高中数学(人版A版必修四)配套课件(2份)、教案、学案、同步练习题,补习复习资料:2.3.1 平面向量基本定理

文档属性

名称 高中数学(人版A版必修四)配套课件(2份)、教案、学案、同步练习题,补习复习资料:2.3.1 平面向量基本定理
格式 zip
文件大小 3.3MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-22 16:21:05

文档简介

课件21张PPT。2. 3.1 平面向量基本定理
教学目标:
(1)了解平面向量基本定理;
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量
解决实际问题的重要思想方法;
(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
教学重点:平面向量基本定理.
教学难点:平面向量基本定理的理解与应用.
教学过程:
复习引入:
1.实数与向量的积:实数λ与向量的积是一个向量,记作:λ
(1)|λ|=|λ|||;(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=
2.运算定律
结合律:λ(μ)=(λμ) ;分配律:(λ+μ)=λ+μ, λ(+)=λ+λ
3. 向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ.
二、讲解新课:
平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2.
探究:
(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2) 基底不惟一,关键是不共线;
(3) 由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量
三、讲解范例:
例1 已知向量, 求作向量(2.5+3.
例2 如图 ABCD的两条对角线交于点M,且=,=,用,表示,,和
例3已知 ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+++=4
例4(1)如图,,不共线,=t (t(R)用,表示.
(2)设不共线,点P在O、A、B所在的平面内,且.求证:A、B、P三点共线.
例5 已知 a=2e1-3e2,b= 2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数与c共线.
四、课堂练习:见教材
五、小结(略)
六、课后作业(略):
七、板书设计(略)
八、教学反思

2.3.1平面向量的基本定理
课前预习学案
一、预习目标:通过回顾复习向量的线性运算,提出新的疑惑.为新授内容做好铺垫.
二、预习内容
(一)复习回顾
1.实数与向量的积:实数λ与向量的积是一个向量,记作:λ
(1)|λ|= ;(2)λ>0时λ与方向 ;λ<0时λ与方向 ;λ=0时λ=
2.运算定律
结合律:λ(μ)= ;分配律:(λ+μ)= , λ(+)= .
3. 向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使 .
(二)阅读教材,提出疑惑:
如何通过向量的线性运算来表示出平面内的任意向量?
课内探究学案
一、学习目标 1、知道平面向量基本定理;
2、理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步应用向量解决实际问题;
3、能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示.
学习重难点:
1. 教学重点:平面向量基本定理
2. 教学难点:平面向量基本定理的理解与应用
二、学习过程
(一)定理探究:
平面向量基本定理:


探究:
(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的 ;
(2) 基底不惟一,关键是 ;
(3) 由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式 . 即λ1,λ2是被,,唯一确定的数量
(二)例题讲解
例1 已知向量, 求作向量(2.5+3.
例2、如图 ABCD的两条对角线交于点M,且=,=,用,表示,,和

例3已知 ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+++=4
例4(1)如图,,不共线,=t (t(R)用,表示.
(2)设不共线,点P在O、A、B所在的平面内,且.求证:A、B、P三点共线.
例5 已知 a=2e1-3e2,b= 2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数与c共线.
(三)反思总结
课后练习与提高
1.设e1、e2是同一平面内的两个向量,则有( )
A.e1、e2一定平行
B.e1、e2的模相等
C.同一平面内的任一向量a都有a =λe1+μe2(λ、μ∈R)
D.若e1、e2不共线,则同一平面内的任一向量a都有a =λe1+ue2(λ、u∈R)
2.已知向量a = e1-2e2,b =2e1+e2,其中e1、e2不共线,则a+b与c =6e1-2e2的关系
A.不共线 B.共线 C.相等 D.无法确定
3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于( )
A.3 B.-3 C.0 D.2
4.已知a、b不共线,且c =λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1= .
5.已知λ1>0,λ2>0,e1、e2是一组基底,且a =λ1e1+λ2e2,则a与e1_____,a与e2_________(填共线或不共线).

课件37张PPT。§2.3 平面向量的基本定理及坐标表示
2.3.1 平面向量基本定理明目标
知重点填要点
记疑点探要点
究所然内容
索引010203当堂测
查疑缺 041.理解平面向量基本定理的内容,了解向量的一组基底的含义.
2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.
3.会应用平面向量基本定理解决有关平面向量的综合问题.明目标、知重点1.平面向量基本定理
(1)定理:如果e1,e2是同一平面内的两个 向量,那么对于这一平面内的 向量a, 实数λ1,λ2,使a= .
(2)基底:把 的向量e1,e2叫做表示这一平面内
向量的一组基底.不共线填要点·记疑点任意有且只有一对λ1e1+λ2e2不共线所有2.两向量的夹角与垂直
(1)夹角:已知两个 向量a和b,如图,作
则 =θ (0°≤θ≤180°)叫做向量a与b的夹角.
①范围:向量a与b的夹角的范围是 .
②当θ=0°时,a与b .
③当θ=180°时,a与b .
(2)垂直:如果a与b的夹角是 ,则称a与b垂直,记作 .非零∠AOB[0°,180°]同向反向90°a⊥b探要点·究所然情境导学在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?探究点一 平面向量基本定理的提出答 通过观察,可得:思考2 根据上述分析,平面内任一向量a都可以由这个平面内两个不共线的向量e1,e2表示出来,从而可形成一个定理.你能完整地描述这个定理的内容吗?
答 若e1、e2是同一平面内的两个不共线向量,则对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.思考3 上述定理称为平面向量基本定理,不共线向量e1,e2叫做表示这一平面内所有向量的一组基底. 那么同一平面内可以作基底的向量有多少组?不同基底对应向量a的表示式是否相同?平面向量的基底唯一吗?
答 同一平面内可以作基底的向量有无数组,不同基底对应向量a的表示式不相同.
平面向量的基底不唯一.只要两个向量不共线,都可以作为平面的一组基底.探究点二 平面向量基本定理的证明思考1 证明定理中λ1,λ2的存在性.
如图,e1,e2是平面内两个不共线的向量,a是这
一平面内任一向量,a能否表示成λ1e1+λ2e2的形
式,请通过作图探究a与e1、e2之间的关系.过点C分别作平行于OB,OA的直线,交直线OA于点M,交直线OB于点N,思考2 证明定理中λ1,λ2的唯一性.
如果e1、e2是同一平面内的两个不共线的向量,a是和e1、e2共面的任一向量,且存在实数λ1、λ2使a=λ1e1+λ2e2,证明λ1,λ2是唯一确定的.(提示:利用反证法)
答 假设存在另一组实数λ′1,λ′2也能使
a=λ′1e1+λ′2e2成立,则λ′1e1+λ′2e2=λ1e1+λ2e2.
∴(λ′1-λ1)e1+(λ′2-λ2)e2=0.
∵e1、e2不共线,∴λ′1-λ1=λ′2-λ2=0,
∴λ′1=λ1,λ′2=λ2.
∴使a=λ1e1+λ2e2成立的实数对λ1,λ2是唯一的.探究点三 向量的夹角思考1 已知a、b是两个非零向量,过点O如何作出
它们的夹角θ?两个非零向量夹角的范围是怎样规定
的?确定两个向量夹角时,要注意什么事项?∠AOB=θ,就是a与b的夹角.
两个非零向量夹角的范围是0°≤θ≤180°,确定两个向量夹角时要注意先使向量的始点相同,再确定大小.思考2 在等边三角形ABC中,试写出下面向量的夹角?例1 已知e1,e2是平面内两个不共线的向量,a=3e1-2e2,
b=-2e1+e2,c=7e1-4e2,试用向量a和b表示c.
解 ∵a,b不共线,
∴可设c=xa+yb,则xa+yb=x(3e1-2e2)+y(-2e1+e2)=(3x-2y)e1+(-2x+y)e2=7e1-4e2.解得x=1,y=-2,∴c=a-2b.反思与感悟 选定基底之后,就要“咬定”基底不放,并围绕它做中心工作,千方百计用基底表示目标向量.要充分利用平面几何知识,将平面几何知识中的性质、结论与向量知识有机结合,具体问题具体分析,从而解决问题.反思与感悟 用基底表示向量的关键是利用三角形或平行四边形将基底和所要表示的向量联系起来.解决此类题时,首先仔细观察所给图形.借助于平面几何知识和共线向量定理,结合平面向量基本定理解决.例3 已知|a|=|b|,且a与b的夹角为120°,求a+b与a的夹角,a-b与a的夹角.∵|a|=|b|,∴平行四边形OACB为菱形.∴a+b与a的夹角为60°,a-b与a的夹角为30°.反思与感悟 求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,根据向量夹角的概念确定夹角,再依据平面图形的知识求解向量的夹角.过程简记为“一作二证三算”.跟踪训练3 如图,已知△ABC是等边三角形.解 (1)∵△ABC为等边三角形,
∴∠ABC=60°.如图,延长AB至点D,使AB=BD,∵∠DBC=120°,解 ∵E为BC的中点,
∴AE⊥BC,当堂测·查疑缺 12341.等边△ABC中, 与的夹角是(  )
A.30° B.45° C.60° D.120°D12342.设e1、e2是不共线的两个向量,给出下列四组向量:①e1与e1+e2;②e1-2e2与e2-2e1;③e1-2e2与4e2-2e1;
④e1+e2与e1-e2.其中能作为平面内所有向量的一组基底的序号是_________.(写出所有满足条件的序号)
解析 对于③4e2-2e1=-2e1+4e2
=-2(e1-2e2),∴e1-2e2与4e2-2e1共线,不能作为基底.①②④12341234解 连接AG并延长,交BC于点D,则D为BC的中点,1234呈重点、现规律1.对基底的理解
(1)基底的特征
基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件.
(2)零向量与任意向量共线,故不能作为基底.2.准确理解平面向量基本定理
(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.
(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.第21课时平面向量基本定理
课时目标
1.了解平面向量的基本定理及其意义.
2.能正确的运用平面向量基本定理解决问题.
识记强化
1.平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
2.已知两个非零向量a和b,作=a、=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.如果a与b的夹角是90°,我们就说a与b垂直,记作a⊥b.
课时作业
一、选择题
1.下列各组向量中,一定能作为基底的是()
A.a=0,b≠0
B.a=3e,b=-3e(e≠0)
C.a=2e1-e2,b=e1+2e2(e1,e2不共线)
D.a=4e1+4e2,b=-2e1-2e2(e1,e2不共线)
答案:C
解析:由平面向量基本定理知,a,b不共线,∴选C.
2.设a,b是不共线的两个非零向量,已知=2a+pb,=a+b,=a-2b.若A,B,D三点共线,则p的值为()
A.1B.2
C.-2 D.-1
答案:D
解析:=+=2a-b,=2a+pb,由A,B,D三点共线,知存在实数λ,使2a+pb=2λa-λb.∵a,b不共线,∴,∴p=-1.
3.在矩形ABCD中,O是对角线的交点,若=e1,=e2,则=()
A.(e1+e2) B.(e1-e2)
C.(2e2-e1) D.(e2-e1)
答案:A
解析:因为O是矩形ABCD对角线的交点,=e1,=e2,所以=(+)=(e1+e2),故选A.
4.已知非零向量,不共线,且2=+y,若=λ(λ∈R),则x,y满足的关系是()
A.x+y-2=0 B.2x+y-1=0
C.x+2y-2=0 D.2x+y-2=0
答案:A
解析:由=λ,得-=λ(-),即=(1+λ)-λ.又2=x+y,∴,消去λ得x+y=2.
5.已知四边形ABCD是菱形,点P在对角线AC上(不包括端点),则=()
A.λ(+),λ∈(0,1)
B.λ(+),λ∈
C.λ(-),λ∈(0,1)
D.λ(-),λ∈
答案:A
解析:如图所示,=+.又点P在AC上,∴与同向,且||<||,故=λ(+),λ∈(0,1).
6.若点O是?ABCD的两条对角线AC与BD的交点,且=4e1,=6e2,则3e2-2e1等于()
A. B.
C. D.
答案:C
解析:3e2-2e1=(6e2-4e1)=(-)
=(-)==.
二、填空题
7.已知e1,e2是两个不共线向量,a=k2e1+e2与b=2e1+3e2共线,则实数k=________.
答案:-2或
解析:由题设,知=,∴3k2+5k-2=0,解得k=-2或.
8.已知e1,e2是两个不共线向量,若a=2e1-e2与b=e1+λe2共线,则λ=________.
答案:-
解析:因为a=2e1-e2与b=e1+λe2共线,所以存在唯一的μ,使2e1-e2=μ(e1+λe2)=μe1+μλe2,所以μ=2,μλ=-1,故λ=-.
9.已知平行四边形ABCD中,E为CD的中点,=y,=x,其中x,y∈R,且均不为0.若∥,则=________.
答案:
解析:∵=-=x-y,由∥,可设=λ,即x-y=λ(-)=λ=-+λ,∴,则=.
三、解答题
10.
如图,在?ABCD中,=a,=b,=3,M为BC的中点,试用a,b表示.
解:由=3,知N为AC的四等分点.
=+
=-
=-(+)
=-+
=-a+b.
11.已知向量a=2e1-3e2,b=2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,若存在实数λ和μ,使d=λ a+μb与c共线,那么实数λ和μ应该是什么关系?
解:∵d=λa+μb=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d与c共线,则应有实数k,使d=kc,
即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,
由得λ=-2μ,故存在这样的实数λ,μ,只要λ=-2μ,就能使d与c共线.
能力提升
12.在平行四边形ABCD中,E和F分别是边CD和BC的中点.若=λ+μ,其中λ,μ∈R,则λ+μ=________.
答案:
解析:选择,作为平面向量的一组基底,则=+,=+,=+,又=λ+μ=(λ+μ)+(λ+μ),
于是得解得
所以λ+μ=.
13.
如图,在△ABC中,D、F分别是BC、AC的中点,=,=a,=b.
求证:B、E、F三点共线.
证明:如图所示,延长AD到G,使=2,连接BG、CG,得到平行四边形ABGC,
则=a+b,
==(a+b)
==(a+b)
==b,
=-=(a+b)-a=(b-2a).
又=-=b-a=(b-2a).
所以=,
又因为与有公共点B,所以B、E、F三点共线.
2.3 平面向量的基本定理及其坐标表示
2.3.1 平面向量基本定理
2.3.2 平面向量的正交分解及坐标表示
整体设计
教学分析
平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.
在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果选取互相垂直的向量作为基底时,会给问题的研究带来方便.联系平面向量基本定理和向量的正交分解,由点在直角坐标系中的表示得到启发,要在平面直角坐标系中表示一个向量,最方便的是分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,这时,对于平面直角坐标系内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=xi+yj.
于是,平面内的任一向量a都可由x、y唯一确定,而有序数对(x,y)正好是向量a的终点的坐标,这样的“巧合”使平面直角坐标系内的向量与坐标建立起一一映射,从而实现向量的“量化”表示,使我们在使用向量工具时得以实现“有效能算”的思想.
三维目标
1.通过探究活动,能推导并理解平面向量基本定理.
2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
3.了解向量的夹角与垂直的概念,并能应用于平面向量的正交分解中,会把向量正交分解,会用坐标表示向量.
重点难点
教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面
向量的坐标表示.
教学难点:平面向量基本定理的运用.
课时安排
1课时
教学过程
导入新课
思路1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?又如一个放在斜面上的物体所受的竖直向下的重力G,可分解为使物体沿斜面下滑的力F1和使物体垂直于斜面且压紧斜面的力F2.我们知道飞机在起飞时若沿仰角α的方向起飞的速度为v,可分解为沿水平方向的速度vcosα和沿竖直方向的速度vsinα.从这两个实例可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.如果e1、e2是同一平面内的两个不共线的向量,a是这一平面内的任一向量,那么a与e1、e2之间有什么关系呢?在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.在平面上,如果选取互相垂直的向量作为基底,是否会给我们带来更方便的研究呢?
思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?
推进新课
新知探究
提出问题
图1
①给定平面内任意两个不共线的非零向量e1、e2,请你作出向量3e1+2e2、e1-2e2.平面内的任一向量是否都可以用形如λ1e1+λ2e2的向量表示呢?
②如图1,设e1、e2是同一平面内两个不共线的向量,a是这一平面内的任一向量,我们通过作图研究a与e1、e2之间的关系.
活动:如图1,在平面内任取一点O,作=e1,=e2,=a.过点C作平行于直线OB的直线,与直线OA;过点C作平行于直线OA的直线,与直线OB交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得=λ1e1,=λ2e2.由于,所以a=λ1e1+λ2e2.也就是说,任一向量a都可以表示成λ1e1+λ2e2的形式.
由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e1、e2表示出来.当e1、e2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.
由此可得:平面向量基本定理:
如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.
定理说明:(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不唯一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式唯一.
讨论结果:①可以.
②a=λ1e1+λ2e2.
提出问题
①平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?
②对平面中的任意一个向量能否用两个互相垂直的向量来表示?
活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:
图2
已知两个非零向量a和b(如图2),作=a,=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.
显然,当θ=0°时,a与b同向;当θ=180°时,a与b反向.因此,两非零向量的夹角在区间[0°,180°]内.
如果a与b的夹角是90°,我们说a与b垂直,记作a⊥b.
由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量λ1a1和λ2a2,使a=λ1a1+λ2a2.
在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.
在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.
讨论结果:①存在夹角且两个非零向量的夹角在区间[0°,180°]内;向量与直线的夹角不一样.
②可以.
提出问题
①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?
②在平面直角坐标系中,一个向量和坐标是否是一一对应的?
图3
活动:如图3,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得
a=xi+yj ①
这样,平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作
a=(x,y) ②
其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,②式叫做向量的坐标表示.显然,i=(1,0),j=(0,1),0=(0,0).教师应引导学生特别注意以下几点:
(1)向量a与有序实数对(x,y)一一对应.
(2)向量a的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,是表示a的有向线段,A1、B1的坐标分别为(x1,y1)、(x2,y2),则向量a的坐标为x=x2-x1,y=y2-y1,即a的坐标为(x2-x1,y2-y1).
(3)为简化处理问题的过程,把坐标原点作为表示向量a的有向线段的起点,这时向量a的坐标就由表示向量a的有向线段的终点唯一确定了,即点A的坐标就是向量a的坐标,流程表示如下:
讨论结果:①平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y).
②是一一对应的.
应用示例
思路1
例1 如图4,ABCD,=a,=b,H、M是AD、DC之中点,F使BF=BC,以a,b为基底分解向量.
图4
活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励.
解:由H、M、F所在位置,有
=b+a.
=ab.
点评:以a、b为基底分解向量与,实为用a与b表示向量与.
变式训练
图5
已知向量e1、e2(如图5),求作向量-2.5e1+3e2.?
作法:(1)如图,任取一点O,作
=-2.5e1,=3e2.
(2)作OACB.
故OC就是求作的向量.
图6
例2 如图6,分别用基底i、j表示向量a、b、c、d,并求出它们的坐标.
活动:本例要求用基底i、j表示a、b、c、d,其关键是把a、b、c、d表示为基底i、j的线性组合.一种方法是把a正交分解,看a在x轴、y轴上的分向量的大小.把向量a用i、j表示出来,进而得到向量a的坐标.另一种方法是把向量a移到坐标原点,则向量a终点的坐标就是向量a的坐标.同样的方法,可以得到向量b、c、d的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a与b关于y轴对称,a与c关于坐标原点中心对称,a与d关于x轴对称等.由一个向量的坐标推导出其他三个向量的坐标.
解:由图可知,a=+=xi+yj,
∴a=(2,3).
同理,b=-2i+3j=(-2,3);
c=-2i-3j=(-2,-3);
d=2i-3j=(2,-3).
点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标.
变式训练
i,j是两个不共线的向量,已知=3i+2j,=i+λj,=-2i+j,若A、B、D三点共线,试求实数λ的值.
解:∵=-=(-2i+j)-(i+λj)=-3i+(1-λ)j,
又∵A、B、D三点共线,
∴向量与共线.因此存在实数υ,使得=υ,
即3i+2j=υ[-3i+(1-λ)j]=-3υi+υ(1-λ)j.
∵i与j是两个不共线的向量,

∴∴当A、B、D三点共线时,λ=3.
例3 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )
A.①② B.②③ C.①③ D.①②③
活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.
解:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.
答案:B
点评:本题主要考查的是学生对平面向量定理的理解.
思路2
图7
例1 如图7,M是△ABC内一点,且满足条件0,延长CM交AB于N,令=a,试用a表示.
活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:
推论1:e1与e2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e1+λ2e2=0,则λ1=λ2=0.
推论2:e1与e2是同一平面内的两个不共线向量,若存在实数a1,a2,b1,b2,使得a=a1e1+a2e2=b1e1+b2e2,则
解:∵
∴由=0,得0.
∴=0.
又∵A、N、B三点共线,C、M、N三点共线,
由平行向量基本定理,设
∴0.
∴(λ+2)+(3+3μ)=0.
由于和不共线,
∴∴
∴∴=2a.
点评:这里选取作为基底,运用化归思想,把问题归结为λ1e1+λ2e2=0的形式来解决.
变式训练
设e1与e2是两个不共线向量,a=3e1+4e2,b=-2e1+5e2,若实数λ、μ满足λa+μb=5e1-e2,求λ、μ的值.
解:由题设λa+μb=(3λe1+4λe2)+(-2μe1+5μe2)=(3λ-2μ)e1+(4λ+5μ)e2.
又λa+μb=5e1-e2.
由平面向量基本定理,知
解之,得λ=1,μ=-1.
图8
例2 如图8,△ABC中,AD为△ABC边上的中线且AE=2EC,求的值.
活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值.
解:设
∵=,即-=-,
∴=(+).
又∵=λ=λ(-),
∴==+. ①
又∵=μ,即-=μ(-),
∴(1+μ)=+μ=
又=,∴=+. ②
比较①②,∵、不共线,
∴解之,得∴
点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.
变式训练
过△OAB的重心G的直线与边OA、OB分别交于P、Q,设=h,,试证: 解:设=a,=b,OG交AB于D,则=()=(a+b)(图略).
∴==(a+b),=(a+b)-kb=a+b,
=ha-kb.
∵P、G、Q三点共线,∴.
∴a+b=λha-λkb.∴
两式相除,得,
∴=3.
知能训练
1.已知G为△ABC的重心,设=a,=b,试用a、b表示向量.
2.已知向量a=(x+3,x2-3x-4)与相等,其中A(1,2),B(3,2),求x.
图9
解答:
1.如图9,=,
而a+(b-a)=a+b,
∴(a+b)=a+b.
点评:利用向量加法、减法及数乘的几何意义.
2.∵A(1,2),B(3,2),∴=(2,0).
∵a=,∴(x+3,x2-3x-4)=(2,0).
∴解得
∴x=-1.
点评:先将向量用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决.
课堂小结
1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.
2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.
作业
课本习题2.3 A组1.
设计感想
1.本节课内容是为了研究向量方便而引入的一个新定理——平面向量基本定理.教科书首先通过“思考”:让学生思考对于平面内给定的任意两个向量进行加减的线性运算时所表示的新向量有什么特点,反过来,对平面内的任意向量是否都可以用形如λ1e1+λ2e2的向量表示.
2.教师应该多提出问题,多让学生自己动手作图来发现规律,通过解题来总结方法,引导学生理解“化归”思想对解题的帮助,也要让学生善于用“数形结合”的思想来解决这部分的题.
3.如果条件允许,借助多媒体进行教学会有意想不到的效果.整节课的教学主线应以学生练习为主,教师给与引导和提示.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决实际问题的方法就越恰当而简捷.
§2.3 平面向量的基本定理及坐标表示
2.3.1 平面向量基本定理
课时目标 1.理解并掌握平面向量基本定理.2.掌握向量之间的夹角与垂直.
1.平面向量基本定理
(1)定理:如果e1,e2是同一平面内的两个______向量,那么对于这一平面内的______向量a,__________实数λ1,λ2,使a=____________________________.
(2)基底:把________的向量e1,e2叫做表示这一平面内________向量的一组基底.
2.
两向量的夹角与垂直
(1)夹角:已知两个__________a和b,作=a,=b,则________=θ (0°≤θ≤180°),叫做向量a与b的夹角.
①范围:向量a与b的夹角的范围是______________.
②当θ=0°时,a与b________.
③当θ=180°时,a与b________.
(2)垂直:如果a与b的夹角是________,则称a与b垂直,记作______________.
一、选择题
1.若e1,e2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是(  )
A.e1-e2,e2-e1 B.2e1+e2,e1+e2
C.2e2-3e1,6e1-4e2 D.e1+e2,e1-e2
2.等边△ABC中,与的夹角是(  )
A.30° B.45° C.60° D.120°
3.下面三种说法中,正确的是(  )
①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可作为基底中的向量.
A.①② B.②③ C.①③ D.①②③
4.若=a,=b,=λ(λ≠-1),则等于(  )
A.a+λb B.λa+(1-λ)b
C.λa+b D.a+b
5.如果e1、e2是平面α内两个不共线的向量,那么在下列各命题中不正确的有(  )
①λe1+μe2(λ、μ∈R)可以表示平面α内的所有向量;
②对于平面α中的任一向量a,使a=λe1+μe2的实数λ、μ有无数多对;
③若向量λ1e1+μ1e2与λ2e1+μ2e2共线,则有且只有一个实数λ,使λ1e1+μ1e2=λ(λ2e1+μ2e2);
④若实数λ、μ使λe1+μe2=0,则λ=μ=0.
A.①② B.②③ C.③④ D.②
6.如图,在△ABC中,AD是BC边上的中线,F是AD上的一点,且=,连结CF并延长交AB于E,则等于(  )
A. B. C. D.
题 号
1
2
3
4
5
6
答 案
二、填空题
7.设向量m=2a-3b,n=4a-2b,p=3a+2b,试用m,n表示p,p=________.
8.设e1、e2是不共线的两个向量,给出下列四组向量:①e1与e1+e2;②e1-2e2与e2-2e1;③e1-2e2与4e2-2e1.其中能作为平面内所有向量的一组基底的序号是________.(写出所有满足条件的序号)
9.在△ABC中,=c,=b.若点D满足=2,则=____________.
10.在平行四边形ABCD中,E和F分别是边CD和BC的中点,若=λ+μ,其中λ、μ∈R,则λ+μ=________.
三、解答题
11. 如图所示,已知△ABC中,D为BC的中点,E,F为BC的三等分点,若=a,=b,用a,b表示,,.
12. 如图所示,已知△AOB中,点C是以A为中点的点B的对称点,=2,DC和OA交于点E,设=a,=b.
(1)用a和b表示向量、;
(2)若=λ,求实数λ的值.
能力提升
13. 如图所示,OM∥AB,点P在由射线OM、线段OB及AB的延长线围成的阴影区域内(不含边界)运动,且=x+y,则x的取值范围是________;当x=-时,y的取值范围是____________.
14. 如图所示,在△ABC中,点M是BC的中点,点N在边AC上,且AN=2NC,AM与BN相交于点P,求证:AP∶PM=4∶1.
1.对基底的理解
(1)基底的特征
基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件.
(2)零向量与任意向量共线,故不能作为基底.
2.准确理解平面向量基本定理
(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.
(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.
§2.3 平面向量的基本定理及坐标表示
2.3.1 平面向量基本定理
答案
知识梳理
1.(1)不共线 任意 有且只有一对 λ1e1+λ2e2 (2)不共线 所有
2.(1)非零向量 ∠AOB ①[0°,180°] ②同向 ③反向 (2)90° a⊥b
作业设计
1.D 2.D 3.B
4.D [∵=λ,∴-=λ(-)
∴(1+λ)=+λ
∴=+=a+b.]
5.B [由平面向量基本定理可知,①④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的.对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个,故选B.]
6.D [设=a,=b,=λ.
∵=,∴=+
=+=(+)-
=-=a-b.
=+
=+
=-
=a-b.
∵∥,
∴=.∴λ=.]
7.-m+n
解析 设p=xm+yn,则3a+2b=x(2a-3b)+y(4a-2b)=(2x+4y)a+(-3x-2y)b,
得?.
8.①②
解析 对于③4e2-2e1=-2e1+4e2=-2(e1-2e2),
∴e1-2e2与4e2-2e1共线,不能作为基底.
9.b+c
解析 =+=+=+(-)=+=b+c.
10.
解析 
设=a,=b,
则=a+b,
=a+b,
又∵=a+b,
∴=(+),即λ=μ=,∴λ+μ=.
11.解 =+=+=a+(b-a)=a+b;
=+=+=a+(b-a)=a+b;
=+=+=a+(b-a)=a+b.
12.解 (1)由题意,A是BC的中点,且=,
由平行四边形法则,+=2.
∴=2-=2a-b,
=-=(2a-b)-b=2a-b.
(2)∥.又∵=-=(2a-b)-λa=(2-λ)a-b,=2a-b,
∴=,∴λ=.
13.(-∞,0) 
解析 由题意得:
=a·+b·(a,b∈R+,0=a·λ+b·
=aλ(-)+b·
=-aλ·+(aλ+b)·(λ>0).
由-aλ<0,得x∈(-∞,0).
又由=x+y,则有0当x=-时,有0<-+y<1,
解得y∈.
14.解 设=b,=c,
则=b+c,==c,
=+=c-b.
∵∥,∥,
∴存在λ,μ∈R,使得=λ,=μ,
又∵+=,
∴λ-μ=,
由λ-μ=b得
b+c=b.
又∵b与c不共线,
∴解得
故=,即AP∶PM=4∶1.