2.4 用因式分解法解一元二次方程 课件(16张PPT)+教案

文档属性

名称 2.4 用因式分解法解一元二次方程 课件(16张PPT)+教案
格式 zip
文件大小 209.0KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2019-07-30 13:59:18

文档简介

用因式分解法解一元二次方程 教学设计
教材分析:
教科书基于用因式分解法解一元二次方程是解决特殊问题的一种简便、特殊的方法的基础之上,提出了本课的具体学习任务:能根据已有的分解因式知识解决形如“x(x-a)=0”和“x2-a2=0”的特殊一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。数学教学由一系列相互联系而又渐次递进的课堂组成,因而具体的课堂教学也应满足于远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《因式分解法》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“经历由具体问题抽象出一元二次方程的过程,体会方程是刻画现实世界中数量关系的一个有效数学模型,并在解一元二次方程的过程中体会转化的数学思想,进一步培养学生分析问题、解决问题的意识和能力。”同时也应力图在学习中逐步达成学生的有关情感态度目标。
教学目标:
【知识与技能】
1、能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性;
2、会用因式分解法(提公因式法、公式法)解决某些简单的数字系数的一元二次方程;
3、通过因式分解法的学习,培养学生分析问题、解决问题的能力,并体会转化的思想。
【过程与方法】
1、通过学生探究一元二次方程的解法,使学生知道分解因式法是解一元二次方程的一种简便、特殊的方法,通过“降次”把一元二次方程转化为两个一元一次方程;
2、通过小组合作交流,尝试在解方程过程中,多角度地思考问题,寻求从不同角度解决问题的方
法,并初步学会不同方法之间的差异,学会在与他人的交流中获益。
【情感态度与价值观 】
1、经历观察,归纳分解因式法解一元二次方程的过程,激发好奇心;
2、进一步丰富数学学习的成功体验,使学生在学习中培养良好的情感、态度和主动参与、合作交流的意识,进一步提高观察、分析、概括等能力。
教学重难点:
【教学重点】
重点:了解因式分解法的解题步骤,会用因式分解法解一元二次方程.
【教学难点】
难点:能根据具体一元二次方程的特征,灵活选择方程的解法.
课前准备:多媒体
教学过程:
复习引入
内容:1、用配方法解一元二次方程的关键是将方程转化为(x+m)2=n(n≥0)的形式。
2、用公式法解一元二次方程应先将方程化为一般形式。
3、我们知道ab=0,那么a=0或b=0,类似的解方程(x+1)(x-1)=时,可转化为两个一元一次方程x+1=0或x-1=0来解,你能求(x+3)(x-5)=0的解吗?
【设计意图】第一问题学生先动笔写在练习本上,有个别同学少了条件“n≥0”。
第二问题由于较简单,学生很快回答出来。
第三问题由学生思考,进而引申出今天的课题。
探究新知,讲授新课
问题:一个数的平方与这个数的3倍有可能相等吗?如果能,这个数是几?你是怎样求出来的?
附:学生小颖:设这个数为x,根据题意,可列方程
x2=3x
∴x2-3x=0
∵a=1,b= -3,c=0
∴ b2-4ac=9
∴ x1=0, x2=3
∴ 这个数是0或3。
学生小明:设这个数为x,根据题意,可列方程
x2=3x
两边同时约去x,得
∴ x=3
∴ 这个数是3。
学生小亮::设这个数为x,根据题意,可列方程
x2=3x
∴ x2-3x=0
即x(x-3)=0
∴ x=0或x-3=0
∴ x1=0, x2=3
∴ 这个数是0或3。
说明:如果ab=0,那么a=0或b=0,“或”是“二者中至少有一个成立”的意思,包括两种情况,二者同时成立;二者有一个成立。“且”是“二者同时成立”的意思。
【设计意图】通过独立思考,小组协作交流,力求使学生根据方程的具体特征,灵活选取适当的解法.在操作活动过程中,培养学生积极的情感,态度,提高学生自主学习和思考的能力,让学生尽可能自己探索新知,教师要关注每一位学生的发展.问题3和4进一步点明了因式分解的理论根据及实质,教师总结了本节课的重点.
要点归纳:
因式分解的概念:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法称为因式分解法.
因式分解法的基本步骤:
一移-----方程的右边=0
三化-----方程化为两个一元一次方程;
四解-----写出方程两个解;
简记歌诀:
右化零 左分解
两因式 各求解
典例精析
内容:例1:解下列方程:
; (仿照引例学生自行解决)
(师生共同解决)
【设计意图】例题讲解中,第一题学生独自完成,考察了学生对引例的掌握情况,便于及时反馈。第2题体现了师生互动共同合作,进一步规范解题步骤,最后提出两个问题。问题1进一步巩固因式分解法定义及解题步骤,而问题2体现了解题的多样化。
拓展延伸
活动1:解下列方程:
(1)(2x + 3)2 = 4 (2x + 3) ; (2)(x - 2) 2 = (2x + 3) 2.
活动2:例2.用适当的方法解方程
(1)3x(x + 5)= 5(x + 5); (2)(5x + 1)2 = 1;
x2 - 12x = 4 ; (4)3x2 = 4x + 1;
活动3:填一填:各种一元二次方程的解法及适用类型.
一元二次方程的解法
适用的方程类型
直接开平方法
配方法
公式法
因式分解
活动4:要点归纳
解法选择基本思路:
1.一般地,当一元二次方程一次项系数为0时(ax2+c=0),应选用直接开平方法;
2.若常数项为0( ax2+bx=0),应选用因式分解法;
3.若一次项系数和常数项都不为0 (ax2+bx+c=0),先化为一般式,看一边的整式是否容易因式分解,若容易,宜选用因式分解法,不然选用公式法;
4.不过当二次项系数是1,且一次项系数是偶数时,用配方法也较简单.
【设计意图】华罗庚说过“学数学而不练,犹如入宝山而空返”该练习对本节知识进行巩固,使学生更好地理解所学知识并灵活运用。
应用与巩固
当堂练习:
1.快速说出下列方程的解
(1)(4x - 1)(5x + 7) = 0; x1 =( ), x2= ( ).
(2) (x - 2)(x - 3) = 0; x1 =( ), x2 = ( ).
(3)(2x + 3)(x - 4) = 0; x1 =( ), x2 = ( ).
2.将下面一元二次方程补充完整.
(1)(2x- )( x + 3) = 0; x1= , x2= - 3.
(2) (x- )(3x - 4) = 0; x1= 2 , x2= .
(3)(3x+____)(x + ) = 0; x1= , x2= -5.
3.解方程
4.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.
【设计意图】学生在对因式分解法直接感知的基础上,在头脑加工组合,呈现感知过的特点,使认识从感知不段发展,上升为一种可以把握的能力。同时学生通过独立思考及小组交流,寻找解决问题的方法,获得数学活动的经验,调动了学生学习的积极性,也培养了团结协作的精神,使学生在学习中获得快乐,在学习中感受数学的实际应用价值。
课堂小结
内容:师生互相交流总结
1、因式分解法解一元二次方程的基本思路和关键。
2、在应用因式分解法时应注意的问题。
3、因式分解法体现了怎样的数学思想?
【设计意图】鼓励学生结合本节课的内容谈自己的收获与感想。
教学反思:
评价的目的是为了全面了解学生的学习状况,激励学生的学习热情,促进学生的全面发展.所以本节课在评价时注重关注学生能否积极主动的思考,能否清楚的表达自己的观点,及时发现学生的闪光点,给予积极肯定地表扬和鼓励增强他们对数学活动的兴趣和应用数学知识解决问题的意识,帮助学生形成积极主动的求知态度
这节课的“拓展延伸”环节让学生切实体会到方程在实际生活中的应用.拓展了学生的思路,培养了学生的综合运用知识解决问题的能力.
本节中应着眼干学生能力的发展,因此其中所设计的解题策略、思路方法在今后的教学中应注意进一步渗透,才能更好地达到提高学生数学能力的目标.
课件16张PPT。导入新课情境引入我们知道ab=0,那么a=0或b=0,类似的解方程(x+1)(x-1)=0时,可转化为两个一元一次方程x+1=0或x-1=0来解,你能求(x+3)(x-5)=0的解吗?问题:一个数的平方与这个数的3倍有可能相等吗?如果相等,
这个数是几?你是怎样求出来的?
小颖,小明,小亮都设这个数为x,根据题意得,可得方程 x2 = 3x由方程 x2 = 3x ,得
x2 - 3x = 0
因此
x1 = 0, x2 = 3.
所以这个数是0或3.小颖的思路:小明的思路: 方程 x2 = 3x 两边
同时约去x, 得
x = 3 .
所以这个数是3.讲授新课小亮的思路: 由方程 x2 = 3x ,得
x2 - 3x = 0
即 x (x - 3) = 0
于是 x = 0 , 或 x - 3 = 0.
因此 x1 = 0 , x2 = 3
所以这个数是0或3小亮想:
如果a·b= 0,那么
a=0 或 b=0问题:他们做得对吗?为什么?要点归纳因式分解法的概念因式分解法的基本步骤一移-----方程的右边=0;二分-----方程的左边因式分解;三化-----方程化为两个一元一次方程;四解-----写出方程两个解;简记歌诀:
右化零 左分解
两因式 各求解 当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法称为因式分解法.例1:解下列方程:
(1)5x2 = 4x ; (2)x – 2 = x (x - 2).解:5x2 - 4x = 0,
x (5x - 4) = 0.
∴x = 0 或 5x – 4 =0.
∴ x1 = 0 , x2= .解:(x - 2) – x (x - 2) = 0,
(x - 2) (1 - x) = 0.
∴x – 2 = 0 或 1 – x = 0.
∴ x1 = 2 , x2=1. (1)对于一元二次方程(x - p)(x - q)=0,那么它的两个实数根分
别为p,q.
(2)对于已知一元二次方程的两个实数根为p,q,那么这个一元二次方程可以写成(x - p)(x - q )=0的形式.拓展提升 解下列方程:
(1)(2x + 3)2 = 4 (2x + 3) ; (2)(x - 2) 2 = (2x + 3) 2.解:(2x + 3)2 - 4 (2x + 3) =0 ,
(2x + 3) (2x + 3 - 4) = 0,
(2x + 3) (2x - 1) = 0.
∴ 2x + 3 = 0 或 2x - 1 = 0. 解:(x - 2)2 - (2x + 3) 2 =0,
( x -2+ 2x+ 3) (x -2 - 2x - 3)=0,
(3x + 1)(x + 5) = 0.
∴ 3x + 1 = 0 或 x + 5 = 0.典例精析例2 用适当的方法解方程:
(1)3x(x + 5)= 5(x + 5); (2)(5x + 1)2 = 1;分析:该式左右两边可以提取公因式,所以用因式分解法解答较快.
解:化简 (3x -5) (x + 5) = 0.
即 3x - 5 = 0 或 x + 5 = 0.分析:方程一边以平方形式出现,另一边是常数,可直接开平方法.
解:开平方,得
5x + 1 = ±1.
解得, x 1= 0 , x2 = (3)x2 - 12x = 4 ; (4)3x2 = 4x + 1;
分析:二次项的系数为1,可用配方法来解题较快.
解:配方,得
x2 - 12x + 62 = 4 + 62,
即 (x - 6)2 = 40.
开平方,得
解得 x1= , x2= 分析:二次项的系数不为1,且不能直接开平方,也不能直接因式分解,所以适合公式法.
解:化为一般形式
3x2 - 4x + 1 = 0.
∵Δ=b2 - 4ac = 28 > 0,
填一填:各种一元二次方程的解法及适用类型.拓展提升x2 + px + q = 0 (p2 - 4q ≥0)(x+m)2=n(n ≥ 0)ax2 + bx +c = 0(a≠0 , b2 - 4ac≥0)(x + m) (x + n)=01.一般地,当一元二次方程一次项系数为0时(ax2+c=0),应选用直接开平方法;
2.若常数项为0( ax2+bx=0),应选用因式分解法;
3.若一次项系数和常数项都不为0 (ax2+bx+c=0),先化为一般式,看一边的整式是否容易因式分解,若容易,宜选用因式分解法,不然选用公式法;
4.不过当二次项系数是1,且一次项系数是偶数时,用配方法也较简单.要点归纳解法选择基本思路1.快速说出下列方程的解
(1)(4x - 1)(5x + 7) = 0; x1 =( ), x2= ( ).
(2) (x - 2)(x - 3) = 0; x1 =( ), x2 = ( ).
(3)(2x + 3)(x - 4) = 0; x1 =( ), x2 = ( ).
2.将下面一元二次方程补充完整.
(1)(2x- )( x + 3) = 0; x1= , x2= - 3.
(2) (x- )(3x - 4) = 0; x1= 2 , x2= .
(3)(3x+____)(x + ) = 0; x1= , x2= -5.512-15当堂练习解:化为一般式为因式分解,得x2-2x+1 = 0.( x-1 )( x-1 ) = 0.有 x - 1 = 0 或 x - 1 = 0,x1=x2=1.解:因式分解,得( 2x + 11 )( 2x- 11 ) = 0.有 2x + 11 = 0 或 2x - 11= 0,3.解方程:4.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为r,根据题意 ( r + 5 )2×π=2r2π.因式分解,得于是得答:小圆形场地的半径是课堂小结因式分解法概念步骤简记歌诀:
右化零 左分解
两因式 各求解如果a ·b=0,那么a=0或b=0.原理将方程左边因式分解,右边=0.因式分解的方法有
ma+mb+mc=m(a+b+c);
a2 ±2ab+b2=(a ±b)2;
a2 -b2=(a +b)(a -b).谢 谢