课件24张PPT。§1.4.1正弦函数,余弦函数的图象
【教材分析】
《正弦函数,余弦函数的图象》是高中新教材人教A版必修四的内容,作为函数,它是已学过的一次函数、二次函数、指数函数与对数函数的后继内容,是在已有三角函数线知识的基础上,来研究正余弦函数的图象与性质的,它是学习三角函数图象与性质的入门课,是今后研究余弦函数、正切函数的图象与性质、正弦型函数的图象的知识基础和方法准备。因此,本节的学习在全章中乃至整个函数的学习中具有极其重要的地位与作用。
本节共分两个课时,本课为第一课时,主要是利用正弦线画出的图象,考察图象的特点,用“五点作图法”画简图,并掌握与正弦函数有关的简单的图象平移变换和对称变换;再利用图象研究正余弦函数的部分性质(定义域、值域等)
【教学目标】
1.学会用单位圆中的正弦线画出正余弦函数的图象,通过对正弦线的复习,来发现几何作图与描点作图之间的本质区别,以培养运用已有数学知识解决新问题的能力。
2. 掌握正余弦函数图象的“五点作图法”;
3. 渗透由抽象到具体的思想,使学生理解动与静的辩证关系,培养辩证唯物主义观点。
【教学重点难点】
教学重点:“五点法”画长度为一个周期的闭区间上的正弦函数图象
教学难点:运用几何法画正弦函数图象。
【学情分析】
本课的学习对象为高二下学期的学生,他们经过近一年半的高中学习,已具有一定的学习基础和分析问题、解决问题的能力,思维活跃、想象力丰富、乐于尝试、勇于探索,学习欲望强的学习特点。
【教学方法】
1.学案导学:见后面的学案。
2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
【课前准备】
1.学生的学习准备:预习“正弦函数和余弦函数的性质”,初步把握性质的推导。
2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。
3.教学手段:利用计算机多媒体辅助教学.
【课时安排】1课时
【教学过程】
一、预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
二、复?习导入、展示目标。
1.创设情境:
问题1:三角函数的定义及实质?三角函数线的作法和作用?
设置意图:把问题作为教学的出发点,引起学生的好奇,用操作性活动激发学生求知欲,为发现新知识创设一个最佳的心理和认识环境,关注学生动手能力培养,使教学目标与实验的意图相一致。
学生活动:教师提问,学生回答,教师对学生作答进行点评
多媒体使用:几何画板;PPT
问题2:根据以往学习函数的经验,你准备采取什么方法作出正弦函数的图象?作图过程中有什么困难?
设置意图:为学生提供一个轻松、开放的学习环境,有助于有效地组织课堂学习,有助于带动和提高全体学习的积极性、主动性,更有助于培养学生的集体荣誉感,以及他们的竞争意识
学生活动:给每位同学发一张纸,组织他们完成下面的步骤:描点、连线。
加入竞争机制看谁画得又快又好!???
? 2.探究新知:根据学生的认知水平,正弦曲线的形成分了三个层次:
引导学生画出点 问题一:你是如何得到的呢?如何精确描出这个点呢?
? 问题二:请大家回忆一下三角函数线,看看你是否能有所启发?什么是正弦线?如何作出点展示幻灯片
设置意图:由浅入深、由易到难,帮助学生体会从三角函数线出发,“以已知探求未知”的数学思想方法,培养学生的思维能力。通过对正弦线的复习,来发现几何作图与描点作图之间的本质区别,以培养运用已有数学知识解决新问题的能力。
数形结合,扫清了学生的思维障碍,更好地突破了教学的重难点
学生活动:引导学生由单位圆的正弦线知识,只要已知角x的大小,就可以由几何法作出相应的正弦值来。
(教师在引导学生分析问题过程中,积极观察学生的反映,适时进行激励性评价)
多媒体使用:几何画板;PPT
问题三:能否借用点的方法,作出的图像呢?
?
课件演示:正弦函数图象的几何作图法
设置意图:使学生掌握探究问题的方法,发展他们分析问题和解决问题的能力,老师的点拨,学生探究实践,进一步加深学生对几何法作正弦函数图象的理解。
通过课件演示让学生直观感受正弦函数图象的形成过程。并让学生亲自动手实践,体会数与形的完美结合。
学生活动:一方面分组合作探究,展示动手结果,上台板演,同时回答同学们提出的问题。
? 利用尺规作出图象,后用课件演示
问题四:如何得到的图象?
? 展示幻灯片
设置意图:引导学生想到正弦函数是周期函数,且最小正周期是
问题五:这个方法作图象,虽然比较精确,但不太实用,如何快捷地画出正弦函数的图象呢?
? 学生活动:请同学们观察,边口答在的图象上,起关键作用的点有几个?引导学生自然得到下面五个:
组织学生描出这五个点,并用光滑的曲线连接起来,很自然得到函数的简图,称为“五点法”作图。
“五点法”作图可由师生共同完成
设置意图:积极的师生互动能帮助学生看到知识点之间的联系,有助于知识的重组和迁移。
?把学生推向问题的中心,让学生动手操作,直观感受波形曲线的流畅美,对称美,使学生体会事物不断变化的奥秘。
通过讲解使学生明白“五点法”如何列表,怎样画图象。
小结作图步骤:1、列表2、描点3、连线
思考:如何快速做出余弦函数图像?
根据诱导公式,还可以把正弦函数x=sinx的图象向左平移单位即得余弦函数y=cosx的图象.
三、例题分析
例1、画出下列函数的简图:y=1+sinx ,x∈〔0,2π〕
解析:利用五点作图法按照如下步骤处理1、列表2、描点3、连线
解:(1) 按五个关键点列表:
x
0
π
2π
Sinx
0
1
0
-1
0
1+ Sinx
1
2
1
0
1
描点、连线,画出简图。
变式训练:y=-cosx ,x∈〔0,2π〕
解:按五个关键点列表:
x
0
π
2π
Cosx
1
0
1
0
1
- Cosx
-1
0
1
0
-1
点评:目的有二:(1)巩固新知;(2)从层次上逐层深化、拾级而上,为往后学习三角函数图像的变换打下一定的基础。
四、反思总结与当堂检测:
1、五点(画图)法
(1)作法 先作出五个关键点,再用平滑的曲线将它们顺次连结起来。
(2)用途 只有在精确度要求不高时,才能使用“五点法”作图。
(3)关键点 横坐标:0 π/2 π 3π/2 2π
2、图形变换 平移、翻转等
设置意图:进一步提升学生对本节课重点知识的理解和认识,并体会其应用。
学生活动:学生分组讨论完成
3、画出下列函数的简图:(1) y=|sinx|, (2)y=sin|x|
五、发导学案、布置预习
思考:若从函数
1. 的图像变换分析的图象可由的图象怎样得到?
2.可用什么方法得到的图像??1、“五点法”2、翻折变换
六、板书设计
正弦函数和余弦函数的图像
一、正弦函数的图像 例1
二、作图步骤 1、列表2、描点3、连线 练习:
三、余弦函数
教学反思
学生的学习是一个积极主动的建构过程,而不是被动地接受知识的过程。由于学生已具备初等函数、三角函数线知识,为研究正弦函数图象提供了知识上的积累;因此本教学设计理念是:通过问题的提出,引起学生的好奇,用操作性活动激发学生求知欲,为发现新知识创设一个最佳的心理和认识环境,引导学生关注正弦函数的图象及其作法;并借助电脑多媒体使教师的设计问题与活动的引导密切结合,强调学生“活动”的内化,以此达到使学生有效地对当前所学知识的意义建构的目的,感觉效果很好。
学生们大多数都能完成得很好,但学生对自己的评价还比较保守,表现不太自信,另外我应肯定一下普遍完成任务的所有同学,不只是肯定那几个高手。
但有些同学还是忽视理论探讨,急于动手做,因此总会出现这样或那样的问题,如何让学生少走弯路,对知识理解透彻,在正确的理论引导下顺利完成任务,这是个值得研究的问题。
九、学案设计(见下页)
§1.4.1正弦函数,余弦函数的图象
课前预习学案
一、预习目标
理解并掌握作正弦函数图象的方法,会用五点法作正余弦函数简图.
二、复习与预习
1.正、余弦函数定义:____________________
2.正弦线、余弦线:______________________________
3. 10.正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是: 、 、 、 、 .
20.作在上的图象时,五个关键点是 、 、 、 、 .
步骤:_____________,_______________,____________________.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标
(1)利用单位圆中的三角函数线作出的图象,明确图象的形状;
(2)根据关系,作出的图象;
(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题;
学习重难点:
重点::“五点法”画长度为一个周期的闭区间上的正弦函数图象;
难点:运用几何法画正弦函数图象。
二、学习过程
1.创设情境:
问题1:三角函数的定义及实质?三角函数线的作法和作用?
问题2:根据以往学习函数的经验,你准备采取什么方法作出正弦函数的图象?作图过程中有什么困难?
? 2.探究新知: 问题一:如何?作出的图像呢?
?
问题二:如何得到的图象?
?
问题三:这个方法作图象,虽然比较精确,但不太实用,如何快捷地画出正弦函数的图象呢?
组织学生描出这五个点,并用光滑的曲线连接起来,很自然得到函数的简图,称为“五点法”作图。
“五点法”作图可由师生共同完成
小结作图步骤:
思考:如何快速做出余弦函数图像?
例1、画出下列函数的简图:y=1+sinx ,x∈〔0,2π〕
解析:利用五点作图法按照如下步骤处理1、列表2、描点3、连线
变式训练:y=-cosx ,x∈〔0,2π〕
三、反思总结
1、数学知识:
2、数学思想方法:
四、当堂检测
画出下列函数的简图:(1) y=|sinx|, (2)y=sin|x|
思考:可用什么方法得到的图像?
课后练习与提高
1. 用五点法作的图象.
2. 结合图象,判断方程的实数解的个数.
3.分别利用函数的图象和三角函数线两种方法,求满足下列条件的x的集合:
课件33张PPT。§1.4 三角函数的图象与性质
1.4.1 正弦函数、余弦函数的图象明目标
知重点填要点
记疑点探要点
究所然内容
索引010203当堂测
查疑缺 041.了解利用单位圆中的正弦线画正弦曲线的方法.
2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.
3.理解正弦曲线与余弦曲线之间的联系.明目标、知重点1.正弦曲线、余弦曲线
正弦函数y=sin x(x∈R)和余弦函数y=cos x(x∈R)的图象分别叫 曲线和 曲线.正弦填要点·记疑点余弦2.“五点法”画图
画正弦函数y=sin x,x∈[0,2π]的图象,五个关键点是
;
画余弦函数y=cos x,x∈[0,2π]的图象,五个关键点是
.3.正弦、余弦曲线的联系
依据诱导公式cos x=sin ,要得到y=cos x的图象,只需把y=sin x的图象向 平移 个单位长度即可.左探要点·究所然情境导学遇到一个新函数,它总具有许多基本性质,要直观、全面了解基本特性,自然是从它的图象入手,画出它的图象,观察图象的形状,看看它有什么特殊点,并借助它的图象研究它的性质,如:值域、单调性、奇偶性、最值等.我们今天就学习正弦函数、余弦函数的图象.探究点一 几何法作正弦曲线思考1 在直角坐标系中,如何用正弦线比较精确地画出y=sin x,x∈[0,2π]内的图象?
答 ①作直角坐标系,并在直角坐标系y轴的左侧画单位圆,如图所示.
②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x轴的垂线,可以得到对应于 2π等角的正弦线.③找横坐标:把x轴上从0到2π(2π≈6.28)这一段分成12等份.
④找纵坐标:将正弦线对应平移,即可得到相应点的纵坐标.
⑤连线:用平滑的曲线将这些点依次从左到右连接起来,即得y=sin x,x∈[0,2π]的图象.思考2 如何由y=sin x,x∈[0,2π]的图象得到y=sin x,x∈R的图象?
答 因为终边相同的角有相同的三角函数值,所以函数y=sin x,x∈[2kπ,2(k+1)π),k∈Z且k≠0的图象,与函数y=sin x,x∈[0,2π)的图象的形状完全一致.于是我们只要将函数y=sin x,x∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y=sin x,x∈R的图象.探究点二 五点法作正弦曲线思考1 同学们观察, 在y=sin x,x∈[0,2π]的图象上,起关键作用的点有几个?思考2 如何用描点法画出y=sin x,x∈[0,2π]的图象?小结 描点法画正弦函数y=sin x图象的关键:
(1)列表时,自变量x的数值要适当选取
①在函数定义域内取值;②由小到大的顺序取值;③取的个数应分布均匀;④应注意图形中的特殊点(如:端点,交点,顶点);⑤尽量取特殊角.
(2)描点连线时应注意:①两坐标轴上的单位长度尽可能一致,以免改变图象的真实形状;②变量x,y数值相差悬殊时,也允许采用不同长度单位;③连线时一定要用光滑的曲线连接,防止画成折线.探究点三 余弦曲线思考 如何快速做出余弦函数图象?例1 利用“五点法”作出函数y=1-sin x(0≤x≤2π)的简图.
解 (1)取值列表:(2)描点连线,如图所示.反思与感悟 作正弦、余弦曲线要理解几何法作图,掌握五点法作图.“五点”即y=sin x或y=cos x的图象在[0,2π]内的最高点、最低点和与x轴的交点.“五点法”是作简图的常用方法.跟踪训练1 利用“五点法”作出函数y=-1-cos x(0≤x≤2π)的简图.
解 (1)取值列表如下:(2)描点连线,如图所示.结合图象可得:x∈[-4,-π)∪(0,π).反思与感悟 一些三角函数的定义域可以借助函数图象直观地观察得到,同时要注意区间端点的取舍.例3 在同一坐标系中,作函数y=sin x和y=lg x的图象,根据图象判断出方程sin x=lg x的解的个数.解 建立坐标系xOy,先用五点法画出函数y=sin x,x∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y=sin x的图象.由图象可知方程sin x=lg x的解有3个.反思与感悟 三角函数的图象是研究函数的重要工具,通过图象可较简便的解决问题,这正是数形结合思想方法的应用.跟踪训练3 方程x2-cos x=0的实数解的个数是 .
解析 作函数y=cos x与y=x2的图象,如图所示,
由图象,可知原方程有两个实数解.2当堂测·查疑缺 12341.方程2x=sin x的解的个数为( )
A.1 B.2 C.3 D.无穷多D1234?解析 如图所示.212343.(1)已知f(x)的定义域为[0,1),求f(cos x)的定义域;且x≠2kπ(k∈Z).1234(2)求函数y=lg sin(cos x)的定义域.
解 由sin(cos x)>0?2kπ又∵-1≤cos x≤1,
∴02.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.第10课时 正弦函数、余弦函数的图象
课时目标
1.了解正、余弦函数图象的几何作法.
2.掌握“五点法”作正、余弦函数草图.
识记强化
1.“五点法”作正弦函数图象的五个点是(0,0)、、(π,0)、、(2π,0).“五点法”作余弦函数图象的五个点是(0,1)、、(π,-1)、、(2π,1).
2.作正、余弦函数图象的方法有两种:一是五点法作图象.二是利用正弦线、余弦线来画的几何法.
3.作正弦函数图象可分两步:一是画出[0,2π]的图象.二是把这一图象向左、右连续平行移动(每次2π个单位长度).
课时作业
一、选择题
1.函数y=cosx(x∈R)的图象向左平移个单位后,得到函数y=g(x)的图象,则g(x)的解析式为( )
A.-sinx B.sinx
C.-cosx D.cosx
答案:A
∴g(x)=-sinx,故选A.
2.在同一平面直角坐标系内,函数y=sinx,x∈[0,2π]与y=sinx,x∈[2π,4π]的图象( )
A.重合
B.形状相同,位置不同
C.关于y轴对称
D.形状不同,位置不同
答案:B
解析:根据正弦曲线的作法过程,可知函数y=sinx,x∈[0,2π]与y=sinx,x∈[2π,4π]的图象位置不同,但形状相同.
3.如图所示,函数y=cosx|tanx|(0≤x<且x≠)的图象是( )
答案:C
解析:y=
4.在[0,2π]上满足sinx≥的x的取值范围是( )
A. B.
C. D.
答案:B
解析:由函数y=sinx,x∈[0,2π]的图象,可知≤x≤.
5.函数y=-sinx,x∈的简图是( )
答案:D
解析:由y=sinx与y=-sinx的图象关于x轴对称可知选D.
6.在(0,2π)内,使 sinx>cosx成立的x的取值范围是( )
A.∪
B.
C.
D.∪
答案:C
解析:在同一坐标系中,画出正弦函数、余弦函数图象易得出x的取值范围.
二、填空题
7.若方程sinx=4m+1在x∈[0,2π]上有解,则实数m的取值范围是________.
答案:
解析:由正弦函数的图象,知当x∈[0,2π]时,sinx∈[-1,1],要使得方程sinx=4m+1在x∈[0,2π]上有解,则-1≤4m+1≤1,故-≤m≤0.
8.满足cosx>0,x∈[0,2π]的x的取值范围是________.
答案:∪
解析:画出函数y=cosx,x∈[0,2π]的图象如图所示.
由图象,可知满足cosx>0,x∈[0,2π]的x的取值范围为∪.
9.方程x2=cosx的实根有________个.
答案:2
解析:由函数y=x2,y=cosx的图象(如图所示),可知方程有2个实根.
三、解答题
10.利用“五点法”作出下列函数的简图.
(1)y=2sinx-1(0≤x≤2π);
(2)y=-1-cosx(0≤x≤2π).
解:(1)列表:
x
0
π
2π
2sinx
0
2
0
-2
0
2sinx-1
-1
1
-1
-3
-1
描点作图,如图所示.
(2)列表:
x
0
π
2π
cosx
1
0
-1
0
1
-1-cosx
-2
-1
0
-1
-2
描点作图,如图所示.
11.求下列函数的定义域.
(1)y=;
(2)y=.
解:(1)为使函数有意义,需满足,即,
根据函数y=sinx,x∈[0,2π]的图象,得x∈∪.
∴所求函数的定义域为∪,k∈Z.
(2)为使函数有意义,需满足2sin2x+cosx-1≥0,
即2cos2x-cosx-1≤0,
解得-≤cosx≤1.
由余弦函数的图象,知2kπ-≤x≤2kπ+,k∈Z,
∴所求函数的定义域为
.
能力提升
12.用“五点法”作函数y=sinx-1,x∈[0,2π]的图象时,应取的五个关键点的坐标是________.
答案:(0,-1),,(π,-1),,(2π,-1)
13.
若函数y=2cosx(0≤x≤2π)的图象和直线y=2围成一个封闭的平面图形,求这个封闭图形的面积.
解:如图所示,由函数y=2cosx(0≤x≤2π)的对称性可知,所求封闭图形的面积等于矩形ABDE面积的.∵S矩形ABDE=2π×4=8π,
∴所求封闭图形的面积为4π.
1.4 三角函数的图象与性质
1.4.1 正弦函数、余弦函数的图象
整体设计
教学分析
研究函数的性质常常以图象直观为基础,这点学生已经有些经验,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想的应用.正弦函数、余弦函数的教学也是如此.先研究它们的图象,在此基础上再利用图象来研究它们的性质.显然,加强数形结合是深入研究函数性质的基本要求.
由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此,教科书把对周期性的研究放在了首位.另外,教科书通过“旁白”,指出研究三角函数性质“就是要研究这类函数具有的共同特点”,这是对数学思考方向的一种引导.
由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.
三维目标
1.通过实验演示,让学生经历图象画法的过程及方法,通过对图象的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力.
2.通过本节学习,理解正弦函数、余弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.
3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观.
重点难点
教学重点:正弦函数、余弦函数的图象.
教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.
课时安排
1课时
教学过程
导入新课
思路1.(复习导入)遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们图象的(列表描点法:列表、描点、连线)?进而引导学生通过取值,画出当x∈[0,2π]时,y=sinx的图象.
思路2.(情境导入)请学生动手做一做章头图表示的“简谐运动”实验.教师指导学生将塑料瓶底部扎一个小孔做成一个漏斗,再挂在架子上,就做成了一个简易单摆.在漏斗下方放一块纸板,板的中间画一条直线作为坐标系的横轴.把漏斗灌上沙并拉离平衡位置,放手使它摆动,同时匀速拉动纸板,这样就可在纸板上得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.它表示了漏斗对平衡位置的位移s(纵坐标)随时间t(横坐标)变化的情况.
有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象.
推进新课
新知探究
提出问题
问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图象呢?
问题②:如何得到y=sinx,x∈R时的图象?
活动:教师先让学生阅读教材、思考讨论,对于程度较弱的学生,教师指导他们查阅课本上的正弦线.此处的难点在于为什么要用正弦线来作正弦函数的图象,怎样在x轴上标横坐标?为什么将单位圆分成12份?学生思考探索仍不得要领时,教师可进行适时的点拨.只要解决了y=sinx,x∈[0,2π]的图象,就很容易得到y=sinx,x∈R时的图象了.
对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x轴上从0到2π这一段分成12等份.由于单位圆周长是2π,这样就解决了横坐标问题.过⊙O1上的各分点作x轴的垂线,就可以得到对应于0、、、、、…、2π等角的正弦线,这样就解决了纵坐标问题(相当于“列表”).第二步,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,这就得到了函数对(x,y)(相当于“描点”).第三步,再把这些正弦线的终点用平滑曲线连接起来,我们就得到函数y=sinx在[0,2π]上的一段光滑曲线(相当于“连线”).如图1所示(这一过程用课件演示,让学生仔细观察怎样平移和连线过程.然后让学生动手作图,形成对正弦函数图象的感知).这是本节的难点,教师要和学生共同探讨.
图1
对问题②,因为终边相同的角有相同的三角函数值,所以函数y=sinx在x∈[2kπ,2(k+1)π],k∈Z且k≠0上的图象与函数y=sinx在x∈[0,2π]上的图象的形状完全一致,只是位置不同.于是我们只要将函数y=sinx,x∈[0,2π]的图象向左、右平行移动(每次2π个单位长度),就可以得到正弦函数y=sinx,x∈R的图象.(这一过程用课件处理,让同学们仔细观察整个图的形成过程,感知周期性)
图2
讨论结果:①利用正弦线,通过等分单位圆及平移即可得到y=sinx,x∈[0,2π]的图象.
②左、右平移,每次2π个长度单位即可.
提出问题
如何画出余弦函数y=cosx,x∈R的图象?你能从正弦函数与余弦函数的关系出发,利用正弦函数图象得到余弦函数图象吗?
活动:如果再用余弦线作余弦函数的图象那太麻烦了,根据已学的知识,教师引导学生观察诱导公式,思考探究两个函数之间的关系,通过怎样的坐标变换可得到余弦函数图象?让学生从函数解析式之间的关系思考,进而学习通过图象变换画余弦函数图象的方法.让学生动手做一做,体会正弦函数图象与余弦函数图象的异同,感知两个函数的整体形状,为下一步学习正弦函数、余弦函数的性质打下基础.
讨论结果:
把正弦函数y=sinx,x∈R的图象向左平移个单位长度即可得到余弦函数图象.如图3.
图3
正弦函数y=sinx,x∈R的图象和余弦函数y=cosx,x∈R的图象分别叫做正弦曲线和余弦曲线点.
提出问题
问题①:以上方法作图,虽然精确,但不太实用,自然我们想寻求快捷地画出正弦函数图象的方法.你认为哪些点是关键性的点?
问题②:你能确定余弦函数图象的关键点,并作出它在[0,2π]上的图象吗?
活动:对问题①,教师可引导学生从图象的整体入手观察正弦函数的图象,发现在[0,2π]上有五个点起关键作用,只要描出这五个点后,函数y=sinx在[0,2π]上的图象的形状就基本上确定了.这五点如下:
(0,0),(,1),(π,0),(,-1),(2π,0).
因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑的曲线将它们连接起来,就可快速得到函数的简图.这种近似的“五点(画图)法”是非常实用的,要求熟练掌握.
对问题②,引导学生通过类比,很容易确定在[0,2π]上起关键作用的五个点,并指导学生通过描这五个点作出在[0,2π]上的图象.
讨论结果:①略.
②关键点也有五个,它们是:(0,1),(,0),(π,-1),(,0),(2π,1).
应用示例
思路1
例1 画出下列函数的简图
(1)y=1+sinx,x∈[0,2π];(2)y=-cosx,x∈[0,2π].
活动:本例的目的是让学生在教师的指导下会用“五点法”画图,并通过独立完成课后练习1领悟画正弦、余弦函数图象的要领,最终达到熟练掌握.从实际教学来看,“五点法”画图易学却难掌握,学生需练好扎实的基本功.可先让学生按“列表、描点、连线”三步来完成.对学生出现的种种失误,教师不要着急,在学生操作中指导一一纠正,这对以后学习大有好处.
解:(1)按五个关键点列表:
x
0
π
2π
sinx
0
1
0
-1
0
1+sinx
1
2
1
0
1
描点并将它们用光滑的曲线连接起来(图4).
图4
(2)按五个关键点列表:
x
0
π
2π
cosx
1
0
-1
0
1
-cosx
-1
0
1
0
-1
描点并将它们用光滑的曲线连接起来(图5).
图5
点评:“五点法”是画正弦函数、余弦函数简图的基本方法,本例是最简单的变化.本例的目的是让学生熟悉“五点法”.如果是多媒体教学,要突破课件教学的互动性,多留给学生一些动手操作的时间,或者增加图象纠错的环节,效果将会令人满意,切不可教师画图学生看.完成本例后,让学生阅读本例下面的“思考”,并回答如何通过图象变换得出要画的图象,让学生从另一个角度熟悉函数作图的方法.
变式训练
2007山东临沂一摸统考17(1)在给定的直角坐标系如图6中,作出函数f(x)=cos(2x+)在区间[0,π]上的图象.
解:列表取点如下:
x
0
π
π
2π
f(x)
1
0
0
1
描点连线作出函数f(x)=cos(2x+)在区间[0,π]上的图象如图7所示.
图6 图7
思路2
例1 画出函数y=|sinx|,x∈R的简图.
活动:教师引导学生观察探究y=sinx的图象并思考|sinx|的意义,发现只要将其x轴下方的图象翻上去即可.进一步探究发现,只要画出y=|sinx|,x∈[0,π]的图象,然后左、右平移(每次π个单位)就可以得到y=|sinx|,x∈R的图象.让学生尝试寻找在[0,π]上哪些点起关键作用,易看出起关键作用的点有三个:(0,0),(,1),(π,0).然后列表、描点、连线,让学生自己独立操作完成,对其失误的地方再予以一一纠正.
解:按三个关键点列表:
x
0
π
sinx
0
1
0
y=|sinx|
0
1
0
描点并将它们用光滑的曲线连接起来(图8).
图8
点评:通过本例,让学生更深刻地理解正弦曲线及“五点法”画图的要义,并进一步从图象变换的角度认识函数之间的关系,也为下一步将要学习的周期打下伏笔.
变式训练
1.方程sinx=的根的个数为( )
A.7 B.8 C.9 D.10
解:这是一个超越方程,无法直接求解,可引导学生考虑数形结合的思想方法,将其转化为函数y=的图象与y=sinx的图象的交点个数问题,借助图形直观求解.解好本题的关键是正确地画出正弦函数的图象.如
图9,从图中可看出,两个图象有7个交点.
图9
答案:A
2.用五点法作函数y=2sin2x的图象时,首先应描出的五点横坐标可以是( )
A.0,,,2π B.0,,,,π
C.0,π,2π,3π,4π D.0,,,,
答案:B
知能训练
课本本节练习
解答:
1.可以用单位圆中的三角函数线作出它们的图象,也可以用“五点法”作出它们的图象,还可以用图形计算器或计算机直接作出它们的图象.两条曲线形状相同,位置不同,例如函数y=sinx,x∈[0,2π]的图象,可以通过将函数y=cosx,x∈[,]的图象向右平行移动个单位长度而得到(图10).
图10
点评:在同一个直角坐标系中画出两个函数图象,利于对它们进行对比,可以加强正弦函数与余弦函数的联系.通过多种方法画图,渗透数形结合思想,强化学生对数学概念本质的认识.
2.两个函数的图象相同.
点评:先用“五点法”画出余弦函数的图象,再通过对比函数解析式发现另一函数的图象的变化规律,最后变换余弦曲线得到另一函数的图象(图11).
图11
课堂小结
以提问的方式,先由学生反思学习内容并回答,教师再作补充完善.
1.怎样利用“周而复始”的特点,把区间[0,2π]上的图象扩展到整个定义域的?
2.如何利用图象变换从正弦曲线得到余弦曲线?
这节课学习了正弦函数、余弦函数图象的画法.除了它们共同的代数描点法、几何描点法之外,余弦函数图象还可由平移交换法得到.“五点法”作图是比较方便、实用的方法,应熟练掌握.数形结合思想、运动变化观点都是学习本课内容的重要思想方法.
作业
1.课本习题1.4 A组1.
2.预习下一节:正弦函数、余弦函数的性质.
设计感想
1.本节课操作性强,学生活动量较大.新课从实验演示入手,形成图象的感知后,升级问题,探索正弦曲线准确的作法,形成理性认识.问题设置层层深入,引导学生发现问题,解决问题,并对方法进行归纳总结,体现了新课标“以学生为主体,教师为主导”的课堂教学理念.如用多媒体课件,则可生动地表现出函数图象的变化过程,更好地突破难点.
2.本节课所画的图象较多,能迅速准确地画出函数图象对初学者来说是一个较高的要求,重在学生动手操作,不要怕学生出错.通过画图可以培养学生的动手能力、模仿能力.开始时要慢些,尤其是“五点法”,每个点都要能准确地找到,然后迅速画出图象.
3.本小节设置的“探究”“思考”较多,还提供了“探究与发现”“信息技术应用”等拓展性栏目.教学时,应留给学生一定的时间思考、探究这些问题.
§1.4 三角函数的图象与性质
1.4.1 正弦函数、余弦函数的图象
课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.
1.正弦曲线、余弦曲线
2.“五点法”画图
画正弦函数y=sin x,x∈[0,2π]的图象,五个关键点是_________________________;
画余弦函数y=cos x,x∈[0,2π]的图象,五个关键点是__________________________.
3.正、余弦曲线的联系
依据诱导公式cos x=sin,要得到y=cos x的图象,只需把y=sin x的图象向________平移个单位长度即可.
一、选择题
1.函数y=sin x (x∈R)图象的一条对称轴是( )
A.x轴 B.y轴
C.直线y=x D.直线x=
2.函数y=cos x(x∈R)的图象向右平移个单位后,得到函数y=g(x)的图象,则g(x)的解析式为( )
A.-sin x B.sin x
C.-cos x D.cos x
3.函数y=-sin x,x∈[-,]的简图是( )
4.在(0,2π)内使sin x>|cos x|的x的取值范围是( )
A. B.∪
C. D.
5.若函数y=2cos x(0≤x≤2π)的图象和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是( )
A.4 B.8 C.2π D.4π
6.方程sin x=lg x的解的个数是( )
A.1 B.2 C.3 D.4
题 号
1
2
3
4
5
6
答 案
二、填空题
7.函数y=sin x,x∈R的图象向右平移个单位后所得图象对应的函数解析式是__________.
8.函数y=的定义域是________________.
9.方程x2-cos x=0的实数解的个数是________.
10.设0≤x≤2π,且|cos x-sin x|=sin x-cos x,则x的取值范围为________.
三、解答题
11.利用“五点法”作出下列函数的简图:
(1)y=1-sin x(0≤x≤2π);
(2)y=-1-cos x(0≤x≤2π).
12.分别作出下列函数的图象.
(1)y=|sin x|,x∈R;
(2)y=sin|x|,x∈R.
能力提升
13.求函数f(x)=lg sin x+的定义域.
14.函数f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,求k的取值范围.
1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.
2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.
§1.4 三角函数的图象与性质
1.4.1 正弦函数、余弦函数的图象
答案
知识梳理
2.(0,0),,(π,0),,(2π,0) (0,1),,(π,-1),,(2π,1)
3.左
作业设计
1.D 2.B 3.D
4.A [
∵sin x>|cos x|,
∴sin x>0,∴x∈(0,π),在同一坐标系中画出y=sin x,x∈(0,π)与y=|cos x|,x∈(0,π)的图象,观察图象易得x∈.]
5.D [
作出函数y=2cos x,x∈[0,2π]的图象,函数y=2cos x,x∈[0,2π]的图象与直线y=2围成的平面图形,如图所示的阴影部分.
利用图象的对称性可知该平面图形的面积等于矩形OABC的面积,又∵|OA|=2,|OC|=2π,
∴S平面图形=S矩形OABC=2×2π=4π.]
6.C [用五点法画出函数y=sin x,x∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y=sin x的图象.
描出点,(1,0),(10,1)并用光滑曲线连接得到y=lg x的图象,如图所示.
由图象可知方程sin x=lg x的解有3个.]
7.y=-cos x
解析 y=sin xy=sin
∵sin=-sin=-cos x,∴y=-cos x.
8.,k∈Z
解析 2cos x+1≥0,cos x≥-,结合图象知x∈,k∈Z.
9.2
解析 作函数y=cos x与y=x2的图象,如图所示,
由图象,可知原方程有两个实数解.
10.
解析 由题意知sin x-cos x≥0,即cos x≤sin x,在同一坐标系画出y=sin x,x∈[0,2π]与
y=cos x,x∈[0,2π]的图象,如图所示:
观察图象知x∈[,π].
11.解 利用“五点法”作图
(1)列表:
X
0
π
2π
sin x
0
1
0
-1
0
1-sin x
1
0
1
2
1
描点作图,如图所示.
(2)列表:
X
0
π
2π
cos x
1
0
-1
0
1
-1-cos x
-2
-1
0
-1
-2
描点作图,如图所示.
12.解 (1)y=|sin x|= (k∈Z).
其图象如图所示,
(2)y=sin|x|=,其图象如图所示,
13.解 由题意,x满足不等式组,即,作出y=sin x的图象,如图所示.
结合图象可得:x∈[-4,-π)∪(0,π).
14.解 f(x)=sin x+2|sin x|=
图象如图,
若使f(x)的图象与直线y=k有且仅有两个不同的交点,根据上图可得k的取值范围是(1,3).