进而求出sinα.
解:因为sin2α+cos2α=1,所以sin2α=1-cos2α.
又因为tanα=,所以tan2α==.
于是=1+tan2α,cos2α=.
由tanα为非零实数,可知角α的终边不在坐标轴上,从而
cosα=
sinα=cosαtanα=
点评:要求学生灵活运用三角函数公式进行变形、化简、求解.需要学生认真细致分析题目的条件,灵活运用公式,需要较高的思维层次.
变式训练
已知cosα≠0,用cosα表示sinα、tanα.
解:本题仿照上题可以比较顺利完成.
sinα=
tanα=
例2 求证:
活动:先让学生讨论探究证明方法,教师引导思考方向.教材中介绍了两种证明方法:证法一是从算式一边到另一边的证法,算式右边的非零因式1+sinα,在左边没有出现,可考虑左边式子的分子、分母同乘以1+sinx,再化简;在证法二中可以这样分析,要让算式成立,需证cos2x=(1+sinx)(1-sinx),即cos2x=1-sin2x,也就是sin2x+cos2x=1,由平方关系可知这个等式成立,将上述分析过程逆推便可以证得原式成立.
证法一:由cosx≠0,知sinx≠1,所以1+sinx≠0,于是
左边=
所以原式成立.
证法二:因为(1-sinx)(1+sinx)=1-sin2x=cos2x=cosxcosx,
且1-sinx≠0,cosx≠0,所以教师启发学生进一步探究:除了证法一和证法二外你可否还有其他的证明方法.教师和学生一起讨论,由此可探究出证法三.依据“a-b=0a=b”来证明恒等式是常用的证明方法,由学生自己独立完成.
证法三:因为
所以
点评:这是一道很有训练价值的经典例题,教师要充分利用好这个题目.从这个例题可以看出,证明一个三角恒等式的方法有很多.证明一个等式,可以从它的任何一边开始,证得它等于另一边;还可以先证得另一个等式成立,从而推出需要证明的等式成立.
例3 化简
活动:引导学生探究:原式结果为cos440°时是不是最简形式,还应怎么办?教师引导学生运用诱导公式一化简为cos80°,由于cos80°>0,因此=|cos80°|=cos80°,此题不难,让学生独立完成.
解:原式====cos80°.
点评:恰当利用平方关系和诱导公式化简三角函数式.提醒学生注意化简后的简单的三角函数式应尽量满足以下几点:(1)所含的三角函数种类最少;(2)能求值(指准确值)的尽量求值;(3)不含特殊角的三角函数值.
变式训练
化简:
答案:cos40°-sin40°.
点评:提醒学生注意:1±2sinαcosα=sin2α+cos2α±2sinαcosα=(sinα±cosα)2,这是一个很重要的结论.
知能训练
课本本节练习.
解答:1.sinα=,tanα=.
2.当φ为第二象限角时,sinφ=,cosφ=
当φ为第四象限角时,sinφ=,cosφ=.
3.当θ为第一象限角时,cosθ≈0.94,tanθ≈0.37.
当θ为第二象限角时,cosθ≈-0.94,tanθ≈-0.37.
4.(1)cosθtanθ=cosθ=sinθ;
(2)
5.(1)左=(sin2α+cos2α)(sin2α-cos2α)=sin2α-cos2α=右;
(2)左=sin2α(sin2α+cos2α)+cos2α=sin2α+cos2α=1=右.
课堂小结
由学生回顾本节所学的方法知识:①同角三角函数的基本关系式及成立的条件,②根据一个任意角的正弦、余弦、正切中的一个值求出其余的两个值(可以简称“知一求二”)时要注意这个角的终边所在的位置,从而出现一组或两组或四组(以两组的形式给出).
“知一求二”的解题步骤一般为:先确定角的终边位置,再根据基本关系式求值,若已知正弦或余弦,则先用平方关系,再用其他关系求值;若已知正切或余切,则构造方程组求值.
教师和学生一起归纳三角函数式化简与三角恒等式的证明的一般方法及应注意的问题,并让学生总结本节用到的思想方法.
作业
1.化简(1+tan2α)cos2α;
2.已知tanα=2,求的值.
答案:1.1;2.3.
设计感想
公式的推导和应用是本节课的重点,也是本节课的难点.
公式的应用实际上是求可化为完全平方的三角函数式的“算术平方根”的化简题和证明题,这类问题可按下列情形分别处理:
(1)如果这个三角函数式的值的符号可以确定,则可以根据算术平方根的定义直接得到结果;
(2)如果这个三角函数式的值的符号不可以确定,则可根据题设条件,经过合理的分类讨论得到结果.
三角函数式的化简,体现了由繁到简的最基本的数学解题原则,它不仅需要学生能熟悉和灵活运用所学的三角公式,还需要熟悉和灵活运用这些公式的等价形式,同时,这类问题还具有较强的综合性,对其他非三角知识的灵活运用也具有较高的要求,在教学时要注意进行相关知识的复习.
证明恒等式的过程实质上就是分析转化和消去等式两边差异来促成统一的过程,证明时常用的方法一般有以下三种:
(1)依据相等关系的传递性,从等式一边开始,证明它等于另一边,证明时一般遵循由繁到简的原则.
(2)依据“等于同量的两个量相等”证明左、右两边等于同一个式子.
(3)依据等价转化思想,证明与原式等价的另一个式子成立,从而推出原式成立.
教材上在运用这一方法时使用的是综合法,初学恒等式的证明时,运用等价转化的方法可以使证明的思路更清楚一些,实际上,使用综合法时不一定要求进行等价转化,只需证明等式成立的充分条件即可(教师知道即可),证明方法中分别运用到了分式的基本性质和算式的基本性质.
使学生明白,如果算式中含有正弦、余弦、正切等三角函数,为了便于将算式两边沟通,可通过“切化弦”使两边的三角函数相同.
1.2.2 同角三角函数的基本关系
课时目标 1.理解同角三角函数的基本关系式.2.会运用平方关系和商的关系进行化简、求值和证明.
1.同角三角函数的基本关系式
(1)平方关系:____________________.
(2)商数关系:____________(α≠kπ+,k∈Z).
2.同角三角函数基本关系式的变形
(1)sin2α+cos2α=1的变形公式:
sin2α=________;cos2α=________;
(sin α+cos α)2=____________________;
(sin α-cos α)2=________________;
(sin α+cos α)2+(sin α-cos α)2=______;
sin α·cos α=______________________=________________________.
(2)tan α=的变形公式:sin α=________________;cos α=______________.
一、选择题
1.化简sin2α+cos4α+sin2αcos2α的结果是( )
A. B. C.1 D.
2.若sin α+sin2α=1,则cos2α+cos4α等于( )
A.0 B.1 C.2 D.3
3.若sin α=,且α是第二象限角,则tan α的值等于( )
A.- B. C.± D.±
4.已知tan α=-,则的值是( )
A. B.3 C.- D.-3
5.已知sin α-cos α=-,则tan α+的值为( )
A.-4 B.4 C.-8 D.8
6.若cos α+2sin α=-,则tan α等于( )
A. B.2 C.- D.-2
二、填空题
7.已知α是第四象限角,tan α=-,则sin α=________.
8.已知tan θ=2,则sin2θ+sin θcos θ-2cos2θ=________.
9.已知sin αcos α=且<α<,则cos α-sin α=____.
10.若sin θ=,cos θ=,且θ的终边不落在坐标轴上,则tan θ的值为________.
三、解答题
11.化简:.
12.求证:=.
能力提升
13.证明:
(1)-=sin α+cos α;
(2)(2-cos2α)(2+tan2α)=(1+2tan2α)(2-sin2α).
14.已知sin θ、cos θ是关于x的方程x2-ax+a=0的两个根(a∈R).
(1)求sin3θ+cos3θ的值;
(2)求tan θ+的值.
1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin22α+cos22α=1,=tan 8α等都成立,理由是式子中的角为“同角”.
2.已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择.一般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象乱写公式.
3.在进行三角函数式的求值时,细心观察题目的特征,灵活、恰当的选用公式,统一角、统一函数、降低次数是三角函数关系变形的出发点.
1.2.2 同角三角函数的基本关系
答案
知识梳理
1.(1)sin2α+cos2α=1 (2)tan α=
2.(1)1-cos2α 1-sin2α 1+2sin αcos α 1-2sin αcos α 2 (2)cos αtan α
作业设计
1.C 2.B 3.A
4.C [=====-.]
5.C [tan α+=+=.
∵sin αcos α==-,∴tan α+=-8.]
6.B [方法一 由联立消去cos α后得(--2sin α)2+sin2α=1.
化简得5sin2α+4sin α+4=0
∴(sin α+2)2=0,∴sin α=-.
∴cos α=--2sin α=-.
∴tan α==2.
方法二 ∵cos α+2sin α=-,
∴cos2α+4sin αcos α+4sin2α=5,
∴=5,
∴=5,
∴tan2α-4tan α+4=0,
∴(tan α-2)2=0,∴tan α=2.]
7.-
8.
解析 sin2θ+sin θcos θ-2cos2θ==,
又tan θ=2,故原式==.
9.-
解析 (cos α-sin α)2=1-2sin αcos α=,
∵<α<,∴cos α10.
解析 ∵sin2θ+cos2θ=2+2=1,
∴k2+6k-7=0,
∴k1=1或k2=-7.
当k=1时,cos θ不符合,舍去.
当k=-7时,sin θ=,cos θ=,tan θ=.
11.解 原式=
=
=
=
=
===.
12.证明 左边=
=
==
=右边.
∴原等式成立.
13.证明 (1)左边=-
=-
=-
=-
=
=sin α+cos α=右边.
∴原式成立.
(2)∵左边=4+2tan2α-2cos2α-sin2α=2+2tan2α+2sin2α-sin2α=2+2tan2α+sin2α,
右边=(1+2tan2α)(1+cos2α)=1+2tan2α+cos2α+2sin2α=2+2tan2α+sin2α
∴左边=右边,∴原式成立.
14.解 (1)由韦达定理知:
sin θ+cos θ=a,sin θ·cos θ=a.
∵(sin θ+cos θ)2=1+2sin θcos θ,
∴a2=1+2a.
解得:a=1-或a=1+
∵sin θ≤1,cos θ≤1,
∴sin θcos θ≤1,即a≤1,
∴a=1+舍去.
∴sin3θ+cos3θ=(sin θ+cos θ)(sin2θ-sin θcos θ+cos2θ)=(sin θ+cos θ)(1-sin θcos θ)
=a(1-a)=-2.
(2)tan θ+=+=====-1-.