高中数学(人教版A版选修1-1)配套课件38张、教案、学案、同步练习题,补习复习资料:1.2充分条件和必要条件

文档属性

名称 高中数学(人教版A版选修1-1)配套课件38张、教案、学案、同步练习题,补习复习资料:1.2充分条件和必要条件
格式 zip
文件大小 2.2MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-30 08:07:51

文档简介

§1.2 充分条件与必要条件
课时目标 1.结合实例,理解充分条件、必要条件、充要条件的意义.2.会判断(证明)某些命题的条件关系.
1.如果已知“若p,则q”为真,即p?q,那么我们说p是q的____________,q是p的____________.
2.如果既有p?q,又有q?p,就记作________.这时p是q的______________条件,简称________条件,实际上p与q互为________条件.如果pq且qp,则p是q的________________________条件.
一、选择题
1.“x>0”是“x≠0”的(  )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
2.设p:x<-1或x>1;q:x<-2或x>1,则綈p是綈q的(  )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
3.设集合M={x|0A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
4.“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的(  )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
5.设l,m,n均为直线,其中m,n在平面α内,“l⊥α”是“l⊥m且l⊥n”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.“a<0”是“方程ax2+2x+1=0至少有一个负数根”的(  )
A.必要不充分条件 B.充分不必要条件
C.充分必要条件 D.既不充分也不必要条件
题号
1
2
3
4
5
6
答案
二、填空题
7.用符号“?”或“”填空.
(1)a>b________ac2>bc2;
(2)ab≠0________a≠0.
8.不等式(a+x)(1+x)<0成立的一个充分而不必要条件是-29.函数y=ax2+bx+c (a>0)在[1,+∞)上单调递增的充要条件是__________.
三、解答题
10.下列命题中,判断条件p是条件q的什么条件:
(1)p:|x|=|y|,q:x=y.
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四边形的对角线互相平分,q:四边形是矩形.
11.已知P={x|a-4能力提升
12.记实数x1,x2,…,xn中的最大数为max,最小数为
min.已知△ABC的三边边长为a,b,c(a≤b≤c),定义它的倾斜度为
l=max·min,
则“l=1”是“△ABC为等边三角形”的(  )
A.必要而不充分条件
B.充分而不必要条件
C.充要条件
D.既不充分也不必要条件
13.已知数列{an}的前n项和为Sn=(n+1)2+c,探究{an}是等差数列的充要条件.
1.判断p是q的什么条件,常用的方法是验证由p能否推出q,由q能否推出p,对
于否定性命题,注意利用等价命题来判断.
2.证明充要条件时,既要证明充分性,又要证明必要性,即证明原命题和逆命题都成立,但要分清必要性、充分性是证明怎样的一个式子成立.“A的充要条件为B”的命题的证明:A?B证明了必要性;B?A证明了充分性.“A是B的充要条件”的命题的证明:A?B证明了充分性;B?A证明了必要性.
§1.2 充分条件与必要条件 答案
知识梳理
1.充分条件 必要条件
2.p?q 充分必要 充要 充要 既不充分又不必要
作业设计
1.A [对于“x>0”?“x≠0”,反之不一定成立.
因此“x>0”是“x≠0”的充分而不必要条件.]
2.A [∵q?p,∴綈p?綈q,反之不一定成立,
因此綈p是綈q的充分不必要条件.]
3.B [因为N?M.所以“a∈M”是“a∈N”的必要而不充分条件.]
4.A [把k=1代入x-y+k=0,推得“直线x-y+k=0与圆x2+y2=1相交”;但“直线x-y+k=0与圆x2+y2=1相交”不一定推得“k=1”.故“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分而不必要条件.]
5.A [l⊥α?l⊥m且l⊥n,而m,n是平面α内两条直线,并不一定相交,所以l⊥m且l⊥n不能得到l⊥α.]
6.B [当a<0时,由韦达定理知x1x2=<0,故此一元二次方程有一正根和一负根,符合题意;当ax2+2x+1=0至少有一个负数根时,a可以为0,因为当a=0时,该方程仅有一根为-,所以a不一定小于0.由上述推理可知,“a<0”是“方程ax2+2x+1=0至少有一个负数根”的充分不必要条件.]
7.(1)  (2)?
8.a>2
解析 不等式变形为(x+1)(x+a)<0,因当-2-a,即a>2.
9.b≥-2a
解析 由二次函数的图象可知当-≤1,即b≥-2a时,函数y=ax2+bx+c在
[1,+∞)上单调递增.
10.解 (1)∵|x|=|y|x=y,
但x=y?|x|=|y|,
∴p是q的必要条件,但不是充分条件.
(2)△ABC是直角三角形△ABC是等腰三角形.
△ABC是等腰三角形△ABC是直角三角形.
∴p既不是q的充分条件,也不是q的必要条件.
(3)四边形的对角线互相平分四边形是矩形.
四边形是矩形?四边形的对角线互相平分.
∴p是q的必要条件,但不是充分条件.
11.解 由题意知,Q={x|1∴,解得-1≤a≤5.
∴实数a的取值范围是[-1,5].
12.A [当△ABC是等边三角形时,a=b=c,
∴l=max·min=1×1=1.
∴“l=1”是“△ABC为等边三角形”的必要条件.
∵a≤b≤c,∴max=.
又∵l=1,∴min=,
即=或=,
得b=c或b=a,可知△ABC为等腰三角形,而不能推出△ABC为等边三角形.
∴“l=1”不是“△ABC为等边三角形”的充分条件.]
13.解 当{an}是等差数列时,∵Sn=(n+1)2+c,
∴当n≥2时,Sn-1=n2+c,
∴an=Sn-Sn-1=2n+1,
∴an+1-an=2为常数.
又a1=S1=4+c,
∴a2-a1=5-(4+c)=1-c,
∵{an}是等差数列,∴a2-a1=2,∴1-c=2.
∴c=-1,反之,当c=-1时,Sn=n2+2n,
可得an=2n+1 (n≥1)为等差数列,
∴{an}为等差数列的充要条件是c=-1.
§1.2.1 充分条件与必要条件
【学情分析】:
充分条件、必要条件和充要条件是基本的数学逻辑用语,数学学科中大量的命题用它来叙述。是上一课时命题的真假的进一步的深化,也是高考的重点内容。在此引入概念,对于这几个概念的准确需要一定的时间的体会和思考,对于这些概念的运用和掌握有赖于后续的学习,学习中不要急于求成,而应该在后续的教学中经常借助于这些概念去表达、阐述和分析。
【教学目标】:
(1)知识目标:
正确理解充分条件、必要条件和充要条件的概念;会判断命题的充分不必要条件、必要不充分条件,充要条件。
(2)过程与方法目标:
利用多媒体教学,多让学生举例讨论,教学方法较灵活,学生参与意识强,培养他们的良好的思维品质。
(3)情感与能力目标:
通过学生的举例,培养他们的辨析能力;利用命题的等价性,培养他们的分析问题、解决问题的能力和逻辑思维能力。
【教学重点】:
理解充分不必要条件、必要不充分条件和充要条件的概念。
【教学难点】:
关于充分不必要条件、必要不充分条件和充要条件的判断。
【教学过程设计】:
教学环节
教学活动
设计意图
引入
课题
问题1:写出下列命题的条件和结论,并说明条件和结论有什么关系?
(1)若x > a2 + b2,则x > 2ab
(2)若ab = 0,则a = 0
(3)两直线平行,同位角相等。
由问题引入概念.
二、知识
建构
定义:命题“若p则q”为真命题,即p => q,就说p是q的充分条件;q是p必要条件。则有如下情况:
①若 ,但 ,则 是 的充分但不必要条件; ②若,但 ,则 是 的必要但不充分条件;③若 , 且 ,则 是 的充要条件;
④若 ,且 ,则 是 的充要条件
⑤若 ,且 ,则 是 的既不充分也不必要条件.
由师生合作完成定义下的五种不同情况,培养学生分析和概括的能力。
三.体验与运用
例1、 指出下列各组命题中, 是 的什么条件(在“充分而不必要条件”“必要而不充分条件”“充要条件”“既不充分也不必要条件”中选出一种)。
(1) :四边形对角线互相平分; :四边形是矩形
(2): ; :抛物线过原点。
(3) : ; :。
(4):方程 有一根为1;

(5) : ; :方程 有实根。 
解:(1)四边形对角线互相平分 四边形是矩形。四边形是矩形 四边形对角线互相平分。所以 是 的必要而不充分条件。
(2) 抛物线 过原点,抛物线 过原点 。 所以 是 的充要条件。
(3) 。
所以 是 的充分而不必要条件。
(4)方程 有一根为 。
  方程 有一根为1。
所以 是 的充要条件。
(5) 方程 有实根,方程 有实根 。所以 是 的充分而不必要条件。
  所以 是 的充分而不必要条件。
由例1通过师生的共同合作加深对定义的理解。引导学生对于较为抽象的命题应转化条件或结论的等价形式。
四、巩固
练习
练习、下列命题中,p是q的什么条件?

(2) p:m,n是偶数 q:两个整数的和是偶数
(3)p: x = y, q: x2 = y2
(4)p:两个三角形全等,q:这两个三角形的面积相等;
(5)p: a >b, q:ac> bc

(7)p:两条直线不平行,q:这两条直线是异面直线.
及时运用新知识,巩固练习,让学生体验成功,为了使学生实现从掌握知识到运用知识的转化,使知识教育与能力培养结合起来,设计分层练习
五、学生
探究
问题2:P是q的什么条件?从中能发现什么规律?
p
q

练习:P12,第2题。
例2、 若甲是乙的充分条件,乙是丙的充要条件,丙是丁的必要条件,丁是乙的必要条件,问甲是丙的什么条件?乙是丁的什么条件?
 解:由题意,分析如下图所示。
  根据图示得:甲是丙的充分条件,乙是丁的充要条件.
若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断
六、小结与反思
1充分、必要、充要条件的定义。
在“若p则q”中
(1)pq,(p为q的充分条件,q为p的必要条件)
(2)qp,( p为q的充要条件,q为p的充要条件)
2给定两个条件p ,q,要判断p是q的什么条件,也可 考虑集合:A={X|X满足条件q},B={X|X满足条件p}
若 ,则 是 的充分条件;
②若 ,则 是 的必要条件;
③若 ,则 是 的充要条件;
④若 ,且 ,则 是 的既不必要也不充分条件.
通过学生自己的小结,将新知识系统化、重点化。通过学生的反思,使学生意识重点和难点,提高学习效率。
课后练习
1.在如图的电路图中,“开关A的闭合”是“灯泡B亮”的________条件(   )
A.充分非必要 B.必要非充分
C.充要 D.既非充分又非必要
2.设a∈R,则a>1是<1( )
A.充分但不必要条件 B.必要但不充分条件
C.充要条件 D.既不充分也不必要条件
3.一次函数的图象同时经过第一、三、四象限的必要但不充分条件是( )
A.m>1,n<-1 B.mn<0
C.m>0,n<0 D.m<0,n<0
4、四边形为菱形的必要条件是( )
A.对角线相等, B.对角线互相垂直,
C.对角线相等且垂直, D.对角线互相垂直且平分。
5.设命题甲为:0<x<5,命题乙为|x-2|<3,那么甲是乙的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6、如果都是实数,那么p:,是q:关于的方程有一正根和一负根的( )
A.充分不必要条件, B.必要不充分条件,
C.充要条件, D.既不充分又不必要条件。
7.若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
8.若条件p:a>4,q:5<a<6,则p是q的______________.
9若p:f(x) = x,q: f(x)为增函数则p是q的______________.
10.用充分、必要条件填空:
①x≠1且y≠2是x+y≠3的
②x≠1或y≠2是x+y≠3的
11.已知p∶x2-8x-20>0,q∶x2-2x+1-a2>0。若p是q的充分而不必要条件,求正实数a的取值范围.
12:已知命题p: {x|-2 < x < 10 },q: x2 — 2x + 1— m2 < 0 (m>o),若﹁p是﹁q的必要不充分条件,求实数m的范围
参考答案:
1. B 2.A 3.B 4.B 5.A 6. C 7. A;
8 必要但不充分条件;
9. 充分不必要条件
10.①既不充分也不必要条件,②必要但不充分条件(提示:画出集合图或考虑逆否命题).
11.解:p∶A={x|x<-2,或x>10},q∶B={x|x<1-a,或x>1+a,a>0
如图,依题意,pq,但q不能推出p,说明AB,则有
解得0<a≤3.
12.解:由于是的必要不充分条件,则p是q的充分不必要条件
于是有
§1. 2 .2 充分条件和必要条件
【学情分析】:
上一节课已学习了充分条件、必要条件、充要条件的概念,本一节课要继续通过讨论一些数学命题加深对以上定义的理解.若要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题 逆否命题,逆命题 否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.
【教学目标】:
(1)知识目标:
理解并掌握充分条件、必要条件、充要条件的概念;掌握判断命题的条件的充要性的方法;
(2)过程与方法目标:
在充要条件的教学中,培养等价转化思想.
(3)情感与能力目标:
利用命题的等价性,培养他们的分析问题、解决问题的能力和逻辑思维能力。
【教学重点】:
理解充要条件的意义,掌握命题条件的充要性判断.
【教学难点】:
命题条件的充要性探求(较高要求)
【教学过程设计】:
教学环节
教学活动
设计意图
一、复习
回顾
①若 ,但 ,则 是 的_____________条件;
②若 ,但 ,则 是 的___________条件;
③若 ,且 ,则 是 的_________条件;
④若 ,且 ,则 是 的______条件
⑤若 ,且 ,则 是 的_____________条件
复习并巩固充分条件、必要条件、充要条件的概念;
二、学生
活动
1.若都是C的充要条件,是的必要条件,是的必要条件,则是的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.已知和是两个命题,如果是的充分条件,那么是的条件 ,是的 条件
3.(1)若,则是的 条件;
(2)若则是的 条件;
进一步理解并掌握充分条件、必要条件、充要条件的概念;
三、典型
例题
例1、已知p:;q:x、y不都是,p是q的什么条件?
分析:要考虑p是q的什么条件,就是判断“若p则q”及“若q则p”的真假性;从正面很难判断是,我们从它们的逆否命题来判断其真假性
“若p则q”的逆否命题是“若x、y都是,则”真的
“若q则p”的逆否命题是“若,则x、y都是”假的
故p是q的充分不必要条件
练习:已知p:; q:;p是q的什么条件?
已知 : ; : .若 是 的必要而不充分条件,求实数 的取值范围.
点拨? 可以有两个思路:
(1)先求出 和 ,然后根据 , ,求得 的取值范围;
  (2)若原命题为“若 ,则 ”,其逆否命题是“若 则 ”,由于它们是等价的,可以把求 是 的必要而不充分条件等价转换为求 是 的充分而不必要条件.
  解法一? 求出 : 或 ,
     ?????????? : 或 .由 是 的必要而不充分条件,知B A,它等价于
    ??????????????????
  同样解得 的取值范围是 .
  解法二? 根据思路二, 是 的必要而不充分条件,等价于 是 的充分而不必要条件.设
   : ;
   : ;
  所以,A B,它等价于
  ???????????????????
同样解得 的取值范围是 .
引导学会逆向思考,引导学生对于正面较为断抽象的命题是否能用逆否命题的正难则反的方法。
四、体验与
运用
例3已知:的半径为r,圆心到直线的距离为d,求证:d=r是直线和相切的充要条件。
练习:求证:是等边三角形的充要条件是,这里a,b,c是的三条边。
要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.
巩固知识,培养技能.
五:学生探究
例4;求关于的方程有两个正根的充要条件.
练习:设关于 的一元二次不等式, 对一切实数均成立,求 的取值范围.
通过多角度的练习,并对典型错误进行讨论与矫正,使学生巩固所学内容,同时完成对新知的迁移。
六、小结与反思
充要条件的判断,重在“从定义出发”,利用命题“若p则q”的真假进行区分,
充要条件的判断,有时还可以通过其逆否命题的真假加以区分.若(p((q,则p是q的必要条件,q是p的充分条件.
采取师生互动的形式完成。
课后练习
1、是的( )
A.充分不必要条件, B.必要不充分条件,
C.充要条件, D.既不充分又不必要条件。
2. “xy>0”是“|x+y|=|x|+|y|”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分又不必要条件
3.“A∩B=A”是A=B的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
4、,是的( )
A.充分不必要条件, B.必要不充分条件,
C.充要条件, D.既不充分又不必要条件。
5、是成立的( )
A.充分不必要条件, B.必要不充分条件,
C.充要条件, D.既不充分又不必要条件。
6、已知p:,q:,则p 是q的( )
A.充分不必要条件, B.必要不充分条件,
C.充要条件, D.既不充分又不必要条件。
7.在△ABC中,“A>30°”是“sinA>”的
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
8. “m=”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的 ( )
(A)充分必要条件 (B)充分而不必要条件
(C)必要而不充分条件 (D)既不充分也不必要条件
9.在下列电路图中,闭合开关A是灯泡B亮的什么条件:
如图(1)所示,开关A闭合是灯泡B亮的 条件;
如图(2)所示,开关A闭合是灯泡B亮的 条件;
如图(3)所示,开关A闭合是灯泡B亮的 条件;
如图(4)所示,开关A闭合是灯泡B亮的 条件;
10.抛物线y=ax2+bx+c (a≠0)的对称轴为x=2的充要条件是______________;
11.判断下列各题中条件是结论的什么条件:
(1)条件A∶ax2+ax+1>0的解集为R,结论B∶0<a<4;
(2)条件p∶AB,结论q∶A∪B=B.
12.试寻求关于x的方程x2+mx+n=0有两个小于1的正根的一个充要条件.
参考答案:
1. C 2.A 3.B 4.D 5.B 6. B 7.B 8. B;
9.图(1):充分但不必要条件;图(2):必要但不充分条件;
图(3):充要条件; 图(4):既不充分也不必要条件.
10.4a+b=0
11.解:(1)∵△=a2-4a<0,即0<a<4
∴当0<a<4时,ax2+ax+1>0恒成立.故BA.
而当a=0时,ax2+ax+1>0恒成立,∴AB.
故A为B的必要不充分条件.
(2)∵ABA∪B=B,而当A=B时,A∪B=B,即qp,
∴p为q的充分不必要条件.
12.解法1:关于x的方程x2+mx+n=0有两个小于1的正根方程在(0,1)内有实根.
解法2:
在(0,1)内有实根.
高中数学 1.2.1充分条件与必要条件教案 新人教A版选修1-1
1.知识与技能:正确理解充分不必要条件、必要不充分条件的概念;会判断命题的充分条件、必要条件.
2.过程与方法:通过对充分条件、必要条件的概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力.
3.情感、态度与价值观:通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.
(二)教学重点与难点
重点:充分条件、必要条件的概念.
(解决办法:对这三个概念分别先从实际问题引起概念,再详细讲述概念,最后再应用概念进行论证.)
难点:判断命题的充分条件、必要条件。
关键:分清命题的条件和结论,看是条件能推出结论还是结论能推出条件。
教具准备:与教材内容相关的资料。
教学设想:通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.
(三)教学过程
学生探究过程:
1.练习与思考
写出下列两个命题的条件和结论,并判断是真命题还是假命题?
(1)若x > a2 + b2,则x > 2ab, (2)若ab = 0,则a = 0.
学生容易得出结论;命题(1)为真命题,命题(2)为假命题.
置疑:对于命题“若p,则q”,有时是真命题,有时是假命题.如何判断其真假的?
答:看p能不能推出q,如果p能推出q,则原命题是真命题,否则就是假命题.
2.给出定义
命题“若p,则q” 为真命题,是指由p经过推理能推出q,也就是说,如果p成立,那么q一定成立.换句话说,只要有条件p就能充分地保证结论q的成立,这时我们称条件p是q成立的充分条件.
一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作:p(q.
定义:如果命题“若p,则q”为真命题,即p ( q,那么我们就说p是q的充分条件;q是p必要条件.
上面的命题(1)为真命题,即
x > a2 + b2 (x > 2ab,所以“x > a2 + b2 ”是“x > 2ab”的充分条件,“x > 2ab”是“x > a2 + b2” "的必要条件.
3.例题分析:
例1:下列“若p,则q”形式的命题中,那些命题中的p是q的充分条件?
(1)若x =1,则x2 - 4x + 3 = 0;(2)若f(x)= x,则f(x)为增函数;
(3)若x为无理数,则x2为无理数.
分析:要判断p是否是q的充分条件,就要看p能否推出q.
解略.
例2:下列“若p,则q”形式的命题中,那些命题中的q是p的必要条件?
若x = y,则x2 = y2;
若两个三角形全等,则这两个三角形的面积相等;
(3)若a >b,则ac>bc.
分析:要判断q是否是p的必要条件,就要看p能否推出q.
解略.
4、巩固巩固:P12 练习 第1、2、3、4题
5.教学反思:
充分、必要的定义.
在“若p,则q”中,若p(q,则p为q的充分条件,q为p的必要条件.
6.作业 P14:习题1.2A组第1(1)(2),2(1)(2)题
注:(1)条件是相互的;
(2)p是q的什么条件,有四种回答方式:
① p是q的充分而不必要条件;
② p是q的必要而不充分条件;
③ p是q的充要条件;
④ p是q的既不充分也不必要条件.
1.2.2充要条件
(一)教学目标
1.知识与技能目标:
正确理解充要条件的定义,了解充分而不必要条件, 必要而不充分条件, 既不充分也不必要条件的定义.
正确判断充分不必要条件、 必要不充分条件、充要条件、 既不充分也不必要条件.
通过学习,使学生明白对条件的判定应该归结为判断命题的真假,.
2.过程与方法目标:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.
3. 情感、态度与价值观:
激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.
(二)教学重点与难点
重点:1、正确区分充要条件;2、正确运用“条件”的定义解题
难点:正确区分充要条件.
教具准备:与教材内容相关的资料。
教学设想:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.
(三)教学过程
学生探究过程:
1.思考、分析
已知p:整数a是2的倍数;q:整数a是偶数.
请判断: p是q的充分条件吗?p是q的必要条件吗?
分析:要判断p是否是q的充分条件,就要看p能否推出q,要判断p是否是q的必要条件,就要看q能否推出p.
易知:p(q,故p是q的充分条件;
又q ( p,故p是q的必要条件.
此时,我们说, p是q的充分必要条件
2.类比归纳
一般地,如果既有p(q ,又有q(p 就记作 p ( q.
此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.
概括地说,如果p ( q,那么p 与 q互为充要条件.
3.例题分析
例1:下列各题中,哪些p是q的充要条件?
p:b=0,q:函数f(x)=ax2+bx+c是偶函数;
p:x > 0,y > 0,q: xy> 0;
p: a > b ,q: a + c > b + c;
p:x > 5, ,q: x > 10
p: a > b ,q: a2 > b2
分析:要判断p是q的充要条件,就要看p能否推出q,并且看q能否推出p.
解:命题(1)和(3)中,p(q ,且q(p,即p ( q,故p 是q的充要条件;
命题(2)中,p(q ,但q (( p,故p 不是q的充要条件;
命题(4)中,p((q ,但q(p,故p 不是q的充要条件;
命题(5)中,p((q ,且q((p,故p 不是q的充要条件;
4.类比定义
一般地,
若p(q ,但q((p,则称p是q的充分但不必要条件;
若p((q,但q(p,则称p是q的必要但不充分条件;
若p((q,且q((p,则称p是q的既不充分也不必要条件.
在讨论p是q的什么条件时,就是指以下四种之一:
①若p(q ,但q((p,则p是q的充分但不必要条件;
②若q(p,但p((q,则p是q的必要但不充分条件;
③若p(q,且q(p,则p是q的充要条件;
④若p((q,且q((p,则p是q的既不充分也不必要条件.
5.巩固练习:P14 练习第 1、2题
说明:要求学生回答p是q的充分但不必要条件、或 p是q的必要但不充分条件、或p是q的充要条件、或p是q的既不充分也不必要条件.
6.例题分析
例2:已知:⊙O的半径为r,圆心O到直线l的距离为d.求证:d=r是直线l与⊙O相切的充要条件.
分析:设p:d=r,q:直线l与⊙O相切.要证p是q的充要条件,只需要分别证明充分性(p(q)和必要性(q(p)即可.
证明过程略.

7.教学反思:
充要条件的判定方法
如果“若p,则q”与“ 若p则q”都是真命题,那么p就是q的充要条件,否则不是.
8.作业:P14:习题1.2A组第1(3)(2),2(3),3题
课后反思:
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.(2018·天津高考)设x∈R,则“|x-2|<1”是“x2+x-2>0”的(  )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 |x-2|<1?10?x>1或x<-2.
由于{x|11或x<-2}的真子集,
所以“|x-2|<1”是“x2+x-2>0”的充分而不必要条件.
【答案】 A
2.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是(  )
A.m=-2        B.m=2
C.m=-1 D.m=1
【解析】 当m=-2时,f(x)=x2-2x+1,其图象关于直线x=1对称,反之也成立,所以f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m=-2.
【答案】 A
3.已知非零向量a,b,c,则“a·b=a·c”是“b=c”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【解析】 ∵a⊥b,a⊥c时,a·b=a·c,但b与c不一定相等,∴a·b=a·cb=c;反之,b=c?a·b=a·c.
【答案】 B
4.(2018·北京高考)设α,β是两个不同的平面,m是直线且m?α,“m∥β ”是“α∥β ”的(  )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
【解析】 当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥βα∥β;当α∥β时,α内任一直线与β平行,因为m?α,所以m∥β.综上知,“m∥β ”是“α∥β ”的必要而不充分条件.
【答案】 B
5.已知p:x2-x<0,那么命题p的一个必要非充分条件是(  )
A.0<x<1 B.-1<x<1
C.<x< D.<x<2
【解析】 x2-x<0?0<x<1,运用集合的知识易知.
A中0<x<1是p的充要条件;
B中-1<x<1是p的必要非充分条件;
C中<x<是p的充分非必要条件;
D中<x<2是p的既不充分也不必要条件.应选B.
【答案】 B
二、填空题
6.“b2=ac”是“a,b,c成等比数列”的________条件.
【解析】 “b2=ac” “a,b,c成等比数列”,例如b2=ac=0;而“a,b,c成等比数列”?“b2=ac”成立.故是必要不充分条件.
【答案】 必要不充分
7.“函数f(x)=x2-2ax+3在区间[1,+∞)上是增函数”是“a<2”的________条件.
【解析】 ∵函数f(x)=x2-2ax+3的图象开口向上,对称轴为x=a,
∴当f(x)在[1,+∞)上为增函数时,a≤1,而a≤1?a<2,a<2a≤1.
∴是充分不必要条件.
【答案】 充分不必要
8.下列三个结论:
①x2>4是x3<-8的必要不充分条件;
②若a,b∈R,则“a2+b2=0”是“a=b=0”的充要条件;
③x2+(y-2)2=0是x(y-2)=0的充要条件.
其中正确的结论是________.
【解析】 对于①,x2>4?x>2或x<-2,x3<-8?x<-2,∴①正确;对于②,a2+b2=0?a=b=0,∴②正确;对于③,x2+(y-2)2=0?x=0且y=2,x(y-2)=0?x=0或y=2,∴③错误,应为充分不必要条件.
【答案】 ①②
三、解答题
9.已知命题p:4-x≤6,q:x≥a-1,若p是q的充要条件,求a的值.
【解】 由题意得p:x≥-2,q:x≥a-1,因为p是q的充要条件,所以a-1=-2,即a=-1.
10.判断下列各题中p是q的什么条件.
(1)p:x>1,q:x2>1;
(2)p:(a-2)(a-3)=0,q:a=3;
(3)p:a【解】 (1)由x>1可以推出x2>1;由x2>1,得x<-1或x>1,不一定有x>1.因此,p是q的充分不必要条件.
(2)由(a-2)(a-3)=0可以推出a=2或a=3,不一定有a=3;由a=3可以得出(a-2)(a-3)=0.因此,p是q的必要不充分条件.
(3)由于a1;当b>0时,<1,故若a0,b>0,<1时,可以推出ab.因此p是q的既不充分也不必要条件.
[能力提升]
1.(2018·潍坊联考)“a=-1”是“直线a2x-y+1=0与直线x-ay-2=0互相垂直”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【解析】 “直线a2x-y+1=0与直线x-ay-2=0互相垂直”的充要条件是a2+a=0,即a=-1或a=0,所以a=-1是两直线垂直的充分不必要条件.
【答案】 A
2.(2018·忻州联考)命题“对任意x∈[1,2),x2-a≤0”为真命题的一个充分不必要条件可以是(  )
A.a≥4 B.a>4
C.a≥1 D.a>1
【解析】 要使得“对任意x∈[1,2),x2-a≤0”为真命题,只需要a≥4,∴a>4是命题为真的一个充分不必要条件.
【答案】 B
3.(2018·南京模拟)设函数f(x)=cos(2x+φ),则“f(x)为奇函数”是“φ=”的________条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).
【解析】 当φ=时,可得到f(x)为奇函数,但f(x)为奇函数时不一定φ=,所以“f(x)为奇函数”是“φ=”的必要不充分条件.
【答案】 必要不充分
4.已知p:2x2-3x-2≥0,q:x2-2(a-1)x+a(a-2)≥0,若p是q的充分不必要条件,求实数a的取值范围.
【解】 令M={x|2x2-3x-2≥0}
={x|(2x+1)(x-2)≥0}=,
N={x|x2-2(a-1)x+a(a-2)≥0}={x|(x-a)[x-(a-2)]≥0}={x|x≤a-2或x≥a},
由已知p?q且qp,得M?N.
∴或
?≤a<2或课件22张PPT。1.2 充分条件与必要条件 1.2.2 充要条件 本课件以《三国演义》影片中曹操败走华容道为导入,引出充分条件、必要条件和充要条件问题,激发学生的学习热情。由学生自主探究充要条件的概念,通过合作探究,深刻理解充分不必要条件、必要不充分条件、充要条件及既不充分也不必要条件的判断方法。再从命题或集合的角度来理解充分条件、必要条件等概念及其相互关系。
本节课要建立充要条件和推出符号的对应关系 ,理清对应关系后,重点是判断推出符号成立与否。《三国演义》影片中曹操败走华容道是这样展现的: 曹操投南郡,除华容道外,还有一条便于通行的大路,前者路险,但近50余里;后者路平,却远50余里,曹操令人上山观察敌情虚实,回报说:“小路山边有数处起烟,大路并无动静.”曹操说:“诸葛亮多谋,却使人于山僻烧烟,使我军不敢从这条山路上走,他却伏兵于大路等着,吾已料定,偏不中他计!”结果致使曹操败走华容道。曹操败走华容道 影片中“诸葛亮多谋”是“虚则实之,实则虚之”
的 条件,“虚则实之,实则虚之”是“小路山边有烟,而大路并无动静(有伏兵却没动静)”的 条件.即曹操因为诸葛亮多谋是事实,所以必然运用兵法,“虚则实之,实则虚之”,而不以调查事实为依据,诸葛亮抓住了曹操的心理,所以曹操必然兵败.
充分充分请用数学知识解释这种现象,并填空.复习1.上节课我们学习了充分、必要条件,
若有
若有
则 P是q的充分条件,
q是p的必要条件。则P不是q的充分条件,
q不是p的必要条件。
充要条件的含义 可以总结为箭头所在为必要,箭尾跟着是充分。练习1:判断下列各组问题中,p是不是q的充分条件以及p是不是q的必要条件?
①p: q: ;
②p: q: ;
p是q的充分条件p不是q的充分条件p不是q的必要条件p是q的必要条件③p: 直线与平面内的两条相交线垂直 q: 直线与平面垂直;
④p:函数 满足 q: 函数是奇函数.
p是q的充分条件p不是q的充分条件p是q的必要条件p不是q的必要条件1.充要条件:
定义:一般地,如果既有 ,又有
我们就说p是q的充分必要条件,简称充要条件,
记作:

(2)若 ,则p与q互为充要条件.(1)符号“ ”称为等价符号,与“当且仅当”含义相同.说明:2.命题p与q的条件关系通常有四种
p q p是q的充要条件;
p q p是q的充分不必要条件;
p q p是q的必要不充分条件;
p q P是q的既不充分也不必要条件;学习这四类条件时,一定注意结合逻辑联结符号的方向理解记忆。例1.下列命题中,哪些p是q的充要条件?
(1)p:b=0,q:函数 是偶函数
由于P q,所以P是q的充要条件;
(2)p: x>0,y>0, q:xy>0.
由于P q,所以P是q的充分不必要条件;
(3)p:a>b, q:a+c>b+c.
由于P q,所以P是q的充要条件;
(4) p: x >1, q: x >4.
由于P q,所以P是q的必要不充分条件。
典例展示练习3:指出下列各组命题中,p是q的什么条件:
(1) p:x-1=0;q:(x-1)(x+2)=0.
由于P q,所以P是q的充分不必要条件;
(2) p:两条直线平行;q:内错角相等.
由于P q,所以P是q的充要条件;
(3) p:a>b;q:a2>b2
由于P q,所以P是q的既不充分也不必要条件;
(4) p:四边形的四条边相等;q:四边形是正四边形.
由于P q,所以P是q的必要不充分条件。若 ,且 ,则p是q的既不充分也不必要条件.【1】直接用定义判断判断充分条件、必要条件的方法①确定条件是什么,结论是什么;③确定条件是结论的什么条件。可按以下三个步骤进行:②尝试从条件推导结论,从结论推导条件;若 ,且 ,则p是q的充分不必要条件; 若 ,且 ,则p是q的必要不充分条件; 若 ,且 ,则p是q的充要条件;??原命题为真逆命题为假; p是q的充分不必要条件, p是q的必要不充分条件, 原命题为假逆命题为真; 【2】利用命题的四种形式进行判定p是q的既不充分也不必要条件, p是q的充要条件, 原命题、逆命题都为真; 原命题、逆命题都为假. 1.设集合M={x|02.x>2的一个必要而不充分条件是_____________。
3.条件p:“直线l在y轴上的截距是在x轴上截距的2倍”,
条件q:“直线l的斜率为-2”,则p是q的_____________条件。
4. 的___________条件。
5.设p、r都是q的充分条件,s是q的充分必要条件,t是s的必要条件,t是r的充分条件,那么p是t的_______条件,r是t的________条件。 必要而不充分x>1充分而不必要必要而不充分充分充要设p、q对应的集合分别为P、Q.
(1)若p是q的充分不必要条件,
(2)若p是q的必要不充分条件,
(3)若p是q的充要条件,
(4)若p是q的既不充分也不必要条件,
则P Q则P Q则P=Q则P Q且P Q
从集合的角度理解四种关系典例展示2、设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”
是“x∈M∩N”的( )
A.充要条件    B.必要不充分条件
C.充分不必要 D.不充分不必要3、a∈R,|a|<3成立的一个必要不充分条件是( )
A.a<3 B.|a|<2 C.a2<9 D.-3 A.充分不必要条件  B.必要不充分条件 
C.充要条件  D.既非充分又非必要条件BBA 1.在下列电路图中,开关A闭合是灯泡B亮的什么条件:⑴如图①所示,开关A闭合是灯泡B亮的______________条件;
⑵如图②所示,开关A闭合是灯泡B亮的______________条件;
⑶如图③所示,开关A闭合是灯泡B亮的__________条件;
⑷如图④所示,开关A闭合是灯泡B亮的_____________________条件.充分不必要必要不充分充要充分不必要必要不充分2、用“充分不必要、必要不充分、充要、既不充分也不必要”填空
⑴若p:∣2x-3∣≤5, q: -1≤x≤4,则p是q的( )条件.
⑵已知 p: 2≤x≤3, q: 0≤x≤5, 则 p是q的 ( )条件,q是p的( )条件。
⑶在解析几何中, “两直线斜率相等” 是“两直线平行”的( )条件.
⑷在空间中, “两直线没有公共点” 是 “两直线平行”的( )条件.
1.充要条件判断:2.形如“若p,则q ”的命题中存在以下四种关系 :(1)p是q的充分不必要条件
(2)p是q的必要不充分条件
(3)p是q的充分必要条件
(4)p是q的既不充分又不必要条件 3.条件的判断方法:
定义法 集合法 等价法(逆否命题)谢谢欣赏!课件38张PPT。1.2 充分条件与必要条件自主学习 新知突破
1.理解充分条件、必要条件、充要条件的意义.
2.会求(判定)某些简单命题的条件关系.1.古代有一次考画师的题目是“深山藏古寺”,考生的画面上有的是崇山峻岭,松柏深处有座寺庙;有的是山峦之间露出寺庙的一角……而有一个考生的画面上只有起伏的山峦,密密的松林,一个和尚正从山脚下沿着一股小道担水上山,却没有寺庙.最后,这幅画被评为第一名.和尚担水上山与深山古寺之间有什么逻辑关系呢?
[提示] 如果有和尚担水上山,那么山里就有寺庙.2.已知p:α=β(α,β∈R),q:sin α=sin β.
[问题1] 若p则q是真命题吗?
[提示1] 是.
[问题2] 若q则p是真命题吗?
[提示2] 不是.
[问题3] p是q的什么条件?
[提示3] 充分不必要条件.充分条件、必要条件的概念对充分条件和必要条件的关系的理解
p是q的充分条件,就是p足以保证q成立,这种情况下,也可以理解为:q是p 成立的必不可少的条件,即q是必要的,所以q是p的必要条件,由此可见判断充分条件或者必要条件实质上就是要判断命题“若p,则q”(或者其逆命题)的真假,即判断p能否推出q(或者q能否推出p).充要条件的概念1.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是(  )
A.m=-2      B.m=2
C.m=-1 D.m=1答案: A 答案: D
4.指出下列各组命题中,p是q的什么条件.(在“充分不必要条件”,“必要不充分条件”,“充要条件”,“既不充分也不必要条件”中选一个作答)
(1)p:△ABC中,b2>a2+c2,q:△ABC为钝角三角形;
(2)p:△ABC有两个角相等,q:△ABC是正三角形;
(3)若a,b∈R,p:a2+b2=0,q:a=b=0.合作探究 课堂互动充分条件、必要条件、充要条件的判断 在下列各项中选择一项填空:
A.充分不必要条件     B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
(1)p:(x-1)(x+2)≤0,q:x<2,p是q的________;
(2)p:-1≤x≤6,q:|x-2|<3,p是q的________;
(3)p:x2-x-6=0,q:x=-2或x=3,p是q的________;
(4)p:x≠2或y≠3;q:x+y≠5,则p是q的________. [思路点拨]  (1)令A={x|(x-1)(x+2)≤0}={x|-2≤x≤1},
B={x|x<2},显然A?B.
所以p是q的充分不必要条件.
(2)令A={x|-1≤x≤6},
B={x||x-2|<3}={x|-3显然B?A.所以p是q的必要不充分条件. 答案: (1)A (2)B (3)C (4)B 从集合的观点上理解充分条件、必要条件
首先建立与p,q相对应的集合,即
p:A={x|p(x)},q:B={x|q(x)}. 1.(1)已知p:x2-x-2<0,q:x(x-3)<0,则p是q的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分又不必要条件
(2)“x2-2x-3<0”是“x<3”的(  )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件解析: (1)由x2-x-2<0,得-1(2)由x2-2x-3<0得-1又∵(-1,3)?(-∞,3),
∴“x2-2x-3<0”是“x<3”的充分不必要条件.
答案: (1)D (2)A求条件(充分条件、必要条件或充要条件) 一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充分不必要条件是(  )
A.a<0 B.a>0
C.a<-1 D.a>1答案: C 直接找充分不必要条件较困难,可以先求出方程有一个正根和一个负根的充要条件,再用集合法确定正确答案.2.已知方程x2+(2k-1)x+k2=0,求使方程有两个大于1的实数根的充要条件.充分条件、必要条件、充要条件的应用 已知p:2x2-3x-2≥0,q:x2-2(a-1)x+a(a-2)≥0,若p是q的充分不必要条件.求实数a的取值范围. 根据充分条件、必要条件、充要条件求参数的取值范围时,主要根据充分条件、必要条件、充要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.3.已知M={x|(x-a)2<1},N={x|x2-5x-24<0},若M是N的充分条件,求a的取值范围.
解析: 由(x-a)2<1得,x2-2ax+(a-1)(a+1)<0,
∴a-1则M={x|a-1又由x2-5x-24<0得-3则N={x|-3∵M是N的充分条件,∴M?N,【错因】 导致判断错误的原因是忽略题目中的隐含条件.谢谢观看!