高中数学(人版A版必修四)配套课件(2份)、教案、学案、同步练习题,补习复习资料:2.5.1 平面几何中的向量方法

文档属性

名称 高中数学(人版A版必修四)配套课件(2份)、教案、学案、同步练习题,补习复习资料:2.5.1 平面几何中的向量方法
格式 zip
文件大小 3.2MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-22 16:23:45

文档简介

§2.5 平面向量应用举例
2.5.1 平面几何中的向量方法
课时目标 经历用向量方法解决某些简单的平面几何问题及其他一些实际问题的过程,体会向量是一种处理几何问题等的工具,发展运算能力和解决实际问题的能力.
1.向量方法在几何中的应用
(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0) ________ ______________________.
(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:非零向量a,b,a⊥b ____________ ______________.
(3)求夹角问题,往往利用向量的夹角公式cos
θ=______________=___________________.
(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:|a|=_______
2.直线的方向向量和法向量
(1)直线y=kx+b的方向向量为________,法向量为________.
(2)直线Ax+By+C=0的方向向量为________,法向量为________.
一、选择题
1.在△ABC中,已知A(4,1)、B(7,5)、C(-4,7),则BC边的中线AD的长是(  )
A.2
B.
C.3
D.
2.点O是三角形ABC所在平面内的一点,满足·=·=·,则点O是△ABC的(  )
A.三个内角的角平分线的交点
B.三条边的垂直平分线的交点
C.三条中线的交点
D.三条高的交点
3.已知直线l1:3x+4y-12=0,l2:7x+y-28=0,则直线l1与l2的夹角是(  )
A.30°
B.45°
C.135°
D.150°
4.若O是△ABC所在平面内一点,且满足|-|=|+-2|,则△ABC的形状是(  )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
5.已知点A(,1),B(0,0),C(,0),设∠BAC的平分线AE与BC相交于E,那么有=λ,其中λ等于(  )
A.2
B.
C.-3
D.-
6.已知非零向量与满足·=0且·=,则△ABC的形状是(  )
A.三边均不相等的三角形
B.直角三角形
C.等腰(非等边)三角形
D.等边三角形
题 号
1
2
3
4
5
6
答 案
二、填空题
7.如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB、AC于不同的两
点M、N,若=m,=n,则m+n的值为__________________.
8.已知平面上三点A、B、C满足||=3,||=4,||=5.则·+·+·=________________.
9.设平面上有四个互异的点A、B、C、D,已知(+-2)·(-)=0,则△ABC的形状一定是__________.
10.在直角坐标系xOy中,已知点A(0,1)和点B(-3,4),若点C在∠AOB的平分线上且||=2,则=__________________.
三、解答题
11.在△ABC中,A(4,1),B(7,5),C(-4,7),求∠A的平分线的方程.
12.P是正方形ABCD对角线BD上一点,PFCE为矩形.求证:PA=EF且PA⊥EF.
能力提升
13.已知点O,N,P在△ABC所在平面内,且||=||=||,++=0,·=PB·=·,则点O,N,P依次是△ABC的(  )
A.重心、外心、垂心
B.重心、外心、内心
C.外心、重心、垂心
D.外心、重心、内心
14.求证:△ABC的三条高线交于一点.
1.利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题.利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明.
2.在直线l:Ax+By+C=0(A2+B2≠0)上任取两点P1(x1,y1),P2(x2,y2),则(λ∈R且λ≠0)也是直线l的方向向量.所以,一条直线的方向向量有无数多个,它们都共线.同理,与直线l:Ax+By+C=0(A2+B2≠0)垂直的向量都叫直线l的法向量.一条直线的法向量也有无数多个.熟知以下结论,在解题时可以直接应用.
①y=kx+b的方向向量v=(1,k),法向量为n=(k,-1).
②Ax+By+C=0(A2+B2≠0)的方向向量v=(B,-A),法向量n=(A,B).
§2.5 平面向量应用举例
2.5.1 平面几何中的向量方法
答案
知识梳理
1.(1)a=λb x1y2-x2y1=0 (2)a·b=0 x1x2+y1y2=0(3)  (4)
2.(1)(1,k) (k,-1) (2)(B,-A) (A,B)
作业设计
1.B [BC中点为D,=,
∴||=.]
2.D [∵·=·,
∴(-)·=0.
∴·=0.
∴OB⊥AC.同理OA⊥BC,OC⊥AB,
∴O为垂心.]
3.B [设l1、l2的方向向量为v1,v2,则
v1=(4,-3),v2=(1,-7),
∴|cos〈v1,v2〉|===.
∴l1与l2的夹角为45°.]
4.B [∵|-|=||=|-|,
|+-2|=|+|,
∴|-|=|+|,
∴四边形ABDC是矩形,且∠BAC=90°.
∴△ABC是直角三角形.]
5.C
[如图所示,由题知∠ABC=30°,∠AEC=60°,CE=,∴=3,∴=-3.]
6.D [由·=0,得角A的平分线垂直于BC.∴AB=AC.
而·=cos〈,〉=,又〈,〉∈[0°,180°],∴∠BAC=60°.
故△ABC为正三角形,选D.]
7.2
解析 ∵O是BC的中点,
∴=(+)=+,
∴=-=(-1)+.
又∵=-,∥,
∴存在实数λ,使得=λ,即
化简得m+n=2.
8.-25
解析 △ABC中,B=90°,cos
A=,cos
C=,
∴·=0,·=4×5×=-16,
·=5×3×=-9.
∴·+·+·=-25.
9.等腰三角形
解析 ∵(+-2)·(-)
=[(-)+(-)]·(-)
=(+)·(-)=2-2
=||2-||2=0,
∴||=||,∴△ABC是等腰三角形.
10.
解析 
已知A(0,1),B(-3,4),
设E(0,5),D(-3,9),
∴四边形OBDE为菱形.
∴∠AOB的角平分线是菱形OBDE的对角线OD.
设C(x1,y1),||=3,
∴=.
∴(x1,y1)=×(-3,9)=,
即=.
11.解 =(3,4),=(-8,6),
∠A的平分线的一个方向向量为:
+=+=.
∵∠A的平分线过点A.
∴所求直线方程为-(x-4)-(y-1)=0.
整理得:7x+y-29=0.
12.证明 以D为坐标原点,DC所在直线为x轴,DA所在直线为y轴,建立平面直角坐标系如图所示,设正方形边长为1,||=λ,则A(0,1),
P,E,F,
于是=,=.
∴||==,
同理||=,
∴||=||,∴PA=EF.
∴·=+=0,
∴⊥.∴PA⊥EF.
13.C
 [如图,∵++=0,
∴+=-.依向量加法的平行四边形法则,知|N|=2||,故点N为△ABC的重心.
∵·=·,
∴(-)·=·=0.
同理·=0,·=0,
∴点P为△ABC的垂心.
由||=||=||,知点O为△ABC的外心.]
14.证明 
如图所示,已知AD,BE,CF是△ABC的三条高.
设BE,CF交于H点,
令=b,=c,=h,
则=h-b,=h-c,=c-b.
∵⊥,⊥,
∴(h-b)·c=0,(h-c)·b=0,
即(h-b)·c=(h-c)·b
整理得h·(c-b)=0,∴·=0
∴AH⊥BC,∴与共线.
AD、BE、CF相交于一点H.(共33张PPT)
§2.5
平面向量应用举例
2.5.1 平面几何中的向量方法
明目标
知重点
填要点
记疑点
探要点
究所然
内容
索引
01
02
03
当堂测
查疑缺
04
1.经历用向量方法解决某些简单的平面几何问题及其它一些实际问题的过程.
2.体会向量是一种处理几何问题的有力工具.
3.培养运算能力、分析和解决实际问题的能力.
明目标、知重点
1.向量方法在几何中的应用
(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0) a=λb
.
(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:非零向量a,b,a⊥b

.
x1y2-x2y1=0
填要点·记疑点
a·b=0
x1x2
+y1y2=0
(3)求夹角问题,往往利用向量的夹角公式cos
θ=

.
(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:|a|=
.
2.直线的方向向量和法向量
(1)直线y=kx+b的方向向量为
,法向量为
.
(2)直线Ax+By+C=0的方向向量为
,法向量为
.
(1,k)
(k,-1)
(B,-A)
(A,B)
探要点·究所然
情境导学
向量的概念和运算都有着明确的物理背景和几何背景,当向量和平面坐标系结合后,向量的运算就完全可以转化为代数运算.这就为我们解决物理问题和几何研究带来了极大的方便.本节专门研究平面几何中的向量方法.
探究点一 直线的方向向量与两直线的夹角
思考1 直线y=kx+b的方向向量是如何定义的?如何求?
答 
如果向量v与直线l共线,则称向量v为直线l的方向向量.
思考2 直线Ax+By+C=0的方向向量如何求?
答 当B≠0时,k=-,所以向量(B,-A)与(1,k)共线,所以向量(B,-A)是直线Ax+By+C=0的一个方向向量;当B=0时,A≠0,直线x=-
的一个方向向量为(0,-A),即(B,-A).
综上所述,直线Ax+By+C=0的一个方向向量为
v=(B,-A).
例1 已知△ABC的三个顶点A(0,-4),B(4,0),C(-6,2),点D、E、F分别为边BC、CA、AB的中点.
(1)求直线DE、EF、FD的方程;
∴(-2)×(x+1)-(-2)×(y-1)=0,
即x-y+2=0为直线DE的方程.
同理可求,直线EF,FD的方程分别为
x+5y+8=0,x+y=0.
(2)求AB边上的高线CH所在直线方程.
解 设点N(x,y)是CH所在直线上任意一点,
∴4(x+6)+4(y-2)=0,
即x+y+4=0为所求直线CH的方程.
反思与感悟 (1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.
(2)直线Ax+By+C=0的方向向量为v=(B,-A),法向量
n=(A,B).这两个概念在求直线方程、判断两条直线位置关系、求两条直线的夹角时非常有用.
跟踪训练1 在△ABC中,A(4,1),B(7,5),C(-4,7),求∠A的平分线的方程.
∠A的平分线的一个方向向量为:
∵∠A的平分线过点A.
整理得:7x+y-29=0.
探究点二 直线的法向量与两直线的位置关系
思考1 如何定义直线Ax+By+C=0的法向量?
答 如果向量n与直线l垂直,则称向量n为直线l的法向量.因此若直线的方向向量为v,则n·v=0.从而对于直线Ax+By+C=0而言,其方向向量为v=(B,-A),则由于n·v=0,于是可取n=(A,B),这是因为(B,-A)·(A,B)=AB-AB=0.直线的法向量也有无数个.
思考2 如何利用直线的法向量判断两直线的位置关系?
答 对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,它们的法向量分别为n1=(A1,B1),n2=(A2,B2).
当n1∥n2时,l1∥l2或l1与l2重合.即A1B2-A2B1=0 l1∥l2或l1与l2重合;
当n1⊥n2时,l1⊥l2.即A1A2+B1B2=0 l1⊥l2.
用向量法处理有关直线平行、垂直、线段相等、点共线、线共点以及角度等问题时有独到之处,且解法思路清晰、简洁直观.其基本方法是:
探究点三 平面向量在几何中的应用
思考1 用向量方法解决平面几何问题的“三步曲”是怎样的?
答 (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,距离,夹角等问题;
(3)把运算结果“翻译”成几何关系.
思考2 平行四边形是表示向量加法与减法的几何
模型.
如右图,

能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?
答 平行四边形两条对角线长的平方和等于两条邻边长的平方和的两倍.
思考3 请用向量法给出上述结论的证明.
答 证明:在平行四边形ABCD中,
例2 平行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、
RT、TC之间的关系吗?
反思与感悟 解答过程易出现无从下手的情况,导致此种情况的原因是不能灵活选定基底,无法集中条件建立几何元素与向量之间的联系.
证明 选{a,b}为基底.延长OG交AB于M点,
∵G为△OAB的重心,
∴M为AB的中点,
当堂测·查疑缺
1
2
3
4
1.已知A(1,2),B(-2,1),以AB为直径的圆的方程是
_________________.
解析 设P(x,y)为圆上任一点,则
化简得x2+y2+x-3y=0.
x2+y2+x-3y=0
1
2
3
4
2.如图所示,在△ABC中,点O是BC的中点.过点O的
直线分别交直线AB、AC于不同的两点M、N,若
则m+n的值为________.
2
1
2
3
4
3.正方形OABC的边长为1,点D、E分别为AB、BC的中点,试求cos∠DOE的值.
1
2
3
4
4.已知直线l1:3x+y-2=0与直线l2:mx-y+1=0的夹角为45°,求实数m的值.
解 设直线l1,l2的法向量为n1,n2,
则n1=(3,1),n2=(m,-1).
1
2
3
4
整理得:2m2-3m-2=0,
呈重点、现规律
1.利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题.利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明.
2.在直线l:Ax+By+C=0(A2+B2≠0)上任取两点P1(x1,y1),P2(x2,y2),则
(λ∈R且λ≠0)也是直线l的方向向量.所以,一条直线的方向向量有无数多个,它们都共线.同理,与直线l:Ax+By+C=0(A2+B2≠0)垂直的向量都叫直线l的法向量.一条直线的法向量也有无数多个.熟知以下结论,在解题时可以直接应用.
①y=kx+b的方向向量v=(1,k),法向量为n=(k,-1).
②Ax+By+C=0(A2+B2≠0)的方向向量v=(B,-A),法向量n=(A,B).第26课时 平面向量的应用举例
      课时目标
1.体会向量是解决处理几何、物理问题的工具.
2.掌握用向量方法解决实际问题的基本方法.
  识记强化
1.向量方法解决几何问题的“三步曲”.
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
2.由于力、速度是向量,它们的分解与合成与向量的减法与加法类似,可以用向量的方法解决.
  课时作业
一、选择题
1.已知点A(-2,-3),B(2,1),C(0,1),则下列结论正确的是(  )
A.A,B,C三点共线
B.⊥
C.A,B,C是等腰三角形的顶点
D.A,B,C是钝角三角形的顶点
答案:D
解析:∵=(-2,0),=(2,4),∴·=-4<0,∴∠C是钝角.
2.已知三个力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f4,则f4=(  )
A.(-1,-2)
B.(1,-2)
C.(-1,2)
D.(1,2)
答案:D
解析:由物理知识知f1+f2+f3+f4=0,故f4=-(f1+f2+f3)=(1,2).
3.在四边形ABCD中,若=-,·=0,则四边形为(  )
A.平行四边形
B.矩形
C.等腰梯形
D.菱形
答案:D
解析:由=-知四边形ABCD是平行四边形,又·=0,∴⊥,∴此四边形为菱形.
4.已知一条两岸平行的河流河水的流速为2
m/s,一艘小船以垂直于河岸方向10
m/s的速度驶向对岸,则小船在静水中的速度大小为(  )
A.10
m/s
B.2
m/s
C.4
m/s
D.12
m/s
答案:B
解析:设河水的流速为v1,小船在静水中的速度为v2,船的实际速度为v,则|v1|=2,|v|=10,v⊥v1,∴v2=v-v1,v·v1=0,∴|v2|==2(m/s).
5.人骑自行车的速度为v1,风速为v2,则逆风行驶的速度为(  )
A.v1-v2
B.v2-v1
C.v1+v2
D.|v1|-|v2|
答案:C
解析:对于速度的合成问题,关键是运用向量的合成进行处理,逆风行驶的速度为v1+v2,故选C.
6.点O在△ABC所在平面内,给出下列关系式:
①++=0;
②·=·=0;
③(+)·=(+)·=0.
则点O依次为△ABC的(  )
A.内心、重心、垂心
B.重心、内心、垂心
C.重心、内心、外心
D.外心、垂心、重心
答案:C
解析:①由于=-(+)=-2,其中D为BC的中点,可知O为BC边上中线的三等分点(靠近线段BC),所以O为△ABC的重心;
②向量,分别表示在AC和AB上取单位向量和,它们的差是向量,当·=0,即OA⊥B′C′时,则点O在∠BAC的平分线上,同理由·=0,知点O在∠ABC的平分线上,故O为△ABC的内心;
③+是以,为边的平行四边形的一条对角线,而是该四边形的另一条对角线,·(+)=0表示这个平行四边形是菱形,即||=||,同理有||=||,于是O为△ABC的外心.
二、填空题
7.已知两个粒子A、B从同一点发射出来,在某一时刻,它们的位移分别为va=(4,3),vb=(3,4),则va在vb上的投影为________.
答案:
解析:由题知va与vb的夹角θ的余弦值为cosθ==.
∴va在vb上的投影为|va|cosθ=5×=.
8.已知点A(0,0),B(,0),C(0,1).设AD⊥BC于D,那么有=λ,其中λ=________.
答案:
解析:如图||=,||=1,||=2,由于AD⊥BC,且=λ,所以C、D、B三点共线,所以=,即λ=.
9.在四边形ABCD中,已知=(4,-2),=(7,4),=(3,6),则四边形ABCD的面积是________.
答案:30
解析:=-=(3,6)=,∵·=(4,-2)·(3,6)=0,∴⊥,∴四边形ABCD为矩形,||=,||=,∴S=||·||=30.
三、解答题
10.
如图,在平行四边形ABCD中,点M是AB的中点,点N在BD上,且BN=BD,求证:M,N,C三点共线.
证明:依题意,得=,==
(+).
∵=-,∴=-.
∵=-=-,
∴=3,即∥.
又,有公共点M,∴M,N,C三点共线.
11.两个力F1=i+j,F2=4i-5j作用于同一质点,使该质点从点A(20,15)移动到点B(7,0)(其中i,
j分别是与x轴、y轴同方向的单位向量).求:
(1)F1,F2分别对该质点做的功;
(2)F1,F2的合力F对该质点做的功.
解:=(7-20)i+(0-15)j=-13i-15j.
(1)F1做的功W1=F1·s=F1·
=(i+j)·(-13i-15j)=-28;
F2做的功W2=F2·s=F2·
=(4i-5j)·(-13i-15j)=23.
(2)F=F1+F2=5i-4j,
所以F做的功W=F·s=F·
=(5i-4j)·(-13i-15j)=-5.
  能力提升
12.如图,作用于同一点O的三个力、、处于平衡状态,已知||=1,||=2,与的夹角为,则的大小________.
答案:
解析:∵、、三个力处于平衡状态,
∴++=0即=-(+),
∴||=|+|=

==.
13.已知A(2,1)、B(3,2)、D(-1,4).
(1)求证:⊥;
(2)若四边形ABCD为矩形,试确定点C的坐标,并求该矩形两条对角线所成的锐角的余弦值.
解:(1)证明:∵A(2,1),B(3,2),D(-1,4),
∴=(1,1),=(-3,3).
又∵·=1×(-3)+1×3=0,
∴⊥.
(2)∵四边形ABCD为矩形,且AB⊥AD,
∴=.
设C(x,y),则(-3,3)=(x-3,y-2),
,∴
∴点C(0,5).
又∵=(-2,4),=(-4,2),
∴·=(-2)×(-4)+4×2=16.
而||==2
,||==2

设与的夹角为θ,则
cosθ===
∴该矩形两条对角线所成锐角的余弦值为.2.5
平面向量应用举例
2.5.1
平面几何中的向量方法
整体设计
教学分析
1.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为:
则向量方法的流程图可以简单地表述为:
这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点.
2.研究几何可以采取不同的方法,这些方法包括:
综合方法——不使用其他工具,对几何元素及其关系直接进行讨论;
解析方法——以数(代数式)和数(代数式)的运算为工具,对几何元素及其关系进行讨论;
向量方法——以向量和向量的运算为工具,对几何元素及其关系进行讨论;
分析方法——以微积分为工具,对几何元素及其关系进行讨论,等等.
前三种方法都是中学数学中出现的内容.
有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化.
三维目标
1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”.
2.明了平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.
3.通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段.
重点难点
教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”.
教学难点:如何将几何等实际问题化归为向量问题.
课时安排
1课时
教学过程
导入新课
思路1.(直接导入)向量的概念和运算都有着明确的物理背景和几何背景,当向量和平面坐标系结合后,向量的运算就完全可以转化为代数运算.这就为我们解决物理问题和几何研究带来了极大的方便.本节专门研究平面几何中的向量方法.
思路2.(情境导入)由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题.下面通过几个具体实例,说明向量方法在平面几何中的运用.
推进新课
新知探究
提出问题
图1
①平行四边形是表示向量加法和减法的几何模型,如图1,你能观察、发现并猜想出平行四边形对角线的长度与两邻边长度之间有什么关系吗?
②你能利用所学知识证明你的猜想吗?能利用所学的向量方法证明吗?试一试可用哪些方法
③你能总结一下利用平面向量解决平面几何问题的基本思路吗?
活动:①教师引导学生猜想平行四边形对角线的长度与两邻边长度之间有什么关系.利用类比的思想方法,猜想平行四边形有没有相似关系.指导学生猜想出结论:平行四边形两条对角线的平方和等于四条边的平方和.
②教师引导学生探究证明方法,并点拨学生对各种方法分析比较,平行四边形是学生熟悉的重要的几何图形,在平面几何的学习中,学生得到了它的许多性质,有些性质的得出比较麻烦,有些性质的得出比较简单.让学生体会研究几何可以采取不同的方法,这些方法包括综合方法、解析方法、向量方法.
图2
证明:方法一:如图2.
作CE⊥AB于E,DF⊥AB于F,则Rt△ADF≌Rt△BCE.
∴AD=BC,AF=BE.由于AC
AE2+CE2=(AB+BE)2+CE2=AB2+2AB·BE+BE2+CE2=AB2+2AB·BE+BC2.
BD2=BF2+DF2=(AB-AF)2+DF2=AB2-2AB·AF+AF2+DF2=AB2-2AB·AF+AD2=AB2-2AB·BE+BC2.∴AC2+BD2=2(AB2+BC2).
图3
方法二:如图3.
以AB所在直线为x轴,A为坐标原点建立直角坐标系.
设B(a,0),D(b,c),则C(a+b,c).
∴|AC|2=(a+b)2+c2=a2+2ab+b2+c2,
|BD|2=(a-b)2+(-c)2=a2-2ab+b2+c2.
∴|AC|2+|BD|2=2a2+2(b2+c2)=2(|AB|2+|AD|2).
用向量方法推导了平行四边形的两条对角线与两条邻边之间的关系.在用向量方法解决涉及长度、夹角的问题时,常常考虑用向量的数量积.通过以下推导学生可以发现,由于向量能够运算,因此它在解决某些几何问题时具有优越性,它把一个思辨过程变成了一个算法过程,学生可按一定的程序进行运算操作,从而降低了思考问题的难度,同时也为计算机技术的运用提供了方便.教学时应引导学生体会向量带来的优越性.因为平行四边形对角线平行且相等,考虑到向量关系=-,=+,教师可点拨学生设=a,=b,其他线段对应向量用它们表示,涉及长度问题常常考虑向量的数量积,为此,我们计算||2与||2.因此有了方法三.
方法三:设=a,=b,则=a+b,=a-b,||2=|a|2,||2=|b|2.
∴||2=·=(a+b)·(a+b)=a·a+a·b+b·a+b·b=|a|2+2a·b+|b|2.

同理||2=|a|2-2a·b+|b|2.

观察①②两式的特点,我们发现,①+②得
||2+||2=2(|a|2+|b|2)=2(||2+||2),
即平行四边形两条对角线的平方和等于两条邻边平方和的两倍.
③至此,为解决重点问题所作的铺垫已经完成,向前发展可以说水到渠成.教师充分让学生对以上各种方法进行分析比较,讨论认清向量方法的优越性,适时引导学生归纳用向量方法处理平面几何问题的一般步骤.由于平面几何经常涉及距离(线段长度)、夹角问题,而平面向量的运算,特别是数量积主要涉及向量的模以及向量之间的夹角,因此我们可以用向量方法解决部分几何问题.解决几何问题时,先用向量表示相应的点、线段、夹角等几何元素.然后通过向量的运算,特别是数量积来研究点、线段等元素之间的关系.最后再把运算结果“翻译”成几何关系,得到几何问题的结论.这就是用向量方法解决平面几何问题的“三步曲”,即
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
讨论结果:①能.
②能想出至少三种证明方法.
③略.
应用示例
图4
例1
如图4,
ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗
活动:为了培养学生的观察、发现、猜想能力,让学生能动态地发现图形中AR、RT、TC之间的相等关系,教学中可以充分利用多媒体,作出上述图形,测量AR、RT、TC的长度,让学生发现AR=RT=TC,拖动平行四边形的顶点,动态观察发现,AR=RT=TC这个规律不变,因此猜想AR=RT=TC.事实上,由于R、T是对角线AC上的两点,要判断AR、RT、TC之间的关系,只需分别判断AR、RT、TC与AC的关系即可.又因为AR、RT、TC、AC共线,所以只需判断与之间的关系即可.探究过程对照用向量方法解决平面几何问题的“三步曲”很容易地可得到结论.第一步,建立平面几何与向量的联系,用向量表示问题中的几何元素,将平面几何问题转化为向量问题;第二步,通过向量运算,研究几何元素之间的关系;第三步,把运算结果“翻译”成几何关系:AR=RT=TC.
解:如图4,
设=a,=b,=r,=t,则=a+b.
由于与共线,所以我们设r=n(a+b),n∈R.
又因为=-=a-b,
与共线,
所以我们设=m=m(a-b).
因为,
所以r=b+m(a-b).
因此n(a+b)=b+m(a-b),
即(n-m)a+(n+)b=0.
由于向量a、b不共线,要使上式为0,必须
解得n=m=.
所以=,
同理=.
于是=.
所以AR=RT=TC.
点评:教材中本例重在说明是如何利用向量的办法找出这个相等关系的,因此在书写时可简化一些程序.指导学生在今后的训练中,不必列出三个步骤.
变式训练
图5
如图5,AD、BE、CF是△ABC的三条高.求证:AD、BE、CF相交于一点.
证明:设BE、CF相交于H,并设=b,=c,=h,
则=h-b,=h-c,=c-b.
因为⊥,⊥,
所以(h-b)·c=0,(h-c)·b=0,
即(h-b)·c=(h-c)·b.
化简得h·(c-b)=0.
所以⊥.
所以AH与AD共线,
即AD、BE、CF相交于一点H.
图6
例2
如图6,已知在等腰△ABC中,BB′、CC′是两腰上的中线,且BB′⊥CC′,求顶角A的余弦值.
活动:教师可引导学生思考探究,上例利用向量的几何法简捷地解决了平面几何问题.可否利用向量的坐标运算呢?这需要建立平面直角坐标系,找出所需点的坐标.如果能比较方便地建立起平面直角坐标系,如本例中图形,很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,是否利用向量的坐标运算能更快捷地解决问题呢?
教师引导学生建系、找点的坐标,然后让学生独立完成.
解:建立如图6所示的平面直角坐标系,取A(0,a),C(c,0),则B(-c,0),
=(0,a),=(c,a),=(c,0),=(2c,0).
因为BB′、CC′都是中线,
所以=(+)=[(2c,0)+(c,a)]=(),
同理=().
因为BB′⊥CC′,
所以=0,a2=9c2.
所以cosA=.
点评:比较是最好的学习方法.本例利用的方法与例题1有所不同,但其本质是一致的,教学中引导学生仔细体会这一点,比较两例的异同,找出其内在的联系,以达融会贯通,灵活运用之功效.
变式训练
图7
(2004湖北高考)
如图7,在Rt△ABC中,已知BC=a.若长为2a的线段PQ以点A为中点,问:的夹角θ取何值时,的值最大 并求出这个最大值.
解:方法一,如图7.
∵⊥,∴·=0.
∵,

=
=-a2-+·=-a2+·(-)
=-a2+·=-a2+a2cosθ.
故当cosθ=1,即θ=0,与的方向相同时,最大,其最大值为0.
图8
方法二:如图8.
以直角顶点A为坐标原点,两直角边所在的直线为坐标轴,建立如图所示的平面直角坐标系.设|AB|=c,|AC|=b,则A(0,0),B(c,0),C(0,b),且|PQ|=2a,|BC|=a.
设点P的坐标为(x,y),
则Q(-x,-y).
∴=(x-c,y),=(-x,-y-b),=(-c,b),=(-2x,-2y).
∴=(x-c)(-x)+y(-y-b)=-(x2+y2)+cx-by.
∵cosθ=
∴cx-by=a2cosθ.
∴=-a2+a2cosθ.
故当cosθ=1,即θ=0,与的方向相同时,
最大,其最大值为0.
知能训练
图9
1.如图9,已知AC为⊙O的一条直径,∠ABC是圆周角.
求证:∠ABC=90°.
证明:如图9.
设=a,=b,
则=a+b,=a,=a-b,|a|=|b|.
因为·=(a+b)·(a-b)=|a|2-|b|2=0,
所以⊥.
由此,得∠ABC=90°.
点评:充分利用圆的特性,设出向量.
2.D、E、F分别是△ABC的三条边AB、BC、CA上的动点,且它们在初始时刻分别从A、B、C出发,各以一定速度沿各边向B、C、A移动.当t=1时,分别到达B、C、A.求证:在0≤t≤1的任一时刻t1,△DEF的重心不变.
图10
证明:如图10.
建立如图所示的平面直角坐标系,设A、B、C坐标分别为(0,0),(a,0),(m,n).
在任一时刻t1∈(0,1),因速度一定,其距离之比等于时间之比,有=λ,由定比分点的坐标公式可得D、E、F的坐标分别为(at1,0),(a+(m-a)t1,nt1),(m-mt1,n-nt1).由重心坐标公式可得△DEF的重心坐标为().当t=0或t=1时,△ABC的重心也为(),故对任一t1∈[0,1],△DEF的重心不变.
点评:主要考查定比分点公式及建立平面直角坐标系,只要证△ABC的重心和时刻t1的△DEF的重心相同即可.
课堂小结
1.由学生归纳总结本节学习的数学知识有哪些:平行四边形向量加、减法的几何模型,用向量方法解决平面几何问题的步骤,即“三步曲”.特别是这“三步曲”,要提醒学生理解领悟它的实质,达到熟练掌握的程度.
2.本节都学习了哪些数学方法:向量法,向量法与几何法、解析法的比较,将平面几何问题转化为向量问题的化归的思想方法,深切体会向量的工具性这一特点.
作业
课本习题2.5
A组2,B组3.
设计感想
1.本节是对研究平面几何方法的探究与归纳,设计的指导思想是:充分使用多媒体这个现代化手段,引导学生展开观察、归纳、猜想、论证等一系列思维活动.本节知识方法容量较大,思维含量较高,教师要把握好火候,恰时恰点地激发学生的智慧火花.
2.由于本节知识方法在高考大题中得以直接的体现,特别是与其他知识的综合更是高考的热点问题.因此在实际授课时注意引导学生关注向量知识、向量方法与本书的三角、后续内容的解析几何等知识的交汇,提高学生综合解决问题的能力.
3.平面向量的运算包括向量的代数运算与几何运算.相比较而言,学生对向量的代数运算要容易接受一些,但对向量的几何运算往往感到比较困难,无从下手.向量的几何运算主要包括向量加减法的几何运算,向量平行与垂直的充要条件及定比分点的向量式等,它们在处理平面几何的有关问题时,往往有其独到之处,教师可让学有余力的学生课下继续探讨,以提高学生的思维发散能力.
12.
5平面向量应用举例
一、教材分析
向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。
二、教学目标
1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐
标法,可以用向量知识研究物理中的相关问题的“四环节”
和生活中的实际问题
2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的
积极主动的探究意识,培养创新精神。
三、教学重点难点
重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题.
难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决.
四、学情分析
在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。
五、教学方法
1.例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。
2.学案导学:见后面的学案
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的
应用
2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标
教师首先提问:(1)若O为重心,则++=
(2)水渠横断面是四边形,=,且|=|,则这个四边形
为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系
(3)
两个人提一个旅行包,夹角越大越费力.为什么?
教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。
(设计意图:步步导入,吸引学生的注意力,明确学习目标。)
(三)合作探究、精讲点拨。
探究一:(1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例.
教师:平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来:
例如,向量数量积对应着几何中的长度.如图:
平行四边行中,设=,=,则(平移),,(长度).向量,的夹角为.因此,可用向量方法解决平面几何中的一些问题。通过向量运算研究几何运算之间的关系,如距离、夹角等.把运算结果"翻译"成几何关系.本节课,我们就通过几个具体实例,来说明向量方法在平面几何中的运用
例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.
已知:平行四边形ABCD.
求证:.
分析:用向量方法解决涉及长度、夹角的问题时,我们常常要考虑向量的数量积.注意到,
,我们计算和.
证明:不妨设a,b,则
a+b,a-b,|a|2,|b|2.

(
a+b)·(
a+b)
=
a·a+
a·b+b·a+b·b=
|a|2+2a·b+|b|2.

同理   |a|2-2a·b+|b|2.

①+②得
2(|a|2+|b|2)=2().
所以,平行四边形两条对角线的平方和等于四条边的平方和.
师:你能用几何方法解决这个问题吗?
让学生体会几何方法与向量方法的区别与难易情况。
师:由于向量能够运算,因此它在解决某些几何问题时具有优越性,他把一个思辨过程变成了一个算法过程,可以按照一定的程序进行运算操作,从而降低了思考问题的难度.
用向量方法解决平面几何问题,主要是下面三个步骤,
⑴建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
⑵通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
⑶把运算结果“翻译”成几何关系.
变式训练:中,D、E、F分别是AB、BC、CA的中点,BF与CD交于点O,设(1)证明A、O、E三点共线;(2)用表示向量。
例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
分析:由于R、T是对角线AC上两点,所以要判断AR、RT、TC之间的关系,只需要分别判断AR、RT、TC与AC之间的关系即可.
解:设a,b,则a+b.
由 与共线,因此。存在实数m,使得
=m(a+b).
又 由与共线
因此
 存在实数n,使得
=n=
n(b-
a).
由=
n,得m(a+b)=
a+
n(b-
a).
整理得      a+b=0.
由于向量a、b不共线,所以有 ,解得.
所以           .
同理           .
于是           .
所以           AR=RT=TC.
说明:本例通过向量之间的关系阐述了平面几何中的方法,待定系数法使用向量方法证明平面几何问题的常用方法.
探究二:(1)两个人提一个旅行包,夹角越大越费力.
(2)在单杠上做引体向上运动,两臂夹角越小越省力.
这些问题是为什么?
师:向量在物理中的应用,实际上就是把物理问题转化为向量问题,然后通过向量运算解决向量问题,最后再用所获得的结果解释物理现象.
例3.在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?
分析:上面的问题可以抽象为如右图所示的数学模型.只要分析清楚F、G、三者之间的关系(其中F为F1、F2的合力),就得到了问题的数学解释.
解:不妨设|F1|=|F2|,
由向量加法的平行四边形法则,理的平衡原理以及直角三角形的指示,可以得到
|F1|=.
通过上面的式子我们发现,当由逐渐变大时,由逐渐变大,的值由大逐渐变小,因此,|F1|有小逐渐变大,即F1、F2之间的夹角越大越费力,夹角越小越省力.
师:请同学们结合刚才这个问题,思考下面的问题:
⑴为何值时,|F1|最小,最小值是多少?
⑵|F1|能等于|G|吗?为什么?
例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸.已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0.1min)?
分析:如果水是静止的,则船只要取垂直于对岸的方向行驶,就能使行驶航程最短,所用时间最短.考虑到水的流速,要使船的行驶航程最短,那么船的速度与水流速度的合速度v必须垂直于对岸.(用《几何画板》演示水流速度对船的实际航行的影响)
解:=(km/h),
所以,
(min).
答:行驶航程最短时,所用的时间是3.1
min.
本例关键在于对“行驶最短航程”的意义的解释,即“分析”中给出的穿必须垂直于河岸行驶,这是船的速度与水流速度的合速度应当垂直于河岸,分析清楚这种关系侯,本例就容易解决了。
变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为,(1)写出此时粒子B相对粒子A的位移s;(2)计算s在方向上的投影。
九、板书设计
§2.5
平面向量应用举例
例⒈  
用向量法解平面几何
例2
变式训练
问题的“三步曲”
例3.
例4
变式训练
十、教学反思
本小节主要是例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。教学中,教师创设问题情境,引导学生发现解题方法,展示思路的形成过程,总结解题规律。指导学生搞好解题后的反思,从而提高学生综合应用知识分析和解决问题的能力.
十一、学案设计(见下页)
2.5平面向量应用举例
课前预习学案
1、
预习目标
预面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。
2、
预习内容
阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:
1.
例1如果不用向量的方法,还有其他证明方法吗?
2.
利用向量方法解决平面几何问题的“三步曲”是什么?
3.
例3中,⑴为何值时,|F1|最小,最小值是多少?
⑵|F1|能等于|G|吗?为什么?
3、
提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习内容
1.运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析
几何中直线或线段的平行、垂直、相等、夹角和距离等问题.
2.运用向量的有关知识解决简单的物理问题.
二、学习过程
探究一:(1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?
(2)举出几个具有线性运算的几何实例.
例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.
已知:平行四边形ABCD.
求证:.
试用几何方法解决这个问题
利用向量的方法解决平面几何问题的“三步曲”?
(1)
建立平面几何与向量的联系,
(2)
通过向量运算,研究几何元素之间的关系,
(3)
把运算结果“翻译”成几何关系。
变式训练:中,D、E、F分别是AB、BC、CA的中点,BF与CD交于点O,设
(1)证明A、O、E三点共线;
(2)用表示向量。
例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的
中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
探究二:两个人提一个旅行包,夹角越大越费力.在单杠上做引体向上运动,两臂夹角越小越省力.
这些力的问题是怎么回事?
例3.在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?
请同学们结合刚才这个问题,思考下面的问题:
⑴为何值时,|F1|最小,最小值是多少?
⑵|F1|能等于|G|吗?为什么?
例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸.已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0.1min)?
变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为
,(1)写出此时粒子B相对粒子A的位移s;
(2)计算s在方向上的投影。
3、
反思总结
结合图形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题
代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等平行、垂直等问题常用此法。
本节主要研究了用向量知识解决平面几何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。
4、
当堂检测
1.已知,求边长c。
2.在平行四边形ABCD中,已知AD=1,AB=2,对角线BD=2,求对角线AC的长。
3.在平面上的三个力作用于一点且处于平衡状态,的夹角为,求:(1)的大小;(2)与夹角的大小。
课后练习与提高
1、
选择题
1.给出下面四个结论:
1
若线段AC=AB+BC,则向量;
2
若向量,则线段AC=AB+BC;
3
若向量与共线,则线段AC=AB+BC;
4
若向量与反向共线,则.
其中正确的结论有


A.
0个
B.1个
C.2个
D.3个
2.河水的流速为2,一艘小船想以垂直于河岸方向10的速度驶向对岸,则小
船的静止速度大小为


A.10
B.
C.
D.12
3.在中,若=0,则为
(

A.正三角形
B.直角三角形
C.等腰三角形
D.无法确定
二、填空题
4.已知两边的向量,则BC边上的中线向量用、表示为
5.已知,则、、两两夹角是
PAGE
9(共27张PPT)
QD
ANYOU
KETANG