1.1.2 四种命题
课时目标 1.了解四种命题的概念.2.认识四种命题的结构,会对命题进行转换.
1.四种命题的概念:
(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的______________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.
(2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.
(3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.
2.四种命题的结构:
用p和q分别表示原命题的条件和结论,用綈p,綈q分别表示p和q的否定,四种形式就是:
原命题:若p成立,则q成立.即“若p,则q”.
逆命题:________________________.即“若q,则p”.
否命题:______________________.即“若綈p,则綈q”.
逆否命题:________________________.即“若綈q,则綈p”.
一、选择题
1.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )
A.1 B.2 C.3 D.4
2.命题“若A∩B=A,则A?B”的逆否命题是( )
A.若A∪B≠A,则A?B
B.若A∩B≠A,则AB
C.若AB,则A∩B≠A
D.若A?B,则A∩B≠A
3.对于命题“若数列{an}是等比数列,则an≠0”,下列说法正确的是( )
A.它的逆命题是真命题
B.它的否命题是真命题
C.它的逆否命题是假命题
D.它的否命题是假命题
4.有下列四个命题:
①“若xy=1,则x、y互为倒数”的逆命题;
②“相似三角形的周长相等”的否命题;
③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;
④若“A∪B=B,则A?B”的逆否命题.
其中的真命题是( )
A.①② B.②③ C.①③ D.③④
5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是( )
A.4 B.3 C.2 D.0
6.命题“若函数f(x)=logax(a>0,a≠1)在其定义域内是减函数,则loga2<0”的逆否命题是( )
A.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域内不是减函数
B.若loga2<0,则函数f(x)=logax(a>0,a≠1)在其定义域内不是减函数
C.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数
D.若loga2<0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数
题号
1
2
3
4
5
6
答案
二、填空题
7.命题“若x>y,则x3>y3-1”的否命题是________________________.
8.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是
________________________;逆命题是______________________;否命题是
________________________.
9.有下列四个命题:
①“全等三角形的面积相等”的否命题;
②若a2+b2=0,则a,b全为0;
③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;
④命题“若A∩B=B,则A?B”的逆命题.
其中是真命题的是________(填上你认为正确的命题的序号).
三、解答题
10.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.
(1)正数的平方根不等于0;
(2)当x=2时,x2+x-6=0;
(3)对顶角相等.
11.写出下列命题的逆命题、否命题、逆否命题.
(1)实数的平方是非负数;
(2)等高的两个三角形是全等三角形;
(3)弦的垂直平分线平分弦所对的弧.
能力提升
12.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )
A.若f(x)是偶函数,则f(-x)是偶函数
B.若f(x)不是奇函数,则f(-x)不是奇函数
C.若f(-x)是奇函数,则f(x)是奇函数
D.若f(-x)不是奇函数,则f(x)不是奇函数
13.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.
1.对条件、结论不明显的命题,可以先将命题改写成“若p则q”的形式后再进行转换.
2.分清命题的条件和结论,然后进行互换和否定,即可得到原命题的逆命题,否命题和逆否命题.
1.1.2 四种命题 答案
知识梳理
1.(1)结论和条件 (2)条件的否定和结论的否定 (3)结论的否定和条件的否定
2.若q成立,则p成立 若綈p成立,则綈q成立
若綈q成立,则綈p成立
作业设计
1.B [由a>-3?a>-6,但由a>-6a>-3,
故真命题为原命题及原命题的逆否命题,故选B.]
2.C [先明确命题的条件和结论,然后对命题进行转换.]
3.D 4.C
5.C [原命题和它的逆否命题为真命题.]
6.A [由互为逆否命题的关系可知,原命题的逆否命题为:若loga2≥0,则函数
f(x)=logax(a>0,a≠1)在其定义域内不是减函数.]
7.若x≤y,则x3≤y3-1
8.不能被3整除的正整数,其各位数字之和不是3的倍数
能被3整除的正整数,它的各位数字之和是3的倍数
各位数字之和不是3的倍数的正整数,不能被3整除
9.②③
10.解 (1)原命题:“若a是正数,则a的平方根不等于0”.
逆命题:“若a的平方根不等于0,则a是正数”.
否命题:“若a不是正数,则a的平方根等于0”.
逆否命题:“若a的平方根等于0,则a不是正数”.
(2)原命题:“若x=2,则x2+x-6=0”.
逆命题:“若x2+x-6=0,则x=2”.
否命题:“若x≠2,则x2+x-6≠0”.
逆否命题:“若x2+x-6≠0,则x≠2”.
(3)原命题:“若两个角是对顶角,则它们相等”.
逆命题:“若两个角相等,则它们是对顶角”.
否命题:“若两个角不是对顶角,则它们不相等”.
逆否命题:“若两个角不相等,则它们不是对顶角”.
11.解 (1)逆命题:若一个数的平方是非负数,则这个数是实数.
否命题:若一个数不是实数,则它的平方不是非负数.
逆否命题:若一个数的平方不是非负数,则这个数不是实数.
(2)逆命题:若两个三角形全等,则这两个三角形等高.
否命题:若两个三角形不等高,则这两个三角形不全等.
逆否命题:若两个三角形不全等,则这两个三角形不等高.
(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.
否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.
逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.
12.B [命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.]
13.解 逆命题:已知a、b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.
否命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0.
逆否命题:已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0没有非空解集.
原命题、逆命题、否命题、逆否命题均为真命题.
1.1.3 四种命题间的相互关系
课时目标
1.认识四种命题之间的关系以及真假性之间的关系.
2.会利用命题的等价性解决问题.
1.四种命题的相互关系
2.四种命题的真假性
(1)四种命题的真假性,有且仅有下面四种情况:
原命题
逆命题
否命题
逆否命题
真
真
真
真
真
假
假
真
假
真
真
假
假
假
假
假
(2)四种命题的真假性之间的关系
①两个命题互为逆否命题,它们有______的真假性.
②两个命题为互逆命题或互否命题,它们的真假性______________.
一、选择题
1.命题“若p不正确,则q不正确”的逆命题的等价命题是( )
A.若q不正确,则p不正确
B.若q不正确,则p正确
C.若p正确,则q不正确
D.若p正确,则q正确
2.下列说法中正确的是( )
A.一个命题的逆命题为真,则它的逆否命题一定为真
B.“a>b”与“a+c>b+c”不等价
C.“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”
D.一个命题的否命题为真,则它的逆命题一定为真
3.与命题“能被6整除的整数,一定能被2整除”等价的命题是( )
A.能被2整除的整数,一定能被6整除
B.不能被6整除的整数,一定不能被2整除
C.不能被6整除的整数,不一定能被2整除
D.不能被2整除的整数,一定不能被6整除
4.命题:“若a2+b2=0 (a,b∈R),则a=b=0”的逆否命题是( )
A.若a≠b≠0 (a,b∈R),则a2+b2≠0
B.若a=b≠0 (a,b∈R),则a2+b2≠0
C.若a≠0,且b≠0 (a,b∈R),则a2+b2≠0
D.若a≠0,或b≠0 (a,b∈R),则a2+b2≠0
5.在命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠?”的逆命题、否命题、逆否命题中结论成立的是( )
A.都真 B.都假
C.否命题真 D.逆否命题真
6.设α、β为两个不同的平面,l、m为两条不同的直线,且l?α,m?β,有如下的两个命题:①若α∥β,则l∥m;②若l⊥m,则α⊥β.那么( )
A.①是真命题,②是假命题
B.①是假命题,②是真命题
C.①②都是真命题
D.①②都是假命题
题号
1
2
3
4
5
6
答案
二、填空题
7.“已知a∈U(U为全集),若a??UA,则a∈A”的逆命题是______________________________________,它是______(填“真”“或”“假”)命题.
8.“若x≠1,则x2-1≠0”的逆否命题为________命题.(填“真”或“假”)
9.下列命题:①“若k>0,则方程x2+2x+k=0有实根”的否命题;②“若>,
则a
三、解答题
10.已知命题:若m>2,则方程x2+2x+3m=0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.
11.已知奇函数f(x)是定义域为R的增函数,a,b∈R,若f(a)+f(b)≥0,求证:a+b≥0.
能力提升
12.给出下列三个命题:
①若a≥b>-1,则≥;
②若正整数m和n满足m≤n,则≤;
③设P(x1,y1)是圆O1:x2+y2=9上的任意一点,圆O2以Q(a,b)为圆心,且半径为1.当(a-x1)2+(b-y1)2=1时,圆O1与圆O2相切.其中假命题的个数为( )
A.0 B.1 C.2 D.3
13.a、b、c为三个人,命题A:“如果b的年龄不是最大的,那么a的年龄最小”和命题B:“如果c的年龄不是最小的,那么a的年龄最大”都是真命题,则a、b、c的年龄的大小顺序是否能确定?请说明理由.
1.互为逆否的命题同真假,即原命题与逆否命题,逆命题与否命题同真假.四种命题中真命题的个数只能是偶数个,即0个、2个或4个.
2.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.
1.1.3 四种命题间的相互关系 答案
知识梳理
1.若q,则p 若綈p,则綈q 若綈q,则綈p
2.(2)①相同 ②没有关系
作业设计
1.D [原命题的逆命题和否命题互为逆否命题,只需写出原命题的否命题即可.]
2.D 3.D
4.D [a=b=0的否定为a,b至少有一个不为0.]
5.D [原命题是真命题,所以逆否命题也为真命题.]
6.D
7.已知a∈U(U为全集),若a∈A,则a??UA 真
解析 “已知a∈U(U为全集)”是大前提,条件是“a??UA”,结论是“a∈A”,所以原命题的逆命题为“已知a∈U(U为全集),若a∈A,则a??UA”.它为真命题.
8.假 9.①②
10.解 逆命题:若方程x2+2x+3m=0无实根,则m>2,假命题.否命题:若m≤2,则方程x2+2x+3m=0有实根,假命题.逆否命题:若方程x2+2x+3m=0有实根,则m≤2,真命题.
11.证明 假设a+b<0,即a<-b,
∵f(x)在R上是增函数,∴f(a)又f(x)为奇函数,∴f(-b)=-f(b),
∴f(a)<-f(b),即f(a)+f(b)<0.
即原命题的逆否命题为真,故原命题为真.
∴a+b≥0.
12.B [①用“分部分式”判断,具体:
≥?1-≥1-?≤,又a≥b>-1?a+1≥b+1>0知本命题为真命题.
②用基本不等式:2xy≤x2+y2 (x>0,y>0),取x=,y=,知本命题为真.
③圆O1上存在两个点A、B满足弦AB=1,所以P、O2可能都在圆O1上,当O2在圆O1上时,圆O1与圆O2相交.故本命题为假命题.]
13.解 能确定.理由如下:
显然命题A和B的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.
①由命题A为真可知,当b不是最大时,则a是最小的,即若c最大,则a最小,所以c>b>a;而它的逆否命题也为真,即“a不是最小,则b是最大”为真,所以b>a>c.总之由命题A为真可知:c>b>a或b>a>c.
②同理由命题B为真可知a>c>b或b>a>c.
从而可知,b>a>c.所以三个人年龄的大小顺序为b最大,a次之,c最小.
§1.1.2 四种命题间的相互关系
【学情分析】:
四种命题的关系是命题这一节的核心内容,由原命题写出其他三种形式且引导学生探究四种命题相互间的内在的联系,从而引导学生探究出互为逆否命题的真假性一致.利用互为逆否命题的等价性,通过“正难则反”培养自己的逆向思维能力.这也是反证明法证明问题的理论依据.
【教学目标】:
(1)知识目标:
理解四种命题之间的相互关系,能由原命题写出其他三种形式;理解一个命题的真假与其他三个命题真假间的关系;初步掌握反证法的概念及反证法证题的基本步骤。
(2)过程与方法目标:
让学生初步学会运用逻辑知识整理客观素材,合理进行思维的方法,初步形成运用逻辑知识准确地表述数学问题的数学意识。
(3)情感与能力目标:
通过对四种命题之间关系的学习,培养学生逻辑推理能力。
【教学重点】:
四种命题之间的关系;
【教学难点】:
利用互为逆否命题的等价性,通过“正难则反”培养自己的逆向思维能力。
【教学过程设计】
教学环节
教学活动
设计意图
一.问题
情境
问题1:写出命题
若f(x)是正弦函数,则f(x)是周期函数;
的逆命题、否命题与逆否命题。
问题2:这四个命题中任意两个命题的关系?
问题3:这四个命题的真假性是否也有一定的关系?
巩固由原命题写出其他三种形式且引导学生探究四种命题相互了解间的内在的联系。
二、知识
建构
1、 四种题的形式和关系如下图:
由师生合作完成四种题的形式和关系图,培养学生分析和概括的能力。
三、学生
探究
设原命题是“若,则”,
写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.
问题4:分析其它一些命题,
四个命题的真假性间有什么规律?
由学生的分组讨论探索四种命题
真假性间的规律。
四、知识
建构
结论:两个命题互为逆否命题,它们有相同的真假性.
(2)两个命题为互逆或互否命题,它们的真假性没有关系.
在命题真假性的判断中,要借助原命题与逆否命题同真同假,逆命题与否命题同真同假, 学会利用互为逆否命题的等价性,通过“正难则反”培养自己的逆向思维能力.
五.体验与运用
例1:设原命题是“当c>0时,若a>b,则ac>bc”,写出它的逆命题、否命题与逆否命题,并分别判断它们的真假
解: 逆命题“当 时,若 ,则 ”.
否命题“当 时,若 ,则 ”.否命题为真.
逆否命题“当 时,若 ,则 ”.逆否命题为真.
课堂练习
写出命题:“若 xy = 6则 x = 3且 y = 2”的逆命题否命题逆否命题,并判断它们的真假
例2:证明:若,则。
练习: 已知a,b两直线是异面直线,且点A与B,C与D分别是直线a,b 上的相异点求证:直线AC与BD必异面
通过“正难则反”培养自己的逆向思维能力.这也是反证明法证明问题的理论依据
六、小结与反思
课堂小结
1.写一个命题的逆命题、否命题、逆否命题的关键是分清楚原命题的条件和结论,一般大前提不变.
2.在命题真假性的判断中,要借助原命题与逆否命题同真同假,逆命题与否命题同真同假, 学会利用互为逆否命题的等价性,通过“正难则反”培养自己的逆向思维能力.这也是反证明法证明问题的理论依据.
通过学生自己的小结,将新知识系统化、重点化。通过学生的反思,使学生意识重点和难点,提高学习效率。
课后练习
1.如果一个命题的否命题是真命题,那么这个命题的逆命题是( )
A.真命题, B. 假命题,
C.不一定是真命题, D.不一定是假命题。
2.一个命题与它的逆命题、否命题、逆否命题这四个命题中( )
A.真命题的个数一定是奇数 B.真命题的个数一定是偶数
C.真命题的个数可能是奇数也可能是偶数 D.上述判断都不正确
3.已知原命题“菱形的对角线互相垂直”,则它的逆命题、否命题、逆否命题的真假判断正确的是( )
A.逆命题、否命题、逆否命题都为真
B.逆命题为真,否命题、逆否命题为假
C.逆命题为假,否命题、逆否命题为真
D.逆命题、否命题为假,逆否命题为真
4.有下列四个命题:
①“若则互为倒数”的逆命题;
②“相似三角形的周长相等”的否命题
③“若,则关于若的方程若有实根”的逆否命题
④“,则”的逆否命题
其中,真命题的个数是( )
A. 0 B. 1 C. 2 D.3
5.用反证法证明命题“a、b∈N*,ab可被5整除,那么a,b中至少有一个能被5整除”,那么假设内容是( )
A.a、b都能被5整除 B.a、b都不能被5整除
C.a不能被5整除 D.a、b有一个不能被5整除
6.下列4个命题是真命题的是( )
①“若则、均为零”的逆命题
②“相似三角形的面积相等”的否命题
③“若则”的逆否命题
④“末位数字不是零的数可被3整除”的逆否命题
A. ①② B. ②③ C. ①③ D. ③④
7、命题“若a>b,则ac2>bc2(a、b∈R)”与它的逆命题、否命题中,真命题的个数为( )
A.3 B.2 C.1 D.0
8.“在整数范围内,,是偶数,则是偶数”的逆否命题是 。
9.用反证法证明命题“5个连续自然数的平方和不可能是一个完全平方数”时,反设成:????????????? .反设若用式子表示,则为:???????? .
10. 判断下列命题“若在二次函数 中 ,则该二次函数图像与 轴有公共点”.的真假,并写出它的逆命题,否命题,逆否命题.同时,也判断这些命题的真假.
11.反证法证明:若 ,则 、 、中至少有一个不等于0.
12.若a,b,c均为实数,且a=x2-2y+,b=y2-2z+,c=z-2x+,求证:a,b,c中至少有一个大于0.
参考答案:
1. C 2.B 3.D 4.C 5.B 6. C 7,B
8.在整数范围内,若不是偶数则不都是偶数。
9.“假设5个连续自然数的平方和是一个完全平方数”.用式子表示,则为“假设 是一个完全平方数( )
10.该命题为假.
逆命题:若二次函数 的图像与 轴有公共点,则 .为假.
否命题:若二次函数 中, ,则该二次函数图象与 轴没有公共点.为假.
逆否命题:若二次函数 的图像与 轴没有公共点,则 .为假.
11.证明:假设 、 、 都等于0,则
与 矛盾,所以 、 、 中至少有一个不等于0.
常见错误及分析:往往把 、 、 中至少有一个不等于零的否定错认为是 、 、 中最多有一个不等于零,或错认为是 、 、 中最多有一个等于零
12、假设a、b、c都不大于0,
即:a≤0,b≤0,c≤0,则a+b+c≤0
但a+b+c=(x2-2y+)+(y2-2z+)+(z2-2x+)
=(x-1)2+(y-1)2+(z-1)2+(π-3)
∵π>3,且 (x-1)2+(y-1)2+(z-1)2≥0.
对一切x,y,z∈R恒成立.
∴必有a+b+c>0,这与假设a+b+c≤0矛盾.
∴a,b,c中至少有一个大于0.
高中数学 1.1.2四种命题1.1.3四种命题的相互关系教案
新人教A版选修1-1
和四种命题间的相互关系,会用等价命题判断四种命题的真假.
◆过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.
◆情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.
(二)教学重点与难点
重点:(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系.
难点:(1)命题的否定与否命题的区别; (2)写出原命题的逆命题、否命题和逆否命题;
(3)分析四种命题之间相互的关系并判断命题的真假.
教具准备:与教材内容相关的资料。
教学设想:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.
(三)教学过程
学生探究过程:
1.复习引入
初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?
2.思考、分析
问题1:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?
(1)若f(x)是正弦函数,则f(x)是周期函数. (2)若f(x)是周期函数,则f(x)是正弦函数.
(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.
3.归纳总结
问题一通过学生分析、讨论可以得到正确结论.紧接结合此例给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题。
4.抽象概括
定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.
让学生举一些互逆命题的例子。
定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.
让学生举一些互否命题的例子。
定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.
让学生举一些互为逆否命题的例子。
小结:
交换原命题的条件和结论,所得的命题就是它的逆命题:
同时否定原命题的条件和结论,所得的命题就是它的否命题;
交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.
强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。
5.四种命题的形式
让学生结合所举例子,思考:
若原命题为“若P,则q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式?
学生通过思考、分析、比较,总结如下:
原命题:若P,则q.则:
逆命题:若q,则P.
否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非p)
逆否命题:若¬q,则¬P.
6.巩固练习
写出下列命题的逆命题、否命题、逆否命题并判断它们的真假:
若一个三角形的两条边相等,则这个三角形的两个角相等;
若一个整数的末位数字是0,则这个整数能被5整除;
若x2=1,则x=1;
若整数a是素数,则是a奇数。
7.思考、分析
结合以上练习思考:原命题的真假与其它三种命题的真假有什么关系?
通过此问,学生将发现:
①原命题为真,它的逆命题不一定为真。
②原命题为真,它的否命题不一定为真。
③原命题为真,它的逆否命题一定为真。
原命题为假时类似。
结合以上练习完成下列表格
:
原 命 题
逆 命 题
否 命 题
逆 否 命 题
真
真
假
真
假
真
假
假
由表格学生可以发现:原命题与逆否命题总是具有相同的真假性,逆命题与否命题也总是具有相同的真假性.
由此会引起我们的思考:
一个命题的逆命题、否命题与逆否命题之间是否还存在着一定的关系呢?
让学生结合所做练习分析原命题与它的逆命题、否命题与逆否命题四种命题间的关系.
学生通过分析,将发现四种命题间的关系如下图所示:
8.总结归纳
若P,则q.
若q,则P.
原命题
互 逆
逆命题
互
否
互
为
否
逆
互
否
为
互
逆
否
否命题
逆否命题
互 逆
若¬P,则¬q.
若¬q,则¬P.
由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:
(1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.
由于原命题和它的逆否命题有相同的真假性,所以在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.
9.例题分析
例4: 证明:若p2 + q2 =2,则p + q ≤ 2.
分析:如果直接证明这个命题比较困难,可考虑转化为对它的逆否命题的证明。
将“若p2 + q2 =2,则p + q ≤ 2”视为原命题,要证明原命题为真命题,可以考虑证明它的逆否命题“若p + q >2,则p2 + q2 ≠2”为真命题,从而达到证明原命题为真命题的目的.
证明:若p + q >2,则
p2 + q2 =[(p -q)2+(p +q)2]≥(p +q)2>×22=2
所以p2 + q2≠2.
这表明,原命题的逆否命题为真命题,从而原命题为真命题。
练习巩固:证明:若a2-b2+2a-4b-3≠0,则a-b≠1.
10:教学反思
(1)逆命题、否命题与逆否命题的概念;
(2)两个命题互为逆否命题,他们有相同的真假性;
(3)两个命题为互逆命题或互否命题,他们的真假性没有关系;
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )
A.原命题、否命题 B.原命题、逆命题
C.原命题、逆否命题 D.逆命题、否命题
【解析】 因为原命题是真命题,所以逆否命题也是真命题.
【答案】 C
2.有下列四个命题:
(1)“若x2+y2=0,则xy=0”的否命题;
(2)“若x>y,则x2>y2”的逆否命题;
(3)“若x≤3,则x2-x-6>0”的否命题;
(4)“对顶角相等”的逆命题.
其中真命题的个数是( )
A.0 B.1 C.2 D.3
【解析】
(1)
假
原命题的否命题与其逆命题有相同的真假性,其逆命题为“若xy=0,则x2+y2=0”,为假命题
(2)
假
原命题与其逆否命题具有相同的真假性.而原命题为假命题(如x=0,y=-1),故其逆否命题为假命题
(3)
假
该命题的否命题为“若x>3,则x2-x-6≤0”,很明显为假命题
(4)
假
该命题的逆命题为“相等的角是对顶角”,显然是假命题
【答案】 A
3.下列说法中错误的个数是( )
①命题“余弦函数是周期函数”的否命题是“余弦函数不是周期函数”;
②命题“若x>1,则x-1>0”的否命题是“若x≤1,则x-1≤0”;
③命题“两个正数的和为正数”的否命题是“两个负数的和为负数”;
④命题“x=-4是方程x2+3x-4=0的根”的否命题是“x=-4不是方程x2+3x-4=0的根”.
A.1 B.2 C.3 D.4
【解析】 ①错误,否命题是“若一个函数不是余弦函数,则它不是周期函数”;②正确;③错误,否命题是“若两个数不全为正数,则它们的和不为正数”;④错误,否命题是“若一个数不是-4,则它不是方程x2+3x-4=0的根”.
【答案】 C
4.已知命题p:若a>0,则方程ax2+2x=0有解,则其原命题、否命题、逆命题及逆否命题中真命题的个数为( )
A.3 B.2 C.1 D.0
【解析】 易知原命题和逆否命题都是真命题,否命题和逆命题都是假命题.故选B.
【答案】 B
5.在下列四个命题中,真命题是( )
A.“x=3时,x2+2x-3=0”的否命题
B.“若b=3,则b2=9”的逆命题
C.若ac>bc,则a>b
D.“相似三角形的对应角相等”的逆否命题
【解析】 A中命题的否命题为“x≠3时,x2+2x-3≠0”,是假命题;B中命题的逆命题为“若b2=9,则b=3”,是假命题;C中当c<0时,为假命题;D中原命题与逆否命题等价,都是真命题.故选D.
【答案】 D
二、填空题
6.“若x,y全为零,则xy=0”的否命题为________.
【答案】 若x,y不全为零,则xy≠0
7.下列命题中:
①若一个四边形的四条边不相等,则它不是正方形;
②正方形的四条边相等;
③若一个四边形的四条边相等,则它是正方形.
其中互为逆命题的有________;互为否命题的有________;互为逆否命题的有________.(填序号)
【答案】 ②和③ ①和③ ①和②
8.给出下列命题:
①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;
②命题“△ABC中,若AB=BC=CA,那么△ABC为等边三角形”的逆命题;
③命题“若a>b>0,则>>0”的逆否命题;
④“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.
其中,真命题的序号为________.
【解析】 ①否命题:若b2-4ac≥0,则方程ax2+bx+c=0(a≠0)有实根,真命题;
②逆命题:若△ABC为等边三角形,则AB=BC=CA,真命题;
③因为命题“若a>b>0,则>>0”是真命题,故其逆否命题是真命题;
④逆命题:若mx2-2(m+1)x+(m-3)>0的解集是R,则m>1,假命题.
所以应填①②③.
【答案】 ①②③
三、解答题
9.写出命题“已知a,b∈R,若a2>b2,则a>b”的逆命题、否命题和逆否命题,并判断它们的真假.
【解】 逆命题:已知a,b∈R,若a>b,则a2>b2;
否命题:已知a,b∈R,若a2≤b2,则a≤b;
逆否命题:已知a,b∈R,若a≤b,则a2≤b2.
原命题是假命题.
逆否命题也是假命题.
逆命题是假命题.
否命题也是假命题.
10.已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.
(1)写出命题p的否命题;
(2)判断命题p的否命题的真假,并证明你的结论.
【解】 (1)命题p的否命题为“若ac<0,则二次方程ax2+bx+c=0有实根”.
(2)命题p的否命题是真命题.
证明如下:
∵ac<0,
∴-ac>0?Δ=b2-4ac>0?二次方程ax2+bx+c=0有实根.
∴该命题是真命题.
[能力提升]
1.(2018·陕西高考)原命题为“若A.真,真,真 B.假,假,真
C.真,真,假 D.假,假,假
【解析】 原命题与其逆命题都是真命题,所以其否命题和逆否命题也都是真命题,故选A.
【答案】 A
2.下列四个命题:①“若x+y=0,则x=0,且y=0”的逆否命题;②“正方形是矩形”的否命题;③“若x=1,则x2=1”的逆命题;④若m>2,则x2-2x+m>0.其中真命题的个数为( )
A.0 B.1 C.2 D.3
【解析】 命题①的逆否命题是“若x≠0,或y≠0,则x+y≠0”,为假命题;
命题②的否命题是“若一个四边形不是正方形,则它不是矩形”,为假命题;
命题③的逆命题是“若x2=1,则x=1”,为假命题;
命题④为真命题,当m>2时,方程x2-2x+m=0的判别式Δ<0,对应二次函数图象开口向上且与x轴无交点,所以函数值恒大于0.
【答案】 B
3.已知命题“若m-1<x<m+1,则1<x<2”的逆命题为真命题,则m的取值范围是________.
【解析】 由已知得,若1<x<2成立,则m-1<x<m+1也成立.
∴
∴1≤m≤2.
【答案】 [1,2]
4.判断命题:“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实根”的逆否命题的真假.
【解】 (利用原命题)因为原命题与逆否命题真假性一致,所以只需判断原命题真假即可.
方程判别式为Δ=4b2-4(b2+b)=-4b,因为b≤-1,所以Δ≥4>0,故此方程有两个不相等的实根,即原命题为真,故它的逆否命题也为真.
课件43张PPT。1.1.2 四种命题
1.1.3 四种命题间的相互关系自主学习 新知突破1.了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.
2.会判断四种命题的真假.
3.利用命题真假的等价性解决简单问题.观察下列四个命题:
(1)若四边形的对角互补,则该四边形是圆的内接四边形;
(2)若四边形是圆内接四边形,则该四边形的对角互补;
(3)若四边形的对角不互补,则该四边形不是圆的内接四边形;
(4)若四边形不是圆的内接四边形,则四边形的对角不互补.命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?
[提示] 命题(1)的条件是命题(2)的结论,且命题(1)的结论是命题(2)的条件;
对于命题(1)和(3).其中一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定;
对于命题(1)和(4).其中一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定.四种命题结论条件互逆命题逆命题若q,则p条件的否定结论的否定否命题若?p,则?q结论的否定条件的否定逆否命题若?q,则?p四种命题之间的相互关系1.“互逆命题”“互否命题”“互为逆否命题”与“逆命题”“否命题”“逆否命题”的区别
两者具有不同的含义,具体区分如下:
前者说的是两个命题的关系,同时涉及两个命题;后者是指与确定的原命题为“互逆”“互否”“互为逆否”关系的那一个命题.
2.判断四种命题间关系的方法
(1)利用命题定义;
(2)可以从名称上缺少的“逆、否”两字来判断.
如“逆命题”与“逆否命题”,不同在“否”字,是互否关系,“逆命题”与“否命题”,不同在“逆、否”两字,是互为逆否命题关系.四种命题的真假性,有且仅有下面四种情况.四种命题的真假性真真假真真假假假四种命题的真假性之间的关系
(1)两个命题互为逆否命题,它们有相同的真假性.
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )
A.“若一个数是负数,则它的平方不是正数”
B.“若一个数的平方是正数,则它是负数”
C.“若一个数不是负数,则它的平方不是正数”
D.“若一个数的平方不是正数,则它不是负数”
解析: 原命题的逆命题是:若一个数的平方是正数,则它是负数.
答案: B
2.若命题p的否命题是q,命题q的逆命题是r,则r是p的逆命题的( )
A.原命题 B.逆命题
C.否命题 D.逆否命题
解析: 设p为原命题,则q为否命题,r是逆否命题;所以r是p的逆命题的否命题.
答案: C
3.命题“若ab=0,则a=0”与命题“若a=0,则ab=0”是________命题.
解析: 两个命题的条件和结论交换了,满足互逆命题的概念.
答案: 互逆
4.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假.
(1)若直线垂直于平面内的两条相交直线,则这条直线垂直于该平面;
(2)若x>10,则x>0.解析: (1)逆命题:若直线垂直于平面,则这条直线垂直于平面内的两条相交直线,为真命题;
否命题:若直线不垂直于平面内的两条相交直线,则这条直线不垂直于平面,为真命题;
逆否命题:若直线不垂直于平面,则这条直线不垂直于平面内的两条相交直线,为真命题.
(2)逆命题:若x>0,则x>10,为假命题;
否命题:若x≤10,则x≤0,为假命题;
逆否命题:若x≤0,则x≤10,为真命题.合作探究 课堂互动命题的四种形式 分别写出下列命题的逆命题、否命题、逆否命题.
(1)若q<1,则方程x2+2x+q=0有实根;
(2)若ab=0,则a=0;
(3)若x∈A,则x∈(A∩B). [思路点拨] (1)逆命题:若方程x2+2x+q=0有实根,则q<1,假命题.
否命题:若q≥1,则方程x2+2x+q=0无实根,假命题.
逆否命题:若方程x2+2x+q=0无实根,则q≥1,假命题.
(2)逆命题:若a=0,则ab=0,真命题.
否命题:若ab≠0,则a≠0,真命题.
逆否命题:若a≠0,则ab≠0,假命题.
(3)逆命题:若x∈(A∩B),则x∈A.真命题;
否命题:若x?A,则x?(A∩B).真命题;
逆否命题:若x?(A∩B),则x?A.假命题. (1)逆命题的写法
给出一个命题,将它作为原命题并交换其条件和结论,即得原命题的逆命题.
(2)写原命题的否命题的步骤
①找出原命题的条件和结论;
②对原命题的条件和结论进行否定,作为新命题的条件和结论;
③所得命题即为原命题的否命题.
(3)逆否命题的两种写法
①先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题;
②先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.1.写出下列命题的逆命题、否命题、逆否命题.
(1)若a=b,则a2=b2;
(2)在△ABC中,若a>b,则∠A>∠B.
解析: (1)逆命题:若a2=b2,则a=b.
否命题为:若a≠b,则a2≠b2.
逆否命题为:若a2≠b2,则a≠b.
(2)逆命题:在△ABC中,若∠A>∠B,则a>b,
否命题:在△ABC中,若a≤b,则∠A≤∠B,
逆否命题:在△ABC中,若∠A≤∠B,则a≤b.四种命题真假的判断 设命题为“如果m>0,则关于x的方程x2+x-m=0有实根”试写出它的否命题、逆命题和逆否命题,并分别判断其真假.
[思路点拨] 利用四个命题的关系给出其他三种形式,对每一个命题判断即可. 四种命题的真假判断的两种方法
(1)利用命题真假判断的方法判断.
(2)由于互为逆否命题的真假具有等价性,因而在判断四种命题的真假时,可以转化为先判断原命题和逆(否)命题的真假,再利用互为逆否命题的真假具有等价性即可完成.解析: ①原命题的否命题为“若x2+y2=0,则x,y全为零”.真命题;
②原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形”.假命题;
③原命题的逆否命题为“若x2+x-m=0无实根,则m≤0”.
∵方程无实根,答案: B 逆否命题的应用 证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0. 证明:证法一:原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,
若a+b<0,则f(a)+f(b)若a+b<0,则a<-b,b<-a, 6分
又∵f(x)在(-∞,+∞)上是增函数,
∴f(a)∴f(a)+f(b)即逆否命题为真命题. 11分
∴原命题为真命题. 12分
证法二:假设a+b<0,则a<-b,b<-a, 2分
又∵f(x)在(-∞,+∞)上是增函数,
∴f(a)∴f(a)+f(b)这与已知条件f(a)+f(b)≥f(-a)+f(-b)相矛盾. 11分
因此假设不成立,故a+b≥0. 12分 由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的命题具有等价性,所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.3.判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.解析: 方法一:原命题的逆否命题:
已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.判断其真假如下:
抛物线y=x2+(2a+1)x+a2+2的图象开口向上,
判别式Δ=(2a+1)2-4(a2+2)=4a-7.
因为a<1,所以4a-7<0.
即抛物线y=x2+(2a+1)x+a2+2的图象与x轴无交点,
所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.
故原命题的逆否命题为真.写出命题“若x2+y2=0,则 x,y全为0”的逆命题、否命题和逆否命题,并判断它们的真假.
【错解】 逆命题:若x,y全为0,则x2+y2=0,是真命题;
否命题:若x2+y2≠0,则x,y全不为0,是假命题;
逆否命题:若x,y全不为0,则x2+y2≠0,是真命题.【错因】 错解主要是对原命题中结论的否定错误.对“x,y全为0”的否定,应为“x,y不全为0”,而不是“x,y全不为0”.
【正解】 逆命题:若x,y全为0,则x2+y2=0,是真命题;
否命题:若x2+y2≠0,则x,y不全为0,是真命题;
逆否命题:若x,y不全为0,则x2+y2≠0,是真命题. 谢谢观看!