高中数学(人教版A版选修1-1)配套课件(3份)、教案、学案、同步练习题,补习复习资料:2.1.1椭圆定义及其标准方程

文档属性

名称 高中数学(人教版A版选修1-1)配套课件(3份)、教案、学案、同步练习题,补习复习资料:2.1.1椭圆定义及其标准方程
格式 zip
文件大小 3.3MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-30 17:54:27

文档简介

第二章 圆锥曲线与方程
§2.1 椭 圆
2.1.1 椭圆及其标准方程
课时目标 1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形.
1.椭圆的概念:平面内与两个定点F1,F2的距离的和等于________(大于|F1F2|)的点的轨迹叫做________.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.当|PF1|+|PF2|=|F1F2|时,轨迹是__________,当|PF1|+|PF2|<|F1F2|时__________轨迹.
2.椭圆的方程:焦点在x轴上的椭圆的标准方程为________________,焦点坐标为________________,焦距为________;焦点在y轴上的椭圆的标准方程为________________.
一、选择题
1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是(  )
A.椭圆 B.直线 C.圆 D.线段
2.椭圆+=1的左右焦点为F1,F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为(  )
A.32 B.16 C.8 D.4
3.椭圆2x2+3y2=1的焦点坐标是(  )
A. B.(0,±1)
C.(±1,0) D.
4.方程+=1表示焦点在x轴上的椭圆,则实数a的取值范围是(  )
A.(-3,-1) B.(-3,-2)
C.(1,+∞) D.(-3,1)
5.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点,则该椭圆的方程是(  )
A.+=1 B.+=1
C.+=1 D.+=1
6.设F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,且P到两个焦点的距离之差为2,则△PF1F2是(  )
A.钝角三角形 B.锐角三角形
C.斜三角形 D.直角三角形
题号
1
2
3
4
5
6
答案
二、填空题
7.椭圆+=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|=________,∠F1PF2的大小为________.
8.P是椭圆+=1上的点,F1和F2是该椭圆的焦点,则k=|PF1|·|PF2|的最大值是______,最小值是______.
9.“神舟六号”载人航天飞船的运行轨道是以地球中心为一个焦点的椭圆,设其近地点距地面n千米,远地点距地面m千米,地球半径为R,那么这个椭圆的焦距为________千米.
三、解答题
10.根据下列条件,求椭圆的标准方程.
(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10;
(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点.
11.已知点A(0,)和圆O1:x2+(y+)2=16,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程.
能力提升
12.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为(  )
A.2 B.3 C.6 D.8
13.如图△ABC中底边BC=12,其它两边AB和AC上中线的和为30,求此三角形重心G的轨迹方程,并求顶点A的轨迹方程.
1.椭圆的定义中只有当距离之和2a>|F1F2|时轨迹才是椭圆,如果2a=|F1F2|,轨迹是
线段F1F2,如果2a<|F1F2|,则不存在轨迹.
2.椭圆的标准方程有两种表达式,但总有a>b>0,因此判断椭圆的焦点所在的坐标轴要看方程中的分母,焦点在分母大的对应轴上.
3.求椭圆的标准方程常用待定系数法,一般是先判断焦点所在的坐标轴进而设出相应的标准方程,然后再计算;如果不能确定焦点的位置,有两种方法求解,一是分类讨论,二是设椭圆方程的一般形式,即mx2+ny2=1 (m,n为不相等的正数).
第二章 圆锥曲线与方程
§2.1 椭 圆
2.1.1 椭圆及其标准方程
答案
知识梳理
1.常数 椭圆 焦点 焦距 线段F1F2 不存在
2.+=1 (a>b>0) F1(-c,0),F2(c,0) 2c +=1 (a>b>0)
作业设计
1.D [∵|MF1|+|MF2|=6=|F1F2|,
∴动点M的轨迹是线段.]
2.B [由椭圆方程知2a=8,
由椭圆的定义知|AF1|+|AF2|=2a=8,
|BF1|+|BF2|=2a=8,所以△ABF2的周长为16.]
3.D
4.B [|a|-1>a+3>0.]
5.D [椭圆的焦点在x轴上,排除A、B,
又过点验证即可.]
6.D [由椭圆的定义,知|PF1|+|PF2|=2a=8.
由题可得||PF1|-|PF2||=2,
则|PF1|=5或3,|PF2|=3或5.
又|F1F2|=2c=4,∴△PF1F2为直角三角形.]
7.2 120°
解析 
∵|PF1|+|PF2|=2a=6,
∴|PF2|=6-|PF1|=2.
在△F1PF2中,
cos∠F1PF2=

==-,∴∠F1PF2=120°.
8.4 3
解析 设|PF1|=x,则k=x(2a-x),
因a-c≤|PF1|≤a+c,即1≤x≤3.
∴k=-x2+2ax=-x2+4x=-(x-2)2+4,
∴kmax=4,kmin=3.
9.m-n
解析 设a,c分别是椭圆的长半轴长和半焦距,则,则2c=m-n.
10.解 (1)∵椭圆的焦点在x轴上,
∴设椭圆的标准方程为+=1 (a>b>0).
∵2a=10,∴a=5,又∵c=4.
∴b2=a2-c2=52-42=9.
故所求椭圆的标准方程为+=1.
(2)∵椭圆的焦点在y轴上,
∴设椭圆的标准方程为+=1 (a>b>0).
由椭圆的定义知,2a= +
=+=2,
∴a=.
又∵c=2,∴b2=a2-c2=10-4=6.
故所求椭圆的标准方程为+=1.
11.解 ∵|PM|=|PA|,|PM|+|PO1|=4,
∴|PO1|+|PA|=4,又∵|O1A|=2<4,
∴点P的轨迹是以A、O1为焦点的椭圆,
∴c=,a=2,b=1,
∴动点P的轨迹方程为x2+=1.
12.C [由椭圆方程得F(-1,0),设P(x0,y0),
则 ·=(x0,y0)·(x0+1,y0)=x+x0+y.
∵P为椭圆上一点,∴ +=1.
∴ ·=x+x0+3(1-)
=+x0+3=(x0+2)2+2.
∵-2≤x0≤2,
∴ ·的最大值在x0=2时取得,且最大值等于6.]
13.解 以BC边所在直线为x轴,BC边中点为原点,建立如图所示坐标系,
则B(6,0),C(-6,0),CE、BD为AB、AC边上的中线,则|BD|+|CE|=30.
由重心性质可知
|GB|+|GC|
=(|BD|+|CE|)=20.
∵B、C是两个定点,G点到B、C距离和等于定值20,且20>12,
∴G点的轨迹是椭圆,B、C是椭圆焦点.
∴2c=|BC|=12,c=6,2a=20,a=10,
b2=a2-c2=102-62=64,
故G点的轨迹方程为+=1,
去掉(10,0)、(-10,0)两点.
又设G(x′,y′),A(x,y),则有+=1.
由重心坐标公式知
故A点轨迹方程为+=1.
即+=1,去掉(-30,0)、(30,0)两点.
§2.1.1椭圆的定义及其标准方程1
【学情分析】:
学生已经学过了轨迹方程。对于怎样列方程有了一定的了解。本节课将通过学生的自主探究、总结来进行教学。
【三维目标】:
1、知识与技能:
①使学生掌握椭圆的定义,掌握椭圆标准方程的推导过程;掌握焦点、焦点位置、焦距与方程关系;
②了解建立坐标系的选择原则。
2、过程与方法:
①通过让学生自己画图探究椭圆上的点应满足的条件;
②通过椭圆的标准方程的推导突破带“两个根号的方程”的化简方法。.
3、情感态度与价值观:
通过本节课的学习,使学生体会探索、学习的乐趣。
【教学重点】:
知识技能目标①②
【教学难点】:
知识技能目标②
【课前准备】:
课件
【教学过程设计】:
教学环节
教学活动
设计意图
一、复习
1、动点轨迹的一般求法?
通过回忆性质的提问,明示这节课所要学的内 容与原来所学知识之间的内在联系。并为后面椭圆的标准方程的推导作好准备。
二、引入
1、椭圆是常见的图形,如:汽车油罐的横截面,立体几何中圆的直观图,天体中,行星绕太阳运行的轨道等等(利用多媒体动态演示行星的运动轨迹)
2、取一条定长的细绳,把它的两端的都固定在图板的同一点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖(动点)画出的轨迹是一个圆。如果把细绳的两端拉开一段距离,分别固定在图板的两点处,套上铅笔,拉紧绳子,移动铅笔,画出的轨迹是什么曲线?
1、进一步使学生明确学习椭圆的重要性和必要性,借计算机形成生动的直观,使学生印象加深,以便更好地掌握椭圆的形状
2、利用书本探究,使学生明确椭圆上的点满足的条件。
三、新课
过程
1、投影:椭圆的定义:
平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(一般用2c表示)
常数一般用2表示。(讲解定义时要注意条件:)(思考:若没有该条件所表示的图形会是怎样的?)
2、提问:如何求轨迹的方程?(引导学生推导椭圆的标准方程)
板书:椭圆的标准方程的推导过程。(略)
3、投影:椭圆的标准方程:
形式一: ()
说明:此方程表示的椭圆焦点在x轴上,焦点是F1(-c,0)、F2(c,0),其中c2=a2-b2.
形式二: ()
说明:此方程表示的椭圆焦点在y轴上,焦点是F1(0,-c),F2(0,c),其中c2=a2-b2.
4、例题
例1:已知椭圆的两个焦点的坐标分别是(-2,0)、(-2,0),并且椭圆经过点,求它的标准方程。
例2:平面内两个定点的距离是8,写出到这两个定点的距离的和是10的点的轨迹方程。
(由椭圆的定义可知:所求轨迹为椭圆;则只要求出、、即可)
5、巩固练习
P36 1、2、3
1、明确椭圆的定义。抓住几个不变:两个定点;一个常数。
2、通过椭圆的标准方程的推导,明确:
1)结合已画出的图形探索怎样建立坐标系;2)在推导过程中,思考“怎样消去方程中的根式”这一关键问题,提高学生的运算能力和思维能力;3)其中焦点为F1(,0)、F2(c,0),;4)如果焦点在轴上,焦点为F1(0,)、F2(0,c),只要将方程中,互换就可得到它的方程)
3、讨论如何从标准方程中求出、、的值来。
四、小结
提问:我们已经学习了椭圆,椭圆是怎样的点的轨迹?
椭圆的标准方程是怎样的?
椭圆标准方程中a、b、c之间的关系是什么?你能通过它们求出椭圆的标准方程吗?
五、作业
P42 1、2、
六、补充训练
1、焦点坐标为(0,-4)、(0,4),a=5的椭圆的标准方程为 ( D )
A. B. C. D.
2、与椭圆共焦点,且过点(3,-2)的
椭圆方程是 ( D )
A. B.
C. D.
3、方程表示焦点在y轴上的椭圆,
则k的取值范围是( C )
A、-16<k<25 B、-16<k<
C、<k<25 D、k>
4、若方程表示的曲线是椭圆,则
k的取值范围是 ( C )
A.(3,5) B.(3,4)∪(4,5)
C.(-∞,3) D.(5,+∞)
5、、设,若方程x2sin+y2cos=1,表示焦
点在y轴上的椭圆,则的取值范围是( C )
A.(0,) B. (0, C. (,) D. ,
6、若C、D是以F1、F2为焦点的椭圆上
的两点,CD过点F1,则△F2CD的长为( A )
A.20 B.16 C.12 D.10
§2.1.1椭圆的定义及其标准方程2
【学情分析】:
学生已经学过了轨迹方程、椭圆的定义及其标准方程的概念。本节课将主要通过例题、练习明确求轨迹方程的步骤,进一步加强学生对于知识的掌握。
【三维目标】:
1、知识与技能:
①使学生进一步掌握椭圆的定义;掌握焦点、焦点位置、焦距与方程关系;
②进一步强化学生对求轨迹方程的方法、步骤的掌握。
2、过程与方法:
通过例题、习题的评练结合,促使学生掌握求椭圆轨迹方程的方法。
3、情感态度与价值观:
通过讲解求椭圆轨迹方程,使学生认识到辨证联系地看问题,学会在解题过程中抓住题目中条件与结论的联系。
【教学重点】:
知识与技能①、②
【教学难点】:
知识与技能②
【课前准备】:
课件
【教学过程设计】:
教学环节
教学活动
设计意图
一、复习
1、动点轨迹的一般求法?
2、请讲出椭圆的标准方程?
3、讲出椭圆的标准方程中a、b、c之间的关系
4、完成下面的题目(答案略)
①设a+c=10,a-c=4,则椭圆的标准方程是
②动点M到两个定点A(0,-)、B(0,)的距离的和是,则动点M的轨迹方程是
③与椭圆共焦点,且过点(3,-2)的椭圆方程是
④椭圆2x+3y=6的焦距是
通过回忆性质的提问,明示这节课所要学的内容与原来所学知识之间的内在联系。并为后面的题目做好准备。
二、例题、
例1在圆上任取一点P,过点P做x轴的垂线段PD,D为垂足。当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么? ()
例2设点A、B的坐标分别为(—5,0),(5,0)。直线AM、BM相交于点M, 且它们的斜率之积是,求点M的轨迹方程。()
通过两个典型例题,使学生明确设点求轨迹方程的方法、步骤:(1)设动点(x , y);(2)根据题目的条件找到相等关系,并列出等式;(3)化简,得到所求方程;(4)注意不满足去掉不满足条件的点。
三、巩固练习
1、设点A、B的坐标分别为(—1,0),(1,0)。直线AM、BM相交于点M, 且直线AM的斜率与直线BM的斜率的商是2,点M的轨迹是什么?为什么?( x=—3 ,(y≠0) )
2、若P(-3,0)是圆x+y-6x-55=0内一定点,动圆M与已知圆相内切且过P点,求动圆圆心M的轨迹方程。()
*3、在面积为1的△PMN中,tanM=,tanN=-2,建立适当的坐标系,求出以M,N为焦点且过P点的椭圆的方程。(+=1)
进一步巩固学生求轨迹方法的掌握。
四、小结
本节课重点是设动点求轨迹方程。要着重体会四个步骤:(1)设动点(x , y);(2)根据题目的条件找到相等关系,并列出等式;(3)化简,得到所求方程;(4)注意不满足去掉不满足条件的点。
五、作业
P42 6、7 *B 1、2、3、
六、补充训练
1.椭圆2x+3y=6的焦距是( A )
A. 2 B.2()
C 2 D.2()
2.已知椭圆经过点(2,1),且满足,则它的标准方程是( D )
A. B.
C或
D或
3若椭圆两焦点为F(-4,0),F(4,0),P在椭圆上,且
△PFF的最大面积是12.则椭圆方程是( C )
A B
C D
4. P为椭圆上的点,是两焦点,若,则的面积是( B )
A B
C D 16
5已知是椭圆的半焦距,则的取值范围是 ( D )
A (1, +∞) B
C D
6.已知F1、F2是椭圆+=1的两个焦点,过F1的直线与椭圆交于M、N两点,则△MNF2的周长为( B )
A.8 B.16
C.25 D.32
高中数学 2.2.1椭圆及其标准方程教案 新人教A版选修1-1
理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.
过程与方法目标
(1)预习与引入过程
当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起探究P41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm长,两端各结一个套),教师准备无弹性细绳子一条(约60cm,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?〖板书〗2.1.1椭圆及其标准方程.
(2)新课讲授过程
(i)由上述探究过程容易得到椭圆的定义.
〖板书〗把平面内与两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆(ellipse).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为时,椭圆即为点集.
(ii)椭圆标准方程的推导过程
提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.
无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理.
设参量的意义:第一、便于写出椭圆的标准方程;第二、的关系有明显的几何意义.
类比:写出焦点在轴上,中心在原点的椭圆的标准方程.
(iii)例题讲解与引申
例1 已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程.
分析:由椭圆的标准方程的定义及给出的条件,容易求出.引导学生用其他方法来解.
另解:设椭圆的标准方程为,因点在椭圆上,
则.
例2 如图,在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹是什么?
分析:点在圆上运动,由点移动引起点的运动,则称点是点的伴随点,因点为线段的中点,则点的坐标可由点来表示,从而能求点的轨迹方程.
引申:设定点,是椭圆上动点,求线段中点的轨迹方程.
解法剖析:①(代入法求伴随轨迹)设,;②(点与伴随点的关系)∵为线段的中点,∴;③(代入已知轨迹求出伴随轨迹),∵,∴点的轨迹方程为;④伴随轨迹表示的范围.
例3如图,设,的坐标分别为,.直线,相交于点,且它们的斜率之积为,求点的轨迹方程.
分析:若设点,则直线,的斜率就可以用含的式子表示,由于直线,的斜率之积是,因此,可以求出之间的关系式,即得到点的轨迹方程.
解法剖析:设点,则,;
代入点的集合有,化简即可得点的轨迹方程.
引申:如图,设△的两个顶点,,顶点在移动,且,且,试求动点的轨迹方程.
引申目的有两点:①让学生明白题目涉及问题的一般情形;②当值在变化时,线段的角色也是从椭圆的长轴→圆的直径→椭圆的短轴.
情感、态度与价值观目标
通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;必须让学生认同与体会:椭圆的定义及特殊情形当常数等于两定点间距离时,轨迹是线段;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,及引入参量的意义,培养学生用对称的美学思维来体现数学的和谐美;让学生认同与领悟:例1使用定义解题是首选的,但也可以用其他方法来解,培养学生从定义的角度思考问题的好习惯;例2是典型的用代入法求动点的伴随点的轨迹,培养学生的辩证思维方法,会用分析、联系的观点解决问题;通过例3培养学生的对问题引申、分段讨论的思维品质.
◆能力目标
想象与归纳能力:能根据课程的内容能想象日常生活中哪些是椭圆、双曲线和抛物线的实际例子,能用数学符号或自然语言的描述椭圆的定义,能正确且直观地绘作图形,反过来根据图形能用数学术语和数学符号表示.
思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.
实践能力:培养学生实际动手能力,综合利用已有的知识能力.
数学活动能力:培养学生观察、实验、探究、验证与交流等数学活动能力.
创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.

学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.椭圆+=1的焦点坐标是(  )
A.(±4,0)        B.(0,±4)
C.(±3,0) D.(0,±3)
【解析】 根据椭圆的标准方程可知,椭圆的焦点在y轴上,所以对应的焦点坐标为(0,±3),故选D.
【答案】 D
2.如果方程+=1表示焦点在x轴上的椭圆,则实数a的取值范围是(  )
A.a>3 B.a<-2
C.a>3或a<-2 D.a>3或-6【解析】 由a2>a+6>0,得
所以所以a>3或-6【答案】 D
3.已知a=,c=2,则该椭圆的标准方程为(  )
A.+=1
B.+=1或+=1
C.+y2=1
D.+y2=1或x2+=1
【解析】 a=,c=2,
∴b2=()2-(2)2=1,
a2=13,而由于焦点不确定,
∴D正确.
【答案】 D
4.已知圆x2+y2=1,从这个圆上任意一点P向y轴作垂线,垂足为P′,则PP′的中点M的轨迹方程是(  )
A.4x2+y2=1 B.x2+=1
C.+y2=1 D.x2+=1
【解析】 设点M的坐标为(x,y),点P的坐标为(x0,y0),则x=,y=y0.
∵P(x0,y0)在圆x2+y2=1上,
∴x+y=1.①
将x0=2x,y0=y代入方程①,
得4x2+y2=1.
故选A.
【答案】 A
5.椭圆+=1上的一点M到左焦点F1的距离为2,N是MF1的中点,则|ON|等于(  )
A.2 B.4
C.8 D.
【解析】 如图,F2为椭圆的右焦点,连接MF2,则ON是△F1MF2的中位线,
∴|ON|=|MF2|,
又|MF1|=2,|MF1|+|MF2|=2a=10,
∴|MF2|=8,∴|ON|=4.
【答案】 B
二、填空题
6.椭圆+=1的焦距是2,则m的值是________.
【解析】 当椭圆的焦点在x轴上时,a2=m,b2=4,c2=m-4,又2c=2,
∴c=1.
∴m-4=1,m=5.
当椭圆的焦点在y轴上时,a2=4,b2=m,
∴c2=4-m=1,∴m=3.
【答案】 3或5
7.已知椭圆C经过点A(2,3),且点F(2,0)为其右焦点,则椭圆C的标准方程为________.
【解析】 法一:依题意,可设椭圆C的方程为+=1(a>b>0),且可知左焦点为F′(-2,0).
从而有
解得
又a2=b2+c2,所以b2=12,故椭圆C的标准方程为+=1.
法二:依题意,可设椭圆C的方程为+=1(a>b>0),
则解得b2=12或b2=-3(舍去),从而a2=16,所以椭圆C的标准方程为+=1.
【答案】 +=1
8.椭圆+=1的焦点为F1,F2,点P在椭圆上.若|PF1|=4,则|PF2|=________,∠F1PF2的大小为________.
【解析】 由|PF1|+|PF2|=6,且|PF1|=4,知|PF2|=2.
在△PF1F2中,
cos ∠F1PF2==-.
∴∠F1PF2=120°.
【答案】 2 120°
三、解答题
9.求适合下列条件的椭圆的标准方程:
(1)椭圆上一点P(3,2)到两焦点的距离之和为8;
(2)椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9或15.
【解】 (1)①若焦点在x轴上,可设椭圆的标准方程为+=1(a>b>0).
由题意知2a=8,∴a=4,
又点P(3,2)在椭圆上,
∴+=1,得b2=.
∴椭圆的标准方程为+=1.
②若焦点在y轴上,设椭圆标准方程为
+=1(a>b>0).
∵2a=8,∴a=4,
又点P(3,2)在椭圆上,
∴+=1,得b2=12.
∴椭圆的标准方程为+=1.
由①②知椭圆的标准方程为+=1或+=1.
(2)由题意知,2c=16,2a=9+15=24,
∴a=12,c=8,b2=80.
又焦点可能在x轴上,也可能在y轴上,
∴所求方程为+=1或+=1.
10.已知B,C是两个定点,|BC|=8,且△ABC的周长为18,求这个三角形顶点A的轨迹方程.
【解】 以过B,C两点的直线为x轴,线段BC的中点为原点,建立平面直角坐标系.
由|BC|=8,可知点B(-4,0),C(4,0).
由|AB|+|BC|+|AC|=18,
得|AB|+|AC|=10>|BC|=8.
因此,点A的轨迹是以B,C为焦点的椭圆,这个椭圆上的点与两个焦点的距离之和为2a=10,即a=5,且点A不能在x轴上.
由a=5,c=4,得b2=9.
所以点A的轨迹方程为+=1(y≠0).
[能力提升]
1.已知P为椭圆C上一点,F1,F2为椭圆的焦点,且|F1F2|=2,若|PF1|与|PF2|的等差中项为|F1F2|,则椭圆C的标准方程为(  )
A.+=1
B.+=1或+=1
C.+=1
D.+=1或+=1
【解析】 由已知2c=|F1F2|=2,
∴c=.
∵2a=|PF1|+|PF2|=2|F1F2|=4,
∴a=2,∴b2=a2-c2=9.
故椭圆C的标准方程是+=1或+=1.
故选B.
【答案】 B
2.(2018·银川高二检测)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是(  )
A.2 B.4
C.8 D.16
【解析】 设A为椭圆的左焦点,而BC边过右焦点F,如图.可知|BA|+|BF|=2a,|CA|+|CF|=2a,两式相加得|AB|+|BF|+|CA|+|CF|=|AB|+|AC|+|BC|=4a.而椭圆标准方程为+y2=1,因此a=2,故4a=8,故选C.
【答案】 C
3.(2018·苏州高二检测)P为椭圆+=1上一点,左、右焦点分别为F1,F2,若∠F1PF2=60°,则△PF1F2的面积为________.
【解析】 设|PF1|=r1,|PF2|=r2,由椭圆定义,得r1+r2=20.①
由余弦定理,得(2c)2=r+r-2r1r2cos 60°,
即r+r-r1r2=144,②
由①2-②,得3r1r2=256,
∴S△PF1F2=r1r2sin 60°=××=.
【答案】 
4.(2018·南京高二检测)设F1,F2分别是椭圆+y2=1的两焦点,B为椭圆上的点且坐标为(0,-1).
(1)若P是该椭圆上的一个动点,求||·||的最大值;
(2)若C为椭圆上异于B的一点,且=λ,求λ的值;
(3)设P是该椭圆上的一个动点,求△PBF1的周长的最大值.
【解】 (1)因为椭圆的方程为+y2=1,
所以a=2,b=1,c=,
即|F1F2|=2,
又因为|PF1|+|PF2|=2a=4,
所以|PF1|·|PF2|≤2=2=4,
当且仅当|PF1|=|PF2|=2时取“=”,
所以|PF1|·|PF2|的最大值为4,即||·||的最大值为4.
(2)设C(x0,y0),B(0,-1),F1(-,0),由=λ得x0=,y0=-.
又+y=1,所以有λ2+6λ-7=0,
解得λ=-7或λ=1,又与方向相反,故λ=1舍去,即λ=-7.
(3)因为|PF1|+|PB|=4-|PF2|+|PB|≤4+|BF2|,
所以△PBF1的周长≤4+|BF2|+|BF1|=8,
所以当P点位于直线BF2与椭圆的交点处时,△PBF1的周长最大,最大值为8.
课件28张PPT。2.1.1 椭圆及其标准方程(1)2.1 椭圆 本课件截取了“天宫一号”与“神八”成功对接的电视新闻,亲切而具体,是本课的一大亮点。接着让学生列举生活中常见的椭圆图形,体现了数学源于生活,又服务于生活的数学应用思想,培养学生善于观察,热爱生活的优良品质。通过模拟实验,学生合作探究,自己动手画出椭圆,同时,又运用了flash动画、几何画版等多种媒体手段探索了椭圆形成的条件,归纳出椭圆的定义.
例1根据椭圆标准方程判断焦点的位置及求焦点坐标;例2是灵活运用椭圆的定义求椭圆的标准方程。本节课的难点是椭圆标准方程的证明.
天宫一号与神八将实现两次成功对接。北京航天飞行控制中心最新消息:从对接机构接触开始,经过捕获、缓冲、拉近、锁紧4个步骤,“神舟八号”飞船与“天宫一号”目标飞器3日凌晨实现刚性连接,形成组合体,中国载人航天首次空间交会对接试验获得成功。通过视频我们看到天宫一号与神八的运行轨迹是什么?“天宫一号”与“神八”将实现两次对接自己动手试试看:取出课前准备好的一条定长为6cm的细绳,把它的两端固定在画板上的F 1 和F 2 两点,用铅笔尖把细绳拉紧,使铅笔尖在图板上缓慢移动,仔细观察,你画出的是一个什么样的图形呢?椭圆的定义怎样画椭圆呢?椭圆的产生绘图纸上的三个问题:3.绳长能小于两图钉之间的距离吗? 1.视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件,其轨迹是椭圆?
2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?结论: (1)若|MF1|+|MF2|>|F1F2|,M点轨迹为椭圆.(1)已知A(-3,0),B(3,0),M点到A,B两点的距离和为10,则M点的轨迹是什么?(2)已知A(-3,0),B(3,0),M点到A,B两点的距
离和为6,则M点的轨迹是什么?(3)已知A(-3,0),B(3,0),M点到A,B两点的距
离和为5,则M点的轨迹是什么?椭圆线段AB不存在 (3)若|MF1|+|MF2|<|F1F2|,M点轨迹不存在.(2)若|MF1|+|MF2|=|F1F2|,M点轨迹为线段.平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,椭圆定义:注意:椭圆定义中容易遗漏的四处地方
(1) 必须在平面内;(2)两个定点---两点间距离确定;(3)定长---轨迹上任意点到两定点距离和确定;两焦点间的距离叫做椭圆的焦距(一般用2c表示)。(4)|MF1|+|MF2|>|F1F2|.椭圆的定义建系:设点:列式:化简:证明:建立适当的直角坐标系;设M(x,y)是曲线上任意一点;建立关于x,y的方程 f(x,y)=0;化简方程f(x,y)=0.说明曲线上的点都符合条件,(纯粹性);符合条件的点都在曲线上(完备性)。求椭圆的方程 复习:求曲线方程的方法步骤是什么?(证明一般省略不写,如有特殊情况,可以适当予以说明)? 探讨建立平面直角坐标系的方案建立平面直角坐标系通常遵循的原则:“对称”、“简洁”方案一2.如何求椭圆的方程?思考:解:取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系(如图). 设M(x, y)是椭圆上任意一点,椭圆的焦距2c(c>0),M与F1和F2的距离的和等于正常数2a (2a>2c) ,则F1、F2的坐标分别 是(?c,0)、(c,0) .由椭圆的定义得:代入坐标(问题:下面怎样化简?)由椭圆定义可知两边再平方,得移项,再平方它表示:
① 椭圆的焦点在x轴
② 焦点坐标为F1(-C,0)、F2(C,0)
③ c2= a2 - b2
焦点在x轴上的椭圆的标准方程:思考:当椭圆的焦点在y轴上时,它的标准方程是怎样的呢焦点在y轴上的椭圆的标准方程它表示:
① 椭圆的焦点在y轴
② 焦点是F1(0,-c)、 F2(0,c)
③ c2= a2 - b2 分母哪个大,焦点就在哪个轴上平面内到两个定点F1,F2的距离的和等
于常数(大于F1F2)的点的轨迹根据所学知识完成下表:a2-c2=b2椭圆方程有特点系数为正加相连分母较大焦点定右边数“1”记心间答:在x轴。(-3,0)和(3,0)答:在y轴。(0,-5)和(0,5)答:在y轴。(0,-1)和(0,1)判断椭圆标准方程的焦点在哪个轴上的准则:
焦点在分母大的那个轴上例1、判定下列椭圆的标准方程在哪个轴上,并写出焦点坐标。典例展示
  对椭圆 ,各个小组仿照例题或习题的形式自己设计一个题目,两个小组交换审查,并尝试作答.
 例2.椭圆的两个焦点的坐标分别是(-4,0)(4,0),椭圆上一点M 到两焦点距离之和等于10,求椭圆的标准方程。 解: ∵椭圆的焦点在x轴上
∴设它的标准方程为:
∵ 2a=10, 2c=8
∴ a=5, c=4
∴ b2=a2-c2=52-42=9
∴所求椭圆的标准方程为
求椭圆标准方程的解题步骤:(1)一定焦点位置 (2)二设椭圆方程; (3)三求a、b的值.(待定系数法)
(4)写出椭圆的标准方程.123闯关竞技场★题:★★题:23D 不存在 椭圆D 退出??A 7 5A 3 2 退出2、已知椭圆 上一点P到椭圆的一个焦点的距离为3,则P到另一个焦点的距离为 ( )3、求适合下列条件的椭圆的标准方程(1)a= ,b=1,焦点在x轴上,(2)焦点为F1(0,-3),F2(0,3),且a=5. 退出一个定义
椭圆定义:平面内与两个定点F1、F2的距离的和等于
常数2a (大于│ F1F2│,)的点的轨迹,叫做椭圆.
两个方程
椭圆标准方程:
(1). 椭圆焦点在x轴上

(2). 椭圆焦点在y轴上
两种方法
待定系数法、数形结合思想方法THANKS!课件25张PPT。2.1.1 椭圆及其标准方程(2)2.1 椭圆 本节课是在学习了椭圆的定义之后,学习求曲线轨迹方程的常用方法。为了激发学生的学习热情,培养爱国主义情操。本课件截取了嫦娥二号卫星发射升空的视频。引出本课新话题:如何求曲线的轨迹方程。通过三个例题介绍了求曲线轨迹方程的一般方法。
其中例1是利用定义法求轨迹方程;例2是运用(相关点法)代入法求轨迹方程;例3是运用直接法求轨迹方程。使学生明确椭圆标准方程中,分母都大于零且不相等,在解题时,不仅要注意分母都大于零,还要注意分母相等时该方程就变成了圆的方程。以此来进一步巩固椭圆的定义及标准方程。
课后留了一些习题供老师参考选用。
嫦娥二号卫星于2010年10月1日成功发射升空并顺利进入地月转移轨道.你能写出嫦娥二号卫星的一个轨迹方程吗?(一)情景引入模拟动画:嫦娥二号奔月飞行1.平面内与两个定点F1,F2的__________________________的点的轨迹叫做椭圆,这两个定点叫做椭圆的__________,_____________叫做椭圆的焦距.距离的和等于常数(大于|F1F2|)焦点 两焦点间距离(二)复习导入2.填表:(-c,0),(c,0)(0,-c),(0,c)a2-b2  利用定义法求轨迹方程例1.已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1内切,和圆C2外切,求动圆圆心的轨迹方程.利用椭圆的定义求动点的轨迹方程,应先根据动点具有的条件,验证是否符合椭圆的定义,即动点到两定点距离之和是否是一常数,且该常数(定值)大于两点的距离,若符合,则动点的轨迹为椭圆,然后确定椭圆的方程.这就是用定义法求椭圆标准方程的方法,要注意检验.1.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,求椭圆的标准方程.解:例2、已知△ABC,A(-2,0),B(0,-2),第三个顶点C在曲线y=3x2-1上移动,求△ABC的重心的轨迹方程. 运用(相关点法)代入法求轨迹方程xyODMP 2.如图,在圆 上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?解:设点M的坐标为(x,y),点P的坐标为(x0,y0),

则因为点P(x0,y0)在圆..①即所以点M的轨迹是一个椭圆.1.从本题你能发现椭圆与圆之间的关系吗?
2.x的范围有限制吗? 寻找要求的点M的坐标x,y与中间变量x0 , y0之间的关系,然后消去x0 , y0,得到点M的轨迹的方程.-------
叫代入法求轨迹(解析几何中求点的轨迹的常用方法)把点x0=x,y0=2y代入方程①,得例3 如图,设点A,B的坐标分别是(-5,0)和(5,0),直线AM,BM相交于点M,且它们的斜率之积是 ,求点M的轨迹方程.yAxMBO解:设点M的坐标(x,y),因为点A的坐标是(-5,0),所以,直线AM的斜率为 运用直接法求轨迹方程同理,直线BM的斜率由已知有化简,得点M的轨迹方程为例4.忽略椭圆标准方程的隐含条件致误 答案:B1.求椭圆的标准方程常用待定系数法.
首先,要恰当地选择方程的形式,如果不能确定焦点的位置,可用两种方法来解决问题.2.求轨迹方程的常用方法:
(1)直接法
当动点直接与已知条件发生联系时,在设出曲线上动点的坐标为(x,y)后,可根据几何条件转换成x,y间的关系式,从而得到轨迹方程,这种求轨迹方程的方法称为直接法.(2)定义法
若动点运动的几何条件满足某种已知曲线的定义,可以设出其标准方程,然后用待定系数法求解,这种求轨迹方程的方法称为定义法.(3)相关点法
有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称为相关点法.D 2.一个动圆与已知圆Q1:(x+3)2+y2=1外切,与圆Q2:(x-3)2+y2=81内切,试求这个动圆圆心的轨迹方程.【解析】由已知两定圆的圆心和半径分别为
Q1(-3,0),r1=1;Q2(3,0),r2=9.
设动圆圆心为M(x,y),半径为R,如图所示,
则由题设有|MQ1|=1+R,|MQ2|=9-R,
∴|MQ1|+|MQ2|=10>|Q1Q2|=6.
由椭圆定义可知M在以Q1,Q2为焦点的椭圆上,
且a=5,c=3.∴b2=a2-c2=25-9=16.
故动圆圆心的轨迹方程为解析:当0<λ<1时,点M的轨迹是焦点在x轴上的椭圆;
当λ=1时,点M的轨迹是圆;
当λ>1时,点M的轨迹是焦点在y轴上的椭圆.3.已知椭圆的焦点是F1,F2,P是椭圆上的一动点,如果延长F1P 到 Q,使得|PQ|=|PF2|,那么动点Q 的轨迹是 (  ).
A.圆 B.椭圆
C.双曲线的一支 D.抛物线
解析:如图,依题意:
|PF1|+|PF2|=2a(a>0是常数).
又∵|PQ|=|PF2|,
∴|PF1|+|PQ|=2a,即|QF1|=2a.
∴动点Q的轨迹是以F1为圆心,2a为半径的圆,故选A.
答案 A课件44张PPT。 第 二 章 圆锥曲线与方程2.1 椭圆
2.1.1 椭圆及其标准方程自主学习 新知突破1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程.
2.了解椭圆的标准方程的推导及简化过程.
3.掌握椭圆的定义、标准方程及几何图形.在生活中,我们对椭圆并不陌生.油罐汽车的贮油罐横截面的外轮廓线、天体中一些行星和卫星运行的轨道都是椭圆;灯光斜照在圆形桌面上,地面上形成的影子也是椭圆形的.在学习中,椭圆其实比圆更加让我们熟知,无论是数学中的0,还是字母中的O,我们都能看到椭圆的踪影.外表上看起来并不完美的椭圆,因为有了故事,有了情景,反而显得唯美,令人心动.
满足什么条件的点的轨迹是椭圆呢?
[提示] 到两定点的距离之和等于定值的点的轨迹是椭圆.椭圆的定义距离之和等于定值定点距离MF1|+|MF2|=2a对椭圆定义的理解
椭圆的定义揭示了椭圆的本质,定义是判断动点轨迹是不是椭圆的重要依据.设集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c均为大于0的常数.
当2a>2c时,集合P为椭圆;
当2a=2c时,集合P为线段F1F2;
当2a<2c时,集合P为空集,即动点M的轨迹不存在.椭圆的标准方程b2+c2
对椭圆标准方程的三点认识
(1)标准的几何特征:椭圆的中心在坐标原点,焦点在x轴或y轴上,对称轴是坐标轴.
(2)标准的代数特征:方程右边是1,左边是关于x,y的平方和,并且分母不相等. (3)a,b,c三个量的关系:椭圆的标准方程中,a表示椭圆上的点M到两焦点间距离的和的一半,可借助图形帮助记忆.a,b,c(都是正数)恰是构成一个直角三角形的三条边,a是斜边,所以a>b,a>c,且a2=b2+c2.答案: D 答案: B 答案: (-6,-2)∪(3,+∞) 合作探究 课堂互动椭圆的定义及应用 下列说法中正确的是(  )
A.已知F1(-4,0),F2(4,0),到F1,F2两点的距离之和等于8的点的轨迹是椭圆
B.已知F1(-4,0),F2(4,0),到F1,F2两点的距离之和为6的点的轨迹是椭圆
C.到F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的点的轨迹是椭圆
D.到F1(-4,0),F2(4,0)距离相等的点的轨迹是椭圆 [思路点拨] 椭圆是到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹,应特别注意椭圆的定义的应用.答案: C 并不是动点到两定点距离之和为常数的点的轨迹就一定是椭圆,只有当距离之和大于两定点之间的距离时得到的轨迹才是椭圆.1.命题甲:动点P到两定点A,B的距离之和|PA|+|PB|=2a(a>0且a为常数);命题乙:点P的轨迹是椭圆,且A,B是椭圆的焦点.则命题甲是命题乙的(  )
A.充分不必要条件   B.必要不充分条件
C.充分且必要条件 D.既不充分又不必要条件
解析: 当2a>|F1F2|时是椭圆,当2a=|F1F2|时是线段,当2a<|F1F2|时无轨迹,所以选B.
答案: B求椭圆的标准方程 (1)求椭圆标准方程的一般步骤为:椭圆的定义与标准方程的综合应用 在解答解析几何的习题时,要善于根据曲线和图形的性质,用平面几何的知识加以解答,本题综合运用了余弦定理和椭圆的定义,从而简化了运算,达到化繁为简的目的.3.已知F1,F2是椭圆9x2+25y2=225的左,右焦点.点P是椭圆上一点,且其横坐标为2,求|PF1|与|PF2|.谢谢观看!