课件27张PPT。2. 5平面向量应用举例
一、教材分析
向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。
二、教学目标
1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐
标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题
2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的
积极主动的探究意识,培养创新精神。
三、教学重点难点
重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题.
难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决.
四、学情分析
在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。
五、教学方法
1.例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。
2.学案导学:见后面的学案
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的
应用
2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标
教师首先提问:(1)若O为重心,则++=
(2)水渠横断面是四边形,=,且|=|,则这个四边形
为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系?
(3) 两个人提一个旅行包,夹角越大越费力.为什么?
教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。
(设计意图:步步导入,吸引学生的注意力,明确学习目标。)
(三)合作探究、精讲点拨。
探究一:(1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例.
教师:平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来: 例如,向量数量积对应着几何中的长度.如图: 平行四边行中,设=,=,则(平移),,(长度).向量,的夹角为.因此,可用向量方法解决平面几何中的一些问题。通过向量运算研究几何运算之间的关系,如距离、夹角等.把运算结果"翻译"成几何关系.本节课,我们就通过几个具体实例,来说明向量方法在平面几何中的运用
例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.
已知:平行四边形ABCD.
求证:.
分析:用向量方法解决涉及长度、夹角的问题时,我们常常要考虑向量的数量积.注意到, ,我们计算和.
证明:不妨设a,b,则
a+b,a-b,|a|2,|b|2.
得 ( a+b)·( a+b)
= a·a+ a·b+b·a+b·b= |a|2+2a·b+|b|2. ①
同理 |a|2-2a·b+|b|2. ②
①+②得 2(|a|2+|b|2)=2().
所以,平行四边形两条对角线的平方和等于四条边的平方和.
师:你能用几何方法解决这个问题吗?
让学生体会几何方法与向量方法的区别与难易情况。
师:由于向量能够运算,因此它在解决某些几何问题时具有优越性,他把一个思辨过程变成了一个算法过程,可以按照一定的程序进行运算操作,从而降低了思考问题的难度.
用向量方法解决平面几何问题,主要是下面三个步骤,
⑴建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
⑵通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
⑶把运算结果“翻译”成几何关系.
变式训练:中,D、E、F分别是AB、BC、CA的中点,BF与CD交于点O,设(1)证明A、O、E三点共线;(2)用表示向量。
例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
分析:由于R、T是对角线AC上两点,所以要判断AR、RT、TC之间的关系,只需要分别判断AR、RT、TC与AC之间的关系即可.
解:设a,b,则a+b.
由 与共线,因此。存在实数m,使得 =m(a+b).
又 由与共线
因此 存在实数n,使得 =n= n(b- a).
由= n,得m(a+b)= a+ n(b- a).
整理得 a+b=0.
由于向量a、b不共线,所以有 ,解得.
所以 .
同理 .
于是 .
所以 AR=RT=TC.
说明:本例通过向量之间的关系阐述了平面几何中的方法,待定系数法使用向量方法证明平面几何问题的常用方法.
探究二:(1)两个人提一个旅行包,夹角越大越费力.
(2)在单杠上做引体向上运动,两臂夹角越小越省力. 这些问题是为什么?
师:向量在物理中的应用,实际上就是把物理问题转化为向量问题,然后通过向量运算解决向量问题,最后再用所获得的结果解释物理现象.
例3.在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?
分析:上面的问题可以抽象为如右图所示的数学模型.只要分析清楚F、G、三者之间的关系(其中F为F1、F2的合力),就得到了问题的数学解释.
解:不妨设|F1|=|F2|, 由向量加法的平行四边形法则,理的平衡原理以及直角三角形的指示,可以得到
|F1|=.
通过上面的式子我们发现,当由逐渐变大时,由逐渐变大,的值由大逐渐变小,因此,|F1|有小逐渐变大,即F1、F2之间的夹角越大越费力,夹角越小越省力.
师:请同学们结合刚才这个问题,思考下面的问题:
⑴为何值时,|F1|最小,最小值是多少?
⑵|F1|能等于|G|吗?为什么?
例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸.已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0.1min)?
分析:如果水是静止的,则船只要取垂直于对岸的方向行驶,就能使行驶航程最短,所用时间最短.考虑到水的流速,要使船的行驶航程最短,那么船的速度与水流速度的合速度v必须垂直于对岸.(用《几何画板》演示水流速度对船的实际航行的影响)
解:=(km/h),
所以, (min).
答:行驶航程最短时,所用的时间是3.1 min.
本例关键在于对“行驶最短航程”的意义的解释,即“分析”中给出的穿必须垂直于河岸行驶,这是船的速度与水流速度的合速度应当垂直于河岸,分析清楚这种关系侯,本例就容易解决了。
变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为,(1)写出此时粒子B相对粒子A的位移s;(2)计算s在方向上的投影。
九、板书设计
§2.5 平面向量应用举例
例⒈ 用向量法解平面几何 例2 变式训练
问题的“三步曲”
例3. 例4
变式训练
十、教学反思
本小节主要是例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。教学中,教师创设问题情境,引导学生发现解题方法,展示思路的形成过程,总结解题规律。指导学生搞好解题后的反思,从而提高学生综合应用知识分析和解决问题的能力.
十一、学案设计(见下页)
2.5平面向量应用举例
课前预习学案
预习目标
预习《平面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。
预习内容
阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:
例1如果不用向量的方法,还有其他证明方法吗?
利用向量方法解决平面几何问题的“三步曲”是什么?
3. 例3中,⑴为何值时,|F1|最小,最小值是多少?
⑵|F1|能等于|G|吗?为什么?
提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习内容
1.运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析
几何中直线或线段的平行、垂直、相等、夹角和距离等问题.
2.运用向量的有关知识解决简单的物理问题.
二、学习过程
探究一:(1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?
(2)举出几个具有线性运算的几何实例.
例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.
已知:平行四边形ABCD.
求证:.
试用几何方法解决这个问题
利用向量的方法解决平面几何问题的“三步曲”?
建立平面几何与向量的联系,
通过向量运算,研究几何元素之间的关系,
把运算结果“翻译”成几何关系。
变式训练:中,D、E、F分别是AB、BC、CA的中点,BF与CD交于点O,设
(1)证明A、O、E三点共线;
(2)用表示向量。
例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的
中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
探究二:两个人提一个旅行包,夹角越大越费力.在单杠上做引体向上运动,两臂夹角越小越省力. 这些力的问题是怎么回事?
例3.在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?
请同学们结合刚才这个问题,思考下面的问题:
⑴为何值时,|F1|最小,最小值是多少?
⑵|F1|能等于|G|吗?为什么?
例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸.已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0.1min)?
变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为
,(1)写出此时粒子B相对粒子A的位移s; (2)计算s在方向上的投影。
反思总结
结合图形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题
代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等平行、垂直等问题常用此法。
本节主要研究了用向量知识解决平面几何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。
当堂检测
1.已知,求边长c。
2.在平行四边形ABCD中,已知AD=1,AB=2,对角线BD=2,求对角线AC的长。
3.在平面上的三个力作用于一点且处于平衡状态,的夹角为,求:(1)的大小;(2)与夹角的大小。
课后练习与提高
选择题
1.给出下面四个结论:
若线段AC=AB+BC,则向量;
若向量,则线段AC=AB+BC;
若向量与共线,则线段AC=AB+BC;
若向量与反向共线,则.
其中正确的结论有 ( )
A. 0个 B.1个 C.2个 D.3个
2.河水的流速为2,一艘小船想以垂直于河岸方向10的速度驶向对岸,则小
船的静止速度大小为 ( )
A.10 B. C. D.12
3.在中,若=0,则为 ( )
A.正三角形 B.直角三角形 C.等腰三角形 D.无法确定
二、填空题
4.已知两边的向量,则BC边上的中线向量用、表示为
5.已知,则、、两两夹角是
课件29张PPT。§2.5 平面向量应用举例
2.5.2 向量在物理中的应用举例明目标
知重点填要点
记疑点探要点
究所然内容
索引010203当堂测
查疑缺 041.经历用向量方法解决某些简单的力学问题与其它一些实际问题的过程.
2.体会向量是一种处理物理问题的重要工具.
3.培养运用向量知识解决物理问题的能力.明目标、知重点1.力与向量
力与前面学过的自由向量有区别.
(1)相同点:力和向量都既要考虑 又要考虑 .
(2)不同点:向量与 无关,力和作用点有关,大小和方向相同的两个力,如果作用点不同,那么它们是不相等的.大小填要点·记疑点方向始点2.向量方法在物理中的应用
(1)力、速度、加速度、位移都是 .
(2)力、速度、加速度、位移的合成与分解就是向量的 运算,运动的叠加亦用到向量的合成.
(3)动量mν是 .
(4)功即是力F与所产生位移s的 .向量加、减数乘向量数量积探要点·究所然情境导学你能举出物理中的哪些向量?比如力、位移、速度、加速度等,既有大小又有方向,都是向量,同学们很容易就举出来.进一步,你能举出应用向量来分析和解决物理问题的例子吗?你是怎样解决的?向量是有广泛应用的数学工具,对向量在物理中的研究,有助于进一步加深对这方面问题的认识.因此我们通过对下面若干问题的研究,体会向量在物理中的重要作用.探究点一 向量的线性运算在物理中的应用思考1 向量与力有什么相同点和不同点?
答 向量是既有大小又有方向的量,它们可以有共同的作用点,也可以没有共同的作用点,但是力却是既有大小,又有方向且作用于同一作用点的. 用向量知识解决力的问题,往往是把向量起点平移到同一作用点上.思考2 向量的运算与速度、加速度与位移有什么联系?
答 速度、加速度与位移的合成与分解,实质上是向量的加减法运算,而运动的叠加也用到向量的合成.小结 向量有丰富的物理背景.向量源于物理中的力、速度、加速度、位移等“矢量”;向量在解决涉及上述物理量的合成与分解时,实质就是向量的线性运算.思考3 请利用向量的方法解决下列问题:
如图所示,在细绳O处用水平力F2缓慢拉起所受重力为G的物体,绳子与铅垂方向的夹角为θ,绳子所受到的拉力为F1.
(1)求|F1|,|F2|随θ角的变化而变化的情况;?|F2|=|G|tan θ,当θ从0°趋向于90°时,|F1|,|F2|都逐渐增大.(2)当|F1|≤2|G|时,求θ角的取值范围.又因为0°≤θ<90°,所以0°≤θ≤60°.例1 帆船比赛是借助风帆推动船只在规定距离内竞速的一项水上运动,如果一帆船所受的风力方向为北偏东30°,速度为20 km/h,此时水的流向是正东,流速为20 km/h.若不考虑其他因素,求帆船的速度与方向.解 建立如图所示的直角坐标系,风的方向为北偏东30°,速度为|v1|=20(km/h),水流的方向为正东,速度为|v2|=20(km/h),???∵实际速度=游速+水速,探究点二 向量的数量积在物理中的应用思考1 向量的数量积与功有什么联系?
答 物理上力作功的实质是力在物体前进方向上的分力与物体位移距离的乘积,它的实质是向量的数量积.小结 物理上力的做功就是力在物体前进方向上的分力与物体位移的乘积,即W=|F||s|cos〈F,s〉,功是一个实数,它可正可负,也可以为零.力的做功涉及两个向量及这两个向量的夹角,它实质是向量F与s的数量积.思考2 已知力F与水平方向的夹角为30°(斜向上),大小为50 N,一个质量为8 kg的木块受力F的作用在动摩擦因数μ=0.02的水平平面上运动了20 m.问力F和摩擦力f所做的功分别为多少?(g=10 m/s2)答 如右图所示,设木块的位移为s,将力F分解,它在竖直方向上的分力F1的大小为所以,摩擦力f的大小为
|f|=|μ(G-F1)|=(80-25)×0.02=1.1(N),
因此,f·s=|f||s|cos 180°=1.1×20×(-1)
=-22(J).思考3 用向量方法解决物理问题的一般步骤是什么?
答 用向量理论讨论物理学中的相关问题,一般来说分为四个步骤:
①问题转化,即把物理问题转化为数学问题;②建立模型,即建立以向量为载体的数学模型;③求解参数,即求向量的模、夹角、数量积等;④回答问题,即把所得的数学结论回归到物理问题.例2 已知两恒力F1=(3,4),F2=(6,-5)作用于同一质点,使之由点A(20,15)移动到点B(7,0).
(1)求F1,F2分别对质点所做的功;=3×(-13)+4×(-15)=-99(J),=6×(-13)+(-5)×(-15)=-3(J).
∴力F1,F2对质点所做的功分别为-99 J和-3 J.(2)求F1,F2的合力F对质点所做的功.=[(3,4)+(6,-5)]·(-13,-15)=(9,-1)·(-13,-15)
=9×(-13)+(-1)×(-15)=-117+15=-102(J).
∴合力F对质点所做的功为-102 J.反思与感悟 物体在力F作用下的位移为s,则W=F·s=|F|·|s|cos θ,其中θ为F与s的夹角.跟踪训练2 已知F=(2,3)作用于一物体,使物体从A(2,0)移动到B(-2,3),求F对物体所做的功.∴力F对物体所做的功为1 J.当堂测·查疑缺 12341.用两条成120°角的等长的绳子悬挂一个灯具,如图所示,已知灯具重10 N,则每根绳子的拉力大小为______ N.1234解析 设重力为G,每根绳的拉力分别为F1,F2,则由题意得F1,F2与-G都成60°角,
且|F1|=|F2|.
∴|F1|=|F2|=|G|=10 N.
∴每根绳子的拉力都为10 N.
答案 1012342.已知一个物体在大小为6 N的力F的作用下产生的位移s的大小为100 m,且F与s的夹角为60°,则力F所做的功W=________ J.
解析 W=F·s=|F||s|cos〈F,s〉
=6×100×cos 60°=300(J).30012343.一条河宽为800 m,一船从A出发航行垂直到达河正对岸的B处,船速为20 km/h,水速为12 km/h,则船到达B处所需时间为___分钟.解析 ∵v实际=v船+v水=v1+v2,
|v1|=20,|v2|=12,31234?1234解 如图,设水的速度为v1,风的速度为v2,v1+v2=a.易求得a的方向是北偏东30°,a的大小是3 km/h.设船的实际航行速度为v.?呈重点、现规律用向量理论讨论物理中相关问题的步骤
一般来说分为四步:(1)问题的转化,把物理问题转化成数学问题;(2)模型的建立,建立以向量为主体的数学模型;(3)参数的获取,求出数学模型的相关解;(4)问题的答案,回到物理现象中,用已经获取的数值去解释一些物理现象.第26课时 平面向量的应用举例
课时目标
1.体会向量是解决处理几何、物理问题的工具.
2.掌握用向量方法解决实际问题的基本方法.
识记强化
1.向量方法解决几何问题的“三步曲”.
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
2.由于力、速度是向量,它们的分解与合成与向量的减法与加法类似,可以用向量的方法解决.
课时作业
一、选择题
1.已知点A(-2,-3),B(2,1),C(0,1),则下列结论正确的是( )
A.A,B,C三点共线
B.⊥
C.A,B,C是等腰三角形的顶点
D.A,B,C是钝角三角形的顶点
答案:D
解析:∵=(-2,0),=(2,4),∴·=-4<0,∴∠C是钝角.
2.已知三个力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f4,则f4=( )
A.(-1,-2) B.(1,-2)
C.(-1,2) D.(1,2)
答案:D
解析:由物理知识知f1+f2+f3+f4=0,故f4=-(f1+f2+f3)=(1,2).
3.在四边形ABCD中,若=-,·=0,则四边形为( )
A.平行四边形 B.矩形
C.等腰梯形 D.菱形
答案:D
解析:由=-知四边形ABCD是平行四边形,又·=0,∴⊥,∴此四边形为菱形.
4.已知一条两岸平行的河流河水的流速为2 m/s,一艘小船以垂直于河岸方向10 m/s的速度驶向对岸,则小船在静水中的速度大小为( )
A.10 m/s B.2 m/s
C.4 m/s D.12 m/s
答案:B
解析:设河水的流速为v1,小船在静水中的速度为v2,船的实际速度为v,则|v1|=2,|v|=10,v⊥v1,∴v2=v-v1,v·v1=0,∴|v2|==2(m/s).
5.人骑自行车的速度为v1,风速为v2,则逆风行驶的速度为( )
A.v1-v2 B.v2-v1
C.v1+v2 D.|v1|-|v2|
答案:C
解析:对于速度的合成问题,关键是运用向量的合成进行处理,逆风行驶的速度为v1+v2,故选C.
6.点O在△ABC所在平面内,给出下列关系式:
①++=0;
②·=·=0;
③(+)·=(+)·=0.
则点O依次为△ABC的( )
A.内心、重心、垂心
B.重心、内心、垂心
C.重心、内心、外心
D.外心、垂心、重心
答案:C
解析:①由于=-(+)=-2,其中D为BC的中点,可知O为BC边上中线的三等分点(靠近线段BC),所以O为△ABC的重心;
②向量,分别表示在AC和AB上取单位向量和,它们的差是向量,当·=0,即OA⊥B′C′时,则点O在∠BAC的平分线上,同理由·=0,知点O在∠ABC的平分线上,故O为△ABC的内心;
③+是以,为边的平行四边形的一条对角线,而是该四边形的另一条对角线,·(+)=0表示这个平行四边形是菱形,即||=||,同理有||=||,于是O为△ABC的外心.
二、填空题
7.已知两个粒子A、B从同一点发射出来,在某一时刻,它们的位移分别为va=(4,3),vb=(3,4),则va在vb上的投影为________.
答案:
解析:由题知va与vb的夹角θ的余弦值为cosθ==.
∴va在vb上的投影为|va|cosθ=5×=.
8.已知点A(0,0),B(,0),C(0,1).设AD⊥BC于D,那么有=λ,其中λ=________.
答案:
解析:如图||=,||=1,||=2,由于AD⊥BC,且=λ,所以C、D、B三点共线,所以=,即λ=.
9.在四边形ABCD中,已知=(4,-2),=(7,4),=(3,6),则四边形ABCD的面积是________.
答案:30
解析:=-=(3,6)=,∵·=(4,-2)·(3,6)=0,∴⊥,∴四边形ABCD为矩形,||=,||=,∴S=||·||=30.
三、解答题
10.
如图,在平行四边形ABCD中,点M是AB的中点,点N在BD上,且BN=BD,求证:M,N,C三点共线.
证明:依题意,得=,==
(+).
∵=-,∴=-.
∵=-=-,
∴=3,即∥.
又,有公共点M,∴M,N,C三点共线.
11.两个力F1=i+j,F2=4i-5j作用于同一质点,使该质点从点A(20,15)移动到点B(7,0)(其中i, j分别是与x轴、y轴同方向的单位向量).求:
(1)F1,F2分别对该质点做的功;
(2)F1,F2的合力F对该质点做的功.
解:=(7-20)i+(0-15)j=-13i-15j.
(1)F1做的功W1=F1·s=F1·
=(i+j)·(-13i-15j)=-28;
F2做的功W2=F2·s=F2·
=(4i-5j)·(-13i-15j)=23.
(2)F=F1+F2=5i-4j,
所以F做的功W=F·s=F·
=(5i-4j)·(-13i-15j)=-5.
能力提升
12.如图,作用于同一点O的三个力、、处于平衡状态,已知||=1,||=2,与的夹角为,则的大小________.
答案:
解析:∵、、三个力处于平衡状态,
∴++=0即=-(+),
∴||=|+|=
=
==.
13.已知A(2,1)、B(3,2)、D(-1,4).
(1)求证:⊥;
(2)若四边形ABCD为矩形,试确定点C的坐标,并求该矩形两条对角线所成的锐角的余弦值.
解:(1)证明:∵A(2,1),B(3,2),D(-1,4),
∴=(1,1),=(-3,3).
又∵·=1×(-3)+1×3=0,
∴⊥.
(2)∵四边形ABCD为矩形,且AB⊥AD,
∴=.
设C(x,y),则(-3,3)=(x-3,y-2),
,∴
∴点C(0,5).
又∵=(-2,4),=(-4,2),
∴·=(-2)×(-4)+4×2=16.
而||==2 ,||==2 ,
设与的夹角为θ,则
cosθ===
∴该矩形两条对角线所成锐角的余弦值为.
2.5.2 向量在物理中的应用举例
整体设计
教学分析
向量与物理学天然相联.向量概念的原型就是物理中的力、速度、位以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题的认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究.
用向量研究物理问题的相关知识.(1)力、速度、加速度、位移等既然都是向量,那么它们的合成与分解就是向量的加、减法,运动的叠加亦用到向量的合成;(2)动量是数乘向量;(3)功即是力与所产生位移的数量积.
用向量知识研究物理问题的基本思路和方法.①通过抽象、概括,把物理现象转化为与之相关的向量问题;②认真分析物理现象,深刻把握物理量之间的相互关系;③利用向量知识解决这个向量问题,并获得这个向量的解;④利用这个结果,对原物理现象作出合理解释,即用向量知识圆满解决物理问题.教学中要善于引导学生通过对现实原型的观察、分析和比较,得出抽象的数学模型.例如,物理中力的合成与分解是向量的加法运算与向量分解的原型.同时,注重向量模型的运用,引导解决现实中的一些物理和几何问题.这样可以充分发挥现实原型对抽象的数学概念的支撑作用.
三维目标
1.通过力的合成与分解的物理模型,速度的合成与分解的物理模型,掌握利用向量方法研究物理中相关问题的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识.
2.通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力.体会数学在现实生活中的重要作用.养成善于发现生活中的数学,善于发现物理及其他科目中的数学及思考领悟各学科之间的内在联系的良好习惯.
重点难点
教学重点:1.运用向量的有关知识对物理中力的作用、速度的分解进行相关分析和计算.2.归纳利用向量方法解决物理问题的基本方法.
教学难点:将物理中有关矢量的问题转化为数学中向量的问题.
课时安排
1课时
教学过程
导入新课
思路1.(章头图引入)章头图中,道路、路标体现了向量与位移、速度、力等物理量之间的密切联系.章引言说明了向量的研究对象及研究方法.那么向量究竟是怎样应用于物理的呢?它就像章头图中的高速公路一样,是一条解决物理问题的高速公路.在学生渴望了解的企盼中,教师展示物理模型,由此展开新课.
思路2.(问题引入)你能举出物理中的哪些向量?比如力、位移、速度、加速度等,既有大小又有方向,都是向量,学生很容易就举出来.进一步,你能举出应用向量来分析和解决物理问题的例子吗?你是怎样解决的?教师由此引导:向量是有广泛应用的数学工具,对向量在物理中的研究,有助于进一步加深对这方面问题的认识.我们可以通过对下面若干问题的研究,体会向量在物理中的重要作用.由此自然地引入新课.
应用示例
例1 在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?
活动:这个日常生活问题可以抽象为如图1所示的数学模型,引导学生由向量的平行四边形法则,力的平衡及解直角三角形等知识来思考探究这个数学问题.这样物理中力的现象就转化为数学中的向量问题.只要分析清楚F、G、θ三者之间的关系(其中F为F1、F2的合力),就得到了问题的数学解释.
图1
?在教学中要尽可能地采用多媒体,在信息技术的帮助下让学生来动态地观察|F|、|G|、θ之间在变化过程中所产生的相互影响.由学生独立完成本例后,与学生共同探究归纳出向量在物理中的应用的解题步骤,也可以由学生自己完成,还可以用信息技术来验证.
用向量解决物理问题的一般步骤是:①问题的转化,即把物理问题转化为数学问题;②模型的建立,即建立以向量为主体的数学模型;③参数的获得,即求出数学模型的有关解——理论参数值;④问题的答案,即回到问题的初始状态,解释相关的物理现象.
解:不妨设|F1|=|F2|,由向量的平行四边形法则、力的平衡以及直角三角形的知识,可以知道
通过上面的式子,我们发现:当θ由0°到180°逐渐变大时,由0°到90°逐渐变大,cos的值由大逐渐变小,因此|F1|由小逐渐变大,即F1,F2之间的夹角越大越费力,夹角越小越省力.
点评:本例是日常生活中经常遇到的问题,学生也会有两人共提一个旅行包以及在单杠上做引体向上运动的经验.本例的关键是作出简单的受力分析图,启发学生将物理现象转化成模型,从数学角度进行解释,这就是本例活动中所完成的事情.教学中要充分利用好这个模型,为解决其他物理问题打下基础.得到模型后就可以发现,这是一个很简单的向量问题,这也是向量工具优越性的具体体现.
变式训练
某人骑摩托车以20 km/h的速度向西行驶,感到风从正南方向吹来,而当其速度变为40 km/h时,他又感到风从西南方向吹来,求实际的风向和风速.
图2
解:如图2所示.设v1表示20 km/h的速度,在无风时,此人感到的风速为-v1,实际的风速为v,那么此人所感到的风速为v+(-v1)=v-v1.
令=-v1,=-2v1,实际风速为v.
∵+=,
∴=v-v1,这就是骑车人感受到的从正南方向吹来的风的速度.
∵+=,
∴=v-2v1,
这就是当车的速度为40 km/h时,骑车人感受到的风速.
由题意得∠DCA=45°,DB⊥AB,AB=BC,
∴△DCA为等腰三角形,DA=DC,∠DAC=∠DCA=45°.
∴DA=DC=BC=20.
∴|v|=20 km/h.
答:实际的风速v的大小是202 km/h,方向是东南方向.
例2 如图3所示,利用这个装置(冲击摆)可测定子弹的速度,设有一砂箱悬挂在两线下端,子弹击中砂箱后,陷入箱内,使砂箱摆至某一高度h.设子弹和砂箱的质量分别为m和M,求子弹的速度v的大小.
图3
?解:设v0为子弹和砂箱相对静止后开始一起运动的速度,由于水平方向上动量守恒,所以m|v|=(M+m)|v0|. ①
由于机械能守恒,所以(M+m)v02=(M+m)gh. ②
联立①②解得|v|=
又因为m相对于M很小,所以|v|≈,
即子弹的速度大小约为.
知能训练
1.一艘船以4 km/h的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h,则经过小时,该船实际航程为( )
A.2 km B.6 km C. km D.8 km
图4
2.如图4,已知两个力的大小和方向,则合力的大小为 N;若在图示坐标系中,用坐标表示合力F,则F=___________.
3.一艘船以5 km/h的速度向垂直于对岸的方向行驶,而该船实际航行的方向与水流方向成30°角,求水流速度与船的实际速度.
解答:
1.B
点评:由于学生还没有学习正弦定理和余弦定理,所以要通过作高来求.
2. (5,4)
图5
3.如图5所示,设表示水流速度,表示船垂直于对岸的速度,表示船的实际速度,∠AOC=30°,||=5 km/h.
因为OACB为矩形,所以||=||·cot30°=||·cot30°=53≈8.66 km/h,
||===10 km/h.
答:水流速度为8.66 km/h,船的实际速度为10 km/h.
点评:转化为数学模型,画出向量图,在直角三角形中解出.
课堂小结
1.与学生共同归纳总结利用向量解决物理问题的步骤.
①问题的转化,即把物理问题转化为数学问题;
②模型的建立,即建立以向量为主体的数学模型;
③参数的获得,即求出数学模型的有关解——理论参数值;
④问题的答案,即回到问题的初始状态,解释相关的物理现象.
2.与学生共同归纳总结向量在物理中应用的基本题型.
①力、速度、加速度、位移都是向量;
②力、速度、加速度、位移的合成与分解对应相应向量的加减;
③)动量mv是数乘向量,冲量ΔtF也是数乘向量;
④功是力F与位移s的数量积,即W=F·s.
作业
1.课本习题2.5 A组3、4,B组1、2.
2.归纳总结物理学中哪些地方可用向量.
设计感想
1.本教案设计的指导思想是:由于本节重在解决两个问题,一是如何把物理问题转化成数学问题,也就是将物理量之间的关系抽象成数学模型;二是如何用建立起来的数学模型解释和回答相关的物理现象.因此本教案设计的重点也就放在怎样让学生探究解决这两个问题上.而把这个探究的重点又放在这两个中的第一个上,也就是引导学生认真分析物理现象、准确把握物理量之间的相互关系.通过抽象、概括,把物理现象转化为与之相关的向量问题,然后利用向量知识解决这个向量问题.
2.经历是最好的老师.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决实际问题的方法就越恰当而简捷.教科书中对本节的两个例题的处理方法,都不是先给出解法,而是先进行分析,探索出解题思路,再给出解法,就足以说明这一点.
3.突出数形结合的思想.教科书例题都是先画图进行分析的,本教案的设计中也突出了这一点.让学生在活动的时候就先想到画图,并在这个活动中,体会数形结合的应用,体会数学具有广泛的应用,体会向量这个工具的优越性.
2.5.2 向量在物理中的应用举例
课时目标 经历用向量方法解决某些简单的力学问题与其他的一些实际问题的过程,体会向量是一种处理物理问题等的工具,发展运算能力和解决实际问题的能力.
1.力向量
力向量与前面学过的自由向量有区别.
(1)相同点:力和向量都既要考虑________又要考虑________.
(2)不同点:向量与________无关,力和________有关,大小和方向相同的两个力,如果________不同,那么它们是不相等的.
2.向量方法在物理中的应用
(1)力、速度、加速度、位移都是________.
(2)力、速度、加速度、位移的合成与分解就是向量的________运算,运动的叠加亦用到向量的合成.
(3)动量mν是______________.
(4)功即是力F与所产生位移s的________.
一、选择题
1.用力F推动一物体水平运动s m,设F与水平面的夹角为θ,则对物体所做的功为( )
A.|F|·s B.Fcos θ·s
C.Fsin θ·s D.|F|cos θ·s
2.两个大小相等的共点力F1,F2,当它们夹角为90°时,合力大小为20 N,则当它们的夹角为120°时,合力大小为( )
A.40 N B.10 N C.20N D.10 N
3.共点力F1=(lg 2,lg 2),F2=(lg 5,lg 2)作用在物体M上,产生位移s=(2lg 5,1),则共点力对物体做的功W为( )
A.lg 2 B.lg 5 C.1 D.2
4.一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态,已知F1,F2成90°角,且F1,F2的大小分别为2和4,则F3的大小为( )
A.6 B.2 C.2 D.2
5.质点P在平面上作匀速直线运动,速度向量ν=(4,-3)(即点P的运动方向与ν相同,且每秒移动的距离为|ν|个单位).设开始时点P的坐标为(-10,10),则5秒后点P的坐标为( )
A.(-2,4) B.(-30,25)
C.(10,-5) D.(5,-10)
6.已知作用在点A的三个力f1=(3,4),f2=(2,-5),f3=(3,1)且A(1,1),则合力f=f1+f2+f3的终点坐标为( )
A.(9,1) B.(1,9) C.(9,0) D.(0,9)
题 号
1
2
3
4
5
6
答 案
二、填空题
7.若=(2,2),=(-2,3)分别表示F1,F2,则|F1+F2|为________.
8.一个重20 N的物体从倾斜角30°,斜面长1 m的光滑斜面顶端下滑到底端,则重力做的功是________.
9.在水流速度为4千米/小时的河流中,有一艘船沿与水流垂直的方向以8千米/小时的速度航行,则船实际航行的速度的大小为________.
10. 如图所示,小船被绳索拉向岸边,船在水中运动时设水的阻力大小不变,那么小船匀速靠岸过程中,下列说法中正确的是________(写出正确的所有序号).
①绳子的拉力不断增大;②绳子的拉力不断变小;③船的浮力不断变小;④船的浮力保持不变.
三、解答题
11. 如图所示,两根绳子把重1 kg的物体W吊在水平杆子AB上,∠ACW=150°,∠BCW=120°,求A和B处所受力的大小(绳子的重量忽略不计,g=10 N/kg).
12.已知两恒力F1=(3,4),F2=(6,-5),作用于同一质点,使之由点A(20,15)移动到点B(7,0).
(1)求F1,F2分别对质点所做的功;
(2)求F1,F2的合力F对质点所做的功.
能力提升
13. 如图所示,在细绳O处用水平力F2缓慢拉起所受重力为G的物体,绳子与铅垂方向的夹角为θ,绳子所受到的拉力为F1.
(1)求|F1|,|F2|随角θ的变化而变化的情况;
(2)当|F1|≤2|G|时,求角θ的取值范围.
14.已知e1=(1,0),e2=(0,1),今有动点P从P0(-1,2)开始,沿着与向量e1+e2相同的方向做匀速直线运动,速度为e1+e2;另一动点Q从Q0(-2,-1)开始,沿着与向量3e1+2e2相同的方向做匀速直线运动,速度为3e1+2e2,设P、Q在t=0 s时分别在P0、Q0处,问当⊥时所需的时间t为多少?
用向量理论讨论物理中相关问题的步骤
一般来说分为四步:(1)问题的转化,把物理问题转化成数学问题;(2)模型的建立,建立以向量为主体的数学模型;(3)参数的获取,求出数学模型的相关解;(4)问题的答案,回到物理现象中,用已经获取的数值去解释一些物理现象.
2.5.2 向量在物理中的应用举例
答案
知识梳理
1.(1)大小 方向 (2)始点 作用点 作用点
2.(1)向量 (2)加、减 (3)数乘向量 (4)数量积
作业设计
1.D
2.B [|F1|=|F2|=|F|cos 45°=10,
当θ= 120°,由平行四边形法则知:
|F合|=|F1|=|F2|=10 N.]
3.D [F1+F2=(1,2lg 2).
∴W=(F1+F2)·s=(1,2lg 2)·(2lg 5,1)=2lg 5+2lg 2=2.]
4.C [因为力F是一个向量,由向量加法的平行四边形法则知F3的大小等于以F1、F2为邻边的平行四边形的对角线的长,故|F3|2=|F1+F2|2=|F1|2+|F2|2=4+16=20,∴|F3|=2.]
5.C [设(-10,10)为A,设5秒后P点的坐标为A1(x,y),
则=(x+10,y-10),由题意有=5ν.
即(x+10,y-10)=(20,-15)??.]
6.A [f=f1+f2+f3=(3,4)+(2,-5)+(3,1)=(8,0),
设合力f的终点为P(x,y),则
=+f=(1,1)+(8,0)=(9,1).]
7.5 [∵F1+F2=(0,5),
∴|F1+F2|==5.]
8.10 J
解析 WG=G·s=|G|·|s|·cos 60°=20×1×=10 J.
9.4 km/h
解析 如图用v0表示水流速度,v1表示与水流垂直的方向的速度.
则v0+v1表示船实际航行速度,
∵|v0|=4,|v1|=8,
∴解直角三角形|v0+v1|==4.
10.①③
解析 设水的阻力为f,绳的拉力为F,F与水平方向夹角为θ(0<θ<).则|F|cos θ=|f|,∴|F|=.
∵θ增大,cos θ减小,∴|F|增大.
∵|F|sin θ增大,∴船的浮力减小.
11.解
设A、B所受的力分别为f1、f2,
10 N的重力用f表示,则f1+f2=f,以重力的作用点C为f1、f2、f的始点,作右图,使=f1,=f2,=f,则∠ECG=180°-150°=30°,∠FCG=180°-120°=60°.
∴||=||·cos 30°=10×=5.
||=||·cos 60°=10×=5.
∴在A处受力为5 N,在B处受力为5 N.
12.解 (1)=(7,0)-(20,15)=(-13,-15),
W1=F1·=(3,4)·(-13,-15)=3×(-13)+4×(-15)=-99(J),
W2=F2·=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(J).
∴力F1,F2对质点所做的功分别为-99 J和-3 J.
(2)W=F·=(F1+F2)·
=[(3,4)+(6,-5)]·(-13,-15)
=(9,-1)·(-13,-15)
=9×(-13)+(-1)×(-15)
=-117+15=-102(J).
∴合力F对质点所做的功为-102 J.
13.解
(1)由力的平衡及向量加法的平行四边形法则,得-G=F1+F2,|F1|=,|F2|=|G|tan θ,
当θ从0°趋向于90°时,|F1|,|F2|都逐渐增大.
(2)由|F1|=,|F1|≤2|G|,得cos θ≥.
又因为0°≤θ<90°,所以0°≤θ≤60°.
14.解 e1+e2=(1,1),|e1+e2|=,其单位向量为(,);3e1+2e2=(3,2),|3e1+2e2|=,其单位向量为(,),如图.
依题意,||=t,||=t,
∴=||(,)=(t,t),=||(,)=(3t,2t),
由P0(-1,2),Q0(-2,-1),得P(t-1,t+2),Q(3t-2,2t-1),
∴=(-1,-3),=(2t-1,t-3),
由于⊥,∴·=0,即2t-1+3t-9=0,解得t=2.
∴当⊥时所需的时间为2 s.