3.2 空间向量在立体几何中的应用 课件(20张PPT)

文档属性

名称 3.2 空间向量在立体几何中的应用 课件(20张PPT)
格式 zip
文件大小 532.6KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2019-07-25 19:36:29

图片预览

文档简介

课件20张PPT。利用空间向量求解垂直、平行中的探索性问题(3)面面夹角
设平面α,β的夹角为θ(0≤θ<π),向量法解决与垂直、平行有关的探索性问题的思路
(1)根据题设条件中的垂直关系,建立适当的空间直角坐标系,将相关点、相关向量用坐标表示.
(2)假设所求的点或参数存在,并用相关参数表示相关点的坐标,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.例3 (2017·郴州三模)如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.(1)证明:直线l⊥平面PAC;
(2)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出AQ的长;若不存在,请说明理由.
(1)证明 ∵E,F分别是PB,PC的中点,∴BC∥EF,
又EF?平面EFA,BC?平面EFA,
∴BC∥平面EFA,
又BC?平面ABC,平面EFA∩平面ABC=l,
∴BC∥l,又BC⊥AC,平面PAC∩平面ABC=AC,
平面PAC⊥平面ABC,∴BC⊥平面PAC,
∴l⊥平面PAC.练习
复习资料第145页 第10题总结提高 
1.空间向量最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.
2.空间向量求解探索性问题:(1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论;(2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论.考 点 整 合1.直线与平面、平面与平面的平行与垂直的向量方法
设直线l的方向向量为a=(a1,b1,c1),平面α,β的法向量分别为μ=(a2,b2,c2),v=(a3,b3,c3),则
(1)线面平行
l∥α?a⊥μ?a·μ=0?a1a2+b1b2+c1c2=0.
(2)线面垂直
l⊥α?a∥μ?a=kμ?a1=ka2,b1=kb2,c1=kc2.
(3)面面平行
α∥β?μ∥v?μ=λv?a2=λa3,b2=λb3,c2=λc3.
(4)面面垂直
α⊥β?μ⊥v?μ·v=0?a2a3+b2b3+c2c3=0.