高中数学(人教版A版选修1-1)配套课件(2份)、教案、学案、同步练习题,补习复习资料:2.2.1《双曲线及其标准方程》课件

文档属性

名称 高中数学(人教版A版选修1-1)配套课件(2份)、教案、学案、同步练习题,补习复习资料:2.2.1《双曲线及其标准方程》课件
格式 zip
文件大小 3.3MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-30 17:55:17

文档简介

§2.2 双曲线
2.2.1 双曲线及其标准方程
课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题.
1.双曲线的有关概念
(1)双曲线的定义
平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线.
平面内与两个定点F1,F2的距离的差的绝对值等于|F1F2|时的点的轨迹为
__________________________________________.
平面内与两个定点F1,F2的距离的差的绝对值大于|F1F2|时的点的轨迹__________.
(2)双曲线的焦点和焦距
双曲线定义中的两个定点F1、F2叫做________________,两焦点间的距离叫做________________.
2.双曲线的标准方程
(1)焦点在x轴上的双曲线的标准方程是________________,焦点F1__________,F2__________.
(2)焦点在y轴上的双曲线的标准方程是________________________,焦点F1________,F2__________.
(3)双曲线中a、b、c的关系是____________.
一、选择题
1.已知平面上定点F1、F2及动点M,命题甲:||MF1|-|MF2||=2a(a为常数),命题乙:M点轨迹是以F1、F2为焦点的双曲线,则甲是乙的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.若ax2+by2=b(ab<0),则这个曲线是(  )
A.双曲线,焦点在x轴上
B.双曲线,焦点在y轴上
C.椭圆,焦点在x轴上
D.椭圆,焦点在y轴上
3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为(  )
A.x2-=1 B.-y2=1
C.y2-=1 D.-=1
4.双曲线-=1的一个焦点为(2,0),则m的值为(  )
A. B.1或3
C. D.
5.一动圆与两圆:x2+y2=1和x2+y2-8x+12=0都外切,则动圆圆心的轨迹为(  )
A.抛物线 B.圆
C.双曲线的一支 D.椭圆
6.已知双曲线中心在坐标原点且一个焦点为F1(-,0),点P位于该双曲线上,线段PF1的中点坐标为(0,2),则该双曲线的方程是(  )
A.-y2=1 B.x2-=1
C.-=1 D.-=1
题号
1
2
3
4
5
6
答案
二、填空题
7.设F1、F2是双曲线 -y2=1的两个焦点,点P在双曲线上,且·=0,则|PF1|·|PF2|=______.
8.已知方程-=1表示双曲线,则k的取值范围是________.
9.F1、F2是双曲线-=1的两个焦点,P在双曲线上且满足|PF1|·|PF2|=32,则∠F1PF2=______.
三、解答题
10.设双曲线与椭圆+=1有相同的焦点,且与椭圆相交,一个交点A的纵坐标为4,求此双曲线的标准方程.
11.在△ABC中,B(4,0)、C(-4,0),动点A满足sin B-sin C=sin A,求动点A的轨迹方程.
能力提升
12.若点O和点F(-2,0)分别为双曲线-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则·的取值范围为(  )
A.[3-2,+∞) B.[3+2,+∞)
C.[-,+∞) D.[,+∞)
13.已知双曲线的一个焦点为F(,0),直线y=x-1与其相交于M,N两点,MN中点的横坐标为-,求双曲线的标准方程.
1.双曲线的标准方程可以通过待定系数法求得.
2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相结合.
3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决.
§2.2 双曲线
2.2.1 双曲线及其标准方程
答案
知识梳理
1.(1)|F1F2| 以F1,F2为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距
2.(1)-=1(a>0,b>0) (-c,0) (c,0)
(2)-=1(a>0,b>0) (0,-c) (0,c)
(3)c2=a2+b2
作业设计
1.B [根据双曲线的定义,乙?甲,但甲乙,
只有当2a<|F1F2|且a≠0时,其轨迹才是双曲线.]
2.B [原方程可化为+y2=1,因为ab<0,所以<0,所以曲线是焦点在y轴上的双曲线,故选B.]
3.A [∵双曲线的焦点在x轴上,
∴设双曲线方程为-=1 (a>0,b>0).
由题知c=2,∴a2+b2=4. ①
又点(2,3)在双曲线上,∴-=1. ②
由①②解得a2=1,b2=3,
∴所求双曲线的标准方程为x2-=1.]
4.A [∵双曲线的焦点为(2,0),在x轴上且c=2,
∴m+3+m=c2=4.∴m=.]
5.C [由题意两定圆的圆心坐标为O1(0,0),O2(4,0),设动圆圆心为O,动圆半径为r,则|OO1|=r+1,|OO2|=r+2,∴|OO2|-|OO1|=1<|O1O2|=4,故动圆圆心的轨迹为双曲线的一支.]
6.B [设双曲线方程为-=1,因为c=,c2=a2+b2,所以b2=5-a2,所以
-=1.由于线段PF1的中点坐标为(0,2),则P点的坐标为(,4).代入双曲线方程得-=1,解得a2=1或a2=25(舍去),所以双曲线方程为x2-=1.故选B.]
7.2
解析 ∵||PF1|-|PF2||=4,
又PF1⊥PF2,|F1F2|=2,
∴|PF1|2+|PF2|2=20,∴(|PF1|-|PF2|)2
=20-2|PF1||PF2|=16,∴|PF1|·|PF2|=2.
8.-1解析 因为方程-=1表示双曲线,
所以(1+k)(1-k)>0.所以(k+1)(k-1)<0.
所以-19.90°
解析 设∠F1PF2=α,|PF1|=r1,|PF2|=r2.
在△F1PF2中,由余弦定理,
得(2c)2=r+r-2r1r2cos α,
∴cos α===0.
∴α=90°.
10.解 方法一 设双曲线的标准方程为-=1 (a>0,b>0),由题意知c2=36-27
=9,c=3.
又点A的纵坐标为4,则横坐标为±,于是有
解得
所以双曲线的标准方程为-=1.
方法二 将点A的纵坐标代入椭圆方程得
A(±,4),
又两焦点分别为F1(0,3),F2(0,-3).
所以2a=|-
|=4,
即a=2,b2=c2-a2=9-4=5,
所以双曲线的标准方程为-=1.
11.解 设A点的坐标为(x,y),在△ABC中,由正弦定理,得===2R,
代入sin B-sin C=sin A,
得-=·,又|BC|=8,
所以|AC|-|AB|=4.
因此A点的轨迹是以B、C为焦点的双曲线的右支(除去右顶点)且2a=4,2c=8,所以
a=2,c=4,b2=12.
所以A点的轨迹方程为-=1 (x>2).
12.B
 [由c=2得a2+1=4,
∴a2=3,
∴双曲线方程为-y2=1.
设P(x,y)(x≥),
∴ ·=(x,y)·(x+2,y)=x2+2x+y2
=x2+2x+-1
=x2+2x-1(x≥).
令g(x)=x2+2x-1(x≥),则g(x)在[,+∞)上单调递增.g(x)min=g()=3+2.
·的取值范围为[3+2,+∞).]
13.解 设双曲线的标准方程为-=1,
且c=,则a2+b2=7.①
由MN中点的横坐标为-知,
中点坐标为.
设M(x1,y1),N(x2,y2),
则由
得b2(x1+x2)(x1-x2)-a2(y1+y2)(y1-y2)=0.
∵,且=1,
∴2b2=5a2.②
由①,②求得a2=2,b2=5.
∴所求双曲线的标准方程为-=1.
§2.2.1双曲线的及其标准方程
【学情分析】:
学生已经学过椭圆,了解椭圆的定义,经历了根据椭圆的特征,建立适当的坐标系,能较熟练求椭圆的方程,也了解椭圆的简单的几何性质并能解决与椭圆的几何性质有关的问题。
本节课将通过学生的自主探究、总结来进行教学。
【教学目标】:
知识与技能
使学生掌握双曲线的定义、标准方程
2、掌握焦点、焦点位置、焦距与方程关系,会求双曲线的标准方程;
过程与方法
理解双曲线标准方程的推导过程;
认识双曲线的变化规律及与其系数之间的关系;
情感态度与价值观
通过运用双曲线标准方程解决一些实际问题,使学生充分认识数学的价值,习惯用数学的眼光解决生活中的数学问题。
【教学重点】:
双曲线的定义、标准方程
【教学难点】:
双曲线标准方程的推导过程
【课前准备】:
课件
【教学过程设计】:
教学环节
教学活动
设计意图
一.复习、引入
1、椭圆的定义是什么?
2、到两个定义距离之差是一个定长的点的轨迹是什么呢?
通过复习引入,有利于学生在已有知识基础上开展学习;提出新问题,引发学习兴趣。
二.实验
1、如图2.2.1,取一条拉链进行实验,让学生观察点M的轨迹。
2、问题:点M所满足的几何条件是什么?
通过实验引导学生探究,整理实验,归纳抽象成数学问题。
三.双曲线的定义的讲解
1、投影:双曲线的定义:
平面内与两个定点F1、F2的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距(一般用2c表示)
常数一般用2表示。
(讲解定义时要注意条件:)
2、探索思考:若没有该条件所表示的图形会是怎样的?
3、讨论:椭圆定义与双曲线定义有什么异同?
1、明确双曲线的定义。抓住几个不变:两个定点;一个常数。
2、通过对限制条件的探究,加深学生概念的理解。
3、在与椭圆的对比中建立有关双曲线的知识结构。
四.双曲线标准方程的推导
1.提问:我们是如何建立坐标系求椭圆的标准方程的?
探索:仿照求椭圆标准方程的方法,求双曲线的标准方程。
2.引导学生推导双曲线的标准方程
3.教师让学生板演双曲线的标准方程的推导过程,得到:

4.类比椭圆的标准方程,令得双曲线的标准方程:
()
说明:此方程表示的双曲线焦点在x轴上,焦点是F1(-c,0)、F2(c,0),其中c2=a2+b2.
5.问题:椭圆的标准方程有两种,双曲线是否也有两种呢?进一步得到:当焦点在y轴时,
()
说明:此方程表示的双曲线焦点在y轴上,焦点是F1(0,-c),F2(0,c),其中c2=a2+b2.
1.充分利用学生学习椭圆的学习经验提高学生学习双曲线的学习效率
2.通过反复与椭圆进行类比,既加强与已有知识联系,又找出与旧知识的不同之处,做到“同化”与“顺应”。
五.例题
1.例1:已经双曲线两个焦点分别为、,双曲线上一点P到、距离差的绝对值等于6,求双曲线的标准方程。
分析:本题为根据双曲线的定义求标准方程
解:设双曲线的标准方程为:(),
因为,故,
所以,
因此,双曲线的标准方程为:
由学生板演
练习:教科书练习
2.例2一炮弹在某处爆炸,在A处听到爆炸声的时间比在B处晚2 s.
(1)爆炸点应在什么样的曲线上?
(2)已知A、B两地相距800 m,并且此时声速为340 m/s,求曲线的方程.
解(1)由声速及A、B两处听到爆炸声的时间差,可知A、B两处与爆炸点的距离的差,因此爆炸点应位于以A、B为焦点的双曲线上.
因为爆炸点离A处比离B处更远,所以爆炸点应在靠近B处的一支上.
(2)如图8—14,建立直角坐标系xOy,使A、B两点在x轴上,并且点O与线段AB的中点重合.
设爆炸点P的坐标为(x,y),则
即2a=680,a=340.
又∴2c=800,c=400, b2=c2-a2=44400.
∵∴x>0.
所求双曲线的方程为:
(x>0).
思考1:该例表明,利用两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点所在的双曲线的方程,但不能确定爆炸点的准确位置.而现实生活中为了安全,我们最关心的则是爆炸点的准确位置,那么我们如何解决这个问题呢?
如果再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时间差,可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置.这是双曲线的一个重要应用.
思考2:如果A、B两点同时听到爆炸声,说明爆炸点到A、B的距离相等,那么爆炸点应在怎样的曲线上?
AB的中垂线。
3.补充例题:已知动圆P与定圆C1:(x+5)2+y2=49,C2:(x-5)2+y2=1 都相切,求动圆圆心的轨迹的方程
分析:外切有|PC1|=7+r, |PC2|=1+r,
∴|PC1|-|PC2|=6,
内切有|PC1|=r-7, |PC2|=r -1,∴|PC2|-|PC1|=6
故点P的轨迹是双曲线x2/9-y2/16=1
双曲线标准方程的简单应用
四、小结
提问:我们已经学习了双曲线,双曲线是怎样的点的轨迹?
双曲线的标准方程是怎样的?
双曲线标准方程中a、b、c之间的关系是什么?你能通过它们求出双曲线的标准方程吗?
五、作业
教科书习题2.2 1、2、
练习与测试:
1.一动圆P过定点M(-4,0),且与已知圆N:(x-4)2+y2=16相切,求动圆圆心P的轨迹。
分析:由题意,列出动圆圆心满足的几何条件,若能由此条判断出动点的轨迹是哪种曲线,则可直接求出其轨迹方程来
内切时,定圆N在动圆P的内部,有|PC|=|PM|-4,
外切时,有|PC|=|PM|+4,
故点P的轨迹是双曲线x2/4-y2/12=1。
2.已知动圆P与定圆C1:(x+5)2+y2=49,C2:(x-5)2+y2=1 都相切,求动圆圆心的轨迹的方程
分析:外切有|PC1|=7+r, |PC2|=1+r,
∴|PC1|-|PC2|=6,
内切有|PC1|=r-7, |PC2|=r -1,∴|PC2|-|PC1|=6
故点P的轨迹是双曲线x2/9-y2/16=1
3.若,则“”是“方程表示双曲线”的( )
(A)充分不必要条件. (B)必要不充分条件.
(C)充要条件. (D)既不充分也不必要条件.
解析:应用直接推理和特值否定法.当k>3时,有k-3>0,k+3>0,所以方程 表示双曲线;当方程 表示双曲线时,k=-4 是可以的,这不在k>3里.故应该选A.
4.已知双曲线中心在原点,一个顶点的坐标为,且焦距与虚轴长之比为,则双曲线的标准方程是____________________.
解:双曲线中心在原点,一个顶点的坐标为,则焦点在x轴上,且a=3,焦距与虚轴长之比为,即,解得,则双曲线的标准方程是
5.若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程是__________.
6.已知双曲线的两个焦点为,,P是此双曲线上的一点,且,,则该双曲线的方程是 ( )
A. B. C. D.
答案:C
7.“ab<0”是“曲线ax2+by2=1为双曲线”的 ( )
A.充分非必要条件 B.必要非充分条件
C.充分必要条件 D.既非充分又非必要条件
答案:C
8.与双曲线-=1有公共焦点,且过点(3,2),求双曲线方程
解:设双曲线方程为-=1
由题意易求c=2
又双曲线过点(3,2),
∴-=1
又∵a2+b2=(2)2,
∴a2=12,b2=8
故所求双曲线的方程为-=1
双曲线及其标准方程教案 新人教A版选修1-1
(1)预习与引入过程
预习教科书56页至60页,当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面与圆锥的轴线或平行时,截口曲线是双曲线,待观察或操作了课件后,提出两个问题:第一、你能理解为什么此时的截口曲线是双曲线而不是两条抛物线;第二、你能举出现实生活中双曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起思考与探究P56页上的问题(同桌的两位同学准备无弹性的细绳子两条(一条约10cm长,另一条约6cm每条一端结一个套)和笔尖带小环的铅笔一枝,教师准备无弹性细绳子两条(一条约20cm,另一条约12cm,一端结个套,另一端是活动的),图钉两个).当把绳子按同一方向穿入笔尖的环中,把绳子的另一端重合在一起,拉紧绳子,移动笔尖,画出的图形是双曲线.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?〖板书〗§2.2.1双曲线及其标准方程.
(2)新课讲授过程
(i)由上述探究过程容易得到双曲线的定义.
〖板书〗把平面内与两个定点,的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线(hyperbola).其中这两个定点叫做双曲线的焦点,两定点间的距离叫做双曲线的焦距.即当动点设为时,双曲线即为点集.
(ii)双曲线标准方程的推导过程
提问:已知椭圆的图形,是怎么样建立直角坐标系的?类比求椭圆标准方程的方法由学生来建立直角坐标系.
无理方程的化简过程仍是教学的难点,让学生实际掌握无理方程的两次移项、平方整理的数学活动过程.
类比椭圆:设参量的意义:第一、便于写出双曲线的标准方程;第二、的关系有明显的几何意义.
类比:写出焦点在轴上,中心在原点的双曲线的标准方程.
(iii)例题讲解、引申与补充
例1 已知双曲线两个焦点分别为,,双曲线上一点到,距离差的绝对值等于,求双曲线的标准方程.
分析:由双曲线的标准方程的定义及给出的条件,容易求出.
补充:求下列动圆的圆心的轨迹方程:① 与⊙:内切,且过点;② 与⊙:和⊙:都外切;③ 与⊙:外切,且与⊙:内切.
解题剖析:这表面上看是圆与圆相切的问题,实际上是双曲线的定义问题.具体解:设动圆的半径为.
① ∵⊙与⊙内切,点在⊙外,∴,,因此有,∴点的轨迹是以、为焦点的双曲线的左支,即的轨迹方程是;
② ∵⊙与⊙、⊙均外切,∴,,因此有,∴点的轨迹是以、为焦点的双曲线的上支,∴的轨迹方程是;
③ ∵与外切,且与内切,∴,,因此,∴点的轨迹是以、为焦点的双曲线的右支,∴的轨迹方程是.
例2 已知,两地相距,在地听到炮弹爆炸声比在地晚,且声速为,求炮弹爆炸点的轨迹方程.
分析:首先要判断轨迹的形状,由声学原理:由声速及,两地听到爆炸声的时间差,即可知,两地与爆炸点的距离差为定值.由双曲线的定义可求出炮弹爆炸点的轨迹方程.
扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚.已知各观察点到该中心的距离都是.试确定该巨响发生的位置(假定当时声音传播的速度为;相关点均在同一平面内).
解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚,则巨响应在以这两个观察点为焦点的双曲线上.
如图,以接报中心为原点,正东、正北方向分别为轴、轴方向,建立直角坐标系,设、、分别是西、东、北观察点,则,,.
设为巨响发生点,∵、同时听到巨响,∴所在直线为……①,又因点比点晚听到巨响声,∴.由双曲线定义知,,,∴,∴点在双曲线方程为……②.联立①、②求出点坐标为.即巨响在正西北方向处.
探究:如图,设,的坐标分别为,.直线,相交于点,且它们的斜率之积为,求点的轨迹方程,并与§2.1.例3比较,有什么发现?
探究方法:若设点,则直线,的斜率就可以用含的式子表示,由于直线,的斜率之积是,因此,可以求出之间的关系式,即得到点的轨迹方程.
情感、态度与价值观目标
通过课件()的展示与操作,必须让学生认同:与圆锥的轴平行的平面去截圆锥曲面所得截口曲线是一条双曲线而不是两条抛物线;必须让学生认同与体会:双曲线的定义及特殊情形当常数等于两定点间距离时,轨迹是两条射线;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,及引入参量的意义,培养学生用对称的美学思维来体现数学的和谐美;让学生认同与领悟:像例1这基础题配备是必要的,但对定义的理解和使用是远远不够的,必须配备有一定灵活性、有一定的思维空间的补充题;例2是典型双曲线实例的题目,对培养学生的辩证思维方法,会用分析、联系的观点解决问题有一定的帮助,但要准确判定爆炸点,必须对此题进行扩展,培养学生归纳、联想拓展的思维能力.
◆能力目标
想象与归纳能力:能根据课程的内容能想象日常生活中哪些是双曲线的实际例子,能用数学符号或自然语言的描述双曲线的定义,能正确且直观地绘作图形,反过来根据图形能用数学术语和数学符号表示.
思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.
实践能力:培养学生实际动手能力,综合利用已有的知识能力.
数学活动能力:培养学生观察、实验、探究、验证与交流等数学活动能力.

学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.双曲线-=1的两个焦点分别是F1,F2,双曲线上一点P到F1的距离是12,则P到F2的距离是(  )
A.17          B.7
C.7或17 D.2或22
【解析】 由双曲线方程-=1得a=5,
∴||PF1|-|PF2||=2×5=10.
又∵|PF1|=12,∴|PF2|=2或22.
故选D.
【答案】 D
2.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为(  )
A.x2-=1 B.-y2=1
C.y2-=1 D.-=1
【解析】 由双曲线定义知,
2a=-=5-3=2,
∴a=1.
又c=2,∴b2=c2-a2=4-1=3,
因此所求双曲线的标准方程为x2-=1.
【答案】 A
3.设动点M到A(-5,0)的距离与它到B(5,0)的距离的差等于6,则P点的轨迹方程是(  )
A.-=1 B.-=1
C.-=1(x<0) D.-=1(x>0)
【解析】 由双曲线的定义得,P点的轨迹是双曲线的一支.由已知得∴a=3,c=5,b=4.故P点的轨迹方程为-=1(x>0),因此选D.
【答案】 D
4.已知双曲线-=1的焦点为F1,F2,点M在双曲线上,且MF1⊥x轴,则F1到直线F2M的距离为(  )
A. B.
C. D.
【解析】 不妨设点F1(-3,0),
容易计算得出
|MF1|==,
|MF2|-|MF1|=2.
解得|MF2|=.
而|F1F2|=6,在直角三角形MF1F2中,
由|MF1|·|F1F2|=|MF2|·d,
求得F1到直线F2M的距离d为.故选C.
【答案】 C
5.椭圆+=1与双曲线-=1有相同的焦点,则a的值是(  )
A. B.1或-2
C.1或 D.1
【解析】 由于a>0,0<a2<4,且4-a2=a+2,所以可解得a=1,故选D.
【答案】 D
二、填空题
6.经过点P(-3,2)和Q(-6,-7),且焦点在y轴上的双曲线的标准方程是________.
【解析】 设双曲线的方程为mx2+ny2=1(mn<0),则解得故双曲线的标准方程为-=1.
【答案】 -=1
7.已知方程+=1表示的曲线为C.给出以下四个判断:
①当1<t<4时,曲线C表示椭圆;②当t>4或t<1时,曲线C表示双曲线;③若曲线C表示焦点在x轴上的椭圆,则1<t<;④若曲线C表示焦点在y轴上的双曲线,则t>4.
其中判断正确的是________(只填正确命题的序号).
【解析】 ①错误,当t=时,曲线C表示圆;②正确,若C为双曲线,则(4-t)(t-1)<0,∴t<1或t>4;③正确,若C为焦点在x轴上的椭圆,则4-t>t-1>0.∴1<t<;④正确,若曲线C为焦点在y轴上的双曲线,则,∴t>4.
【答案】 ②③④
8.已知F是双曲线-=1的左焦点,点A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为________.
【解析】 设右焦点为F′,依题意,
|PF|=|PF′|+4,∴|PF|+|PA|=|PF′|+4+|PA|=|PF′|+|PA|+4≥|AF′|+4=5+4=9.
【答案】 9
三、解答题
9.求以椭圆+=1短轴的两个端点为焦点,且过点A(4,-5)的双曲线的标准方程.
【解】 由+=1,得a=4,b=3,所以短轴两端点的坐标为(0,±3),又双曲线过A点,由双曲线定义得
2a=|-|
=2,∴a=,又c=3,
从而b2=c2-a2=4,
又焦点在y轴上,
所以双曲线的标准方程为-=1.
10.已知△ABC的两个顶点A,B分别为椭圆x2+5y2=5的左焦点和右焦点,且三个内角A,B,C满足关系式sin B-sin A=sin C.
(1)求线段AB的长度;
(2)求顶点C的轨迹方程.
【解】 (1)将椭圆方程化为标准形式为+y2=1.
∴a2=5,b2=1,c2=a2-b2=4,
则A(-2,0),B(2,0),|AB|=4.
(2)∵sin B-sin A=sin C,
∴由正弦定理得|CA|-|CB|=|AB|=2<|AB|=4,
即动点C到两定点A,B的距离之差为定值.
∴动点C的轨迹是双曲线的右支,并且c=2,a=1,
∴所求的点C的轨迹方程为x2-=1(x>1).
[能力提升]
1.已知F1,F2分别为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1||PF2|=(  )
A.2 B.4
C.6 D.8
【解析】 由题意,得||PF1|-|PF2||=2,|F1F2|=2.因为∠F1PF2=60°,所以|PF1|2+|PF2|2-2|PF1|·|PF2|·cos 60°=|F1F2|2,所以(|PF1|-|PF2|)2+2|PF1||PF2|-2|PF1||PF2|×=8,所以|PF1|·|PF2|=8-22=4.
【答案】 B
2.(2018·临沂高二检测)已知双曲线的两个焦点F1(-,0),F2(,0),M是此双曲线上的一点,且·=0,||·||=2,则该双曲线的方程是(  )
A.-y2=1 B.x2-=1
C.-=1 D.-=1
【解析】 由双曲线定义||MF1|-|MF2||=2a,两边平方得:|MF1|2+|MF2|2-2|MF1||MF2|=4a2,因为·=0,故△MF1F2为直角三角形,有|MF1|2+|MF2|2=(2c)2=40,而||·||=2,∴40-2×2=4a2,∴a2=9,∴b2=1,所以双曲线的方程为-y2=1.
【答案】 A
3.若F1,F2是双曲线8x2-y2=8的两焦点,点P在该双曲线上,且△PF1F2是等腰三角形,则△PF1F2的周长为________.
【解析】 双曲线8x2-y2=8可化为标准方程x2-=1,所以a=1,c=3,|F1F2|=2c=6.因为点P在该双曲线上,且△PF1F2是等腰三角形,所以|PF1|=|F1F2|=6,或|PF2|=|F1F2|=6,当|PF1|=6时,根据双曲线的定义有|PF2|=|PF1|-2a=6-2=4,所以△PF1F2的周长为6+6+4=16;同理当|PF2|=6时,△PF1F2的周长为6+6+8=20.
【答案】 16或20
4.如图2-2-2,已知双曲线中c=2a,F1,F2为左、右焦点,P是双曲线上的点,∠F1PF2=60°,S△F1PF2=12.求双曲线的标准方程.
图2-2-2
【解】 由题意可知双曲线的标准方程为-=1.
由于||PF1|-|PF2||=2a,
在△F1PF2中,由余弦定理得
cos 60°==
,
所以|PF1|·|PF2|=4(c2-a2)=4b2,
所以S△F1PF2=|PF1|·|PF2|·sin 60°=2b2·=b2,
从而有b2=12,所以b2=12,c=2a,结合c2=a2+b2,得a2=4.
所以双曲线的标准方程为-=1.
课件24张PPT。2.2 双曲线2.2.1 双曲线及其标准方程(1) 通过观看视频可以清晰直观地了解双曲线的形状,激发学生的学习兴趣,又通过展示生活中各种各样的双曲线物体,体会双曲线广泛地存在于我们的生活的各个角落,充分调动学生学习的积极性和主动性. 借助多媒体辅助手段,动态展现双曲线的形成,将抽象的数学问题变为具体的图形语言,增强学生直观感知能力.在学习了椭圆的定义和标准方程之后,利用类比的思想学习双曲线的定义和标准方程,自然流畅,易于理解.
例1是借助双曲线的定义求动点的轨迹方程;例2是生活实际问题中的双曲线问题,也是结合双曲线的定义求动点的轨迹方程问题.
1. 椭圆的定义2. 引入问题:|MF1|+|MF2|=2a ( 2a>|F1F2|>0) ①如图(A), |MF1|-|MF2|=常数②如图(B),上面两条合起来叫做双曲线由①②可得: | |MF1|-|MF2| | = 常数(差的绝对值) |MF2|-|MF1|=常数数学实验:[1]取一条拉链;
[2]如图把它固定在板上的两点F1、F2
[3] 拉动拉链(M)。
思考:拉链运动的轨迹是什么?用拉链绘制双曲线http://www.jtyhjy.com/edu/ppt/ppt_playVideo.action?mediaVo.resId=55d6bf5daf508f0099b1c742生活中的双曲线法拉利主题公园巴西利亚大教堂麦克唐奈天文馆双曲线定义先通过三个小动画理解双曲线的定义双曲线1双曲线2双曲线3① 两个定点F1、F2——双曲线的焦点;② |F1F2|=2c ——焦距.(1)2a< |F1F2| ;平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于︱F1F2︱)的点的轨迹叫做双曲线.(2)2a >0 ;思考:(1)若2a= | F1F2 |,则轨迹是?(2)若2a> | F1F2 |,则轨迹是?说明:(3)若2a=0,则轨迹是? | |MF1| - |MF2| | = 2a(1)两条射线(2)不表示任何轨迹(3)线段F1F2的垂直平分线双曲线定义:求曲线方程的步骤:双曲线的标准方程1. 建系以F1,F2所在的直线为x轴,线段F1F2的中点为原点建立直角坐标系2.设点设M(x , y),则F1(-c,0),F2(c,0)3.列式|MF1| - |MF2|=±2a4.化简此即为焦点在x轴上的双曲线的标准方程若建系时,焦点在y轴上呢?看 前的系数,哪一个为正,则在哪一个轴上问题2、双曲线的标准方程与椭圆的标准方程
有何区别与联系?问题1、如何判断双曲线的焦点在哪个轴上?F(±c,0)F(±c,0)a>0,b>0,但a不一定大于b,c2=a2+b2a>b>0,a2=b2+c2双曲线与椭圆之间的区别与联系||MF1|-|MF2||=2a |MF1|+|MF2|=2a F(0,±c)F(0,±c)典例展示解:解: 由声速及在A地听到炮弹爆炸声比在B地晚2s,可知A地与爆炸点的距离比B地与爆炸点的距离远680m.因为|AB|>680m,所以爆炸点的轨迹是以A、B为焦点的双曲线在靠近B处的一支上. 例2.已知A,B两地相距800m,在A地听到炮弹爆炸声比在B地晚2s,
且声速为340m/s,求炮弹爆炸点的轨迹方程.设爆炸点P的坐标为(x,y),则即 2a=680,a=340因此炮弹爆炸点的轨迹方程为答:再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时间差,可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置.这是双曲线的一个重要应用. 变式训练3.如果方程 表示双曲线,求m的取值范围.解:1.已知两定点F1(-5,0),F2(5,0),动点P满足
|PF1|-|PF2|=2a,则当a=3和5时,P点的轨迹为(  )
A.双曲线和一直线
B.双曲线和一条射线
C.双曲线的一支和一条射线
D.双曲线的一支和一条直线2.若方程(k2+k-2)x2+(k+1)y2=1的曲线是焦点在y轴上的
双曲线,则k? .(-1, 1), , , , 3.已知双曲线过 两点,求双曲线
的标准方程. 1.双曲线定义及标准方程;4.双曲线与椭圆之间的区别与联系.2.双曲线焦点位置的确定方法;3.求双曲线标准方程的关键(定位,定量);课件43张PPT。2.2 双曲线
2.2.1 双曲线及其标准方程自主学习 新知突破1.了解双曲线的定义、几何图形和标准方程的推导过程.
2.掌握双曲线的标准方程.
3.会利用双曲线的定义和标准方程解决简单的应用问题.我海军“马鞍山”舰和“千岛湖”舰组成第四批护航编队远赴亚丁湾,在索马里流域执行护航任务.
某日“马鞍山”舰哨兵监听到附近海域有快艇的马达声,与“马鞍山”舰相距1 600 m的“千岛湖”舰,3 s后也监听到了该马达声(声速为340 m/s).
[问题] 把快艇作为一个动点,那么它的轨迹是什么呢?
[提示] 它的轨迹是双曲线的一支.双曲线的定义差的绝对值是常数两个定点F1,F2|F1F2|||MF1|-|MF2||=2a双曲线的标准方程a2+b2 双曲线标准方程的形式特点
(1)标准方程中的两个参数a和b,确定了双曲线的形状和大小,是双曲线的定形条件,这里b2=c2-a2,与椭圆中b2=a2-c2相区别,且椭圆中a>b>0,而双曲线中,a>0,b>0,但a,b的大小不确定.
(2)焦点F1,F2的位置是双曲线定位的条件,它决定了双曲线标准方程的类型“焦点跟着正项走”,若x2项的系数为正,则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.答案: A 答案: D 答案: 4 4.求适合下列条件的双曲线的标准方程:
(1)a=3,c=4,焦点在x轴上;
(2)焦点为(0,-6),(0,6),经过点A(-5,6).合作探究 课堂互动双曲线定义的应用
[思路点拨] 条件中给出了角的关系,根据正弦定理,将角的关系转化为边的关系.由于A,B可视为定点,且|AB|=4,从而可考虑用定义法求轨迹方程.解析: 如图所示,以AB边所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系,则 在利用双曲线定义解题时注意对定义中“绝对值”的理解,以免解题时出现片面性.
当P满足0<|PF1|-|PF2|<|F1F2|时,点P的轨迹是双曲线的一支;当0<|PF2|-|PF1|<|F1F2|时,点P的轨迹是双曲线的另一支;当|PF1|-|PF2|=±|F1F2|时,点P的轨迹是两条射线.||PF1|-|PF2||不可能大于|F1F2|.1.若一个动点P(x,y)到两个定点F1(-1,0),F2(1,0)的距离的差的绝对值为定值a(a≥0),试讨论点P的轨迹方程.
解析: 因为|F1F2|=2,
(1)当a=2时,轨迹是两条射线y=0(x≥1)或y=0(x≤-1);
(2)当a=0时,轨迹是线段F1F2的垂直平分线,即y轴,方程为x=0;求双曲线的标准方程 求双曲线的标准方程的常用方法:
(1)定义法,若由题设条件能够判断出动点的轨迹是双曲线,则可根据双曲线的定义确定其方程.
(2)用待定系数法求双曲线方程的一般步骤为:双曲线中的焦点三角形问题
【错因】 错解一是对双曲线的定义中的差的绝对值掌握不够,是概念性的错误.错解二没有验证两解是否符合题意,这里用到双曲线的一个隐含条件:双曲线的一个顶点到另一分支上的点的最小距离是2a,到一个焦点的距离是c-a,到另一个焦点的距离是a+c,本题是2或10,|PF2|=1小于2,不合题意.
【正解】 双曲线的实轴长为8,由双曲线的定义得
||PF1|-|PF2||=8,
所以|9-|PF2||=8,
所以|PF2|=1或17.
因为|F1F2|=12,
当|PF2|=1时,|PF1|+|PF2|=10<|F1F2|,
不符合公理“两点之间线段最短”,应舍去.
所以|PF2|=17.谢谢观看!