3.1 用树状图或表格求概率 第二课时 课件(15张PPT)+教案

文档属性

名称 3.1 用树状图或表格求概率 第二课时 课件(15张PPT)+教案
格式 zip
文件大小 512.8KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2019-07-30 15:48:47

文档简介


第2课时 概率与游戏的综合运用
教材分析:
教科书基于学生对等可能事件概率的求解和利用树状图、表格求“两步”事件经验的累积,提出本节课的具体学习任务:理解树状图和表格法各自的特点,并能根据不同情境选择适当的方法求比较复杂的事件发生的概率。而更为长远的学习目标应该让本部分知识与实际问题产生联系,凸显数学的实用性。本课《游戏公平吗(二)》内容从属于“统计与概率”这一板块,因而务必服务于统计教学的远期目标:“发展学生对数据的来源、处理数据的方法以及由此得到的结论进行合理质疑的能力,以切实提高学生统计抉择能力。
教学目标:
【知识与技能】
经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.
【过程与方法】
鼓励学生思维的多样性,提高应用所学知识解决问题的能力.
【情感态度与价值观 】
积极参与数学活动, 提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣.发展学生初步的辩证思维能力.
教学重难点:
【教学重点】
1.能判断某事件的每个结果出现的可能性是否相等;
2能将不等可能随机事件转化为等可能随机事件,求其发生的概率.
【教学难点】
1.能判断某事件的每个结果出现的可能性是否相等;
2.能将不等可能随机事件转化为等可能随机事件,求其发生的概率.
课前准备:多媒体
教学过程:
复习引入
活动内容:“配紫色”游戏.
活动过程:
游戏1:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.
问题:(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.
(2)游戏者获胜的概率是多少?
【设计意图】通过这个转转盘“配紫色”游戏,让学生再次经历利用树状图或列表的方法求出概率的过程,并体会求概率时必须使每种事件发生的可能性相同
培养学生应用所学知识解决问题的能力.提高学生分析问题解决问题的能力.
二、讲授新课
游戏2:如果把转盘变成如下图所示的转盘进行“配紫色”游戏.




(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.
(2)游戏者获胜的概率是多少?
小颖做法如下图,并据此求出游戏者获胜的概率为/









小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是/.
红色
蓝色
红色1
(红1,红)
(红1,蓝)
红色2
(红2,红)
(红2,蓝)
蓝色
(蓝,红)
(蓝,蓝)
你认为谁做得对?说说你的理由.(小组合作交流)
【设计意图】让学生先自己画树状图或者表格表示出所有可能出现的结果,然后通过合作交流观察A盘和游戏1转盘的区别并做出正确判断.并总结出求一件事情发生的概率必须是所有可能出现的结果都相同。
典例精析
、一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概率.
分析:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下:





总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种
(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以
P(能配成紫色)=/
【设计意图】通过典型例题分析进一步让学生体会等可能事件概率的求法,突破了本节课的难点
同步练习:
如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形)
./
如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.
【设计题图】学生借助树状图或者列表法表示出所有可能出现的结果,很顺利地求出游戏者获胜的概率。同时在自学过程中也注意到转盘是被分成面积相等的几份扇形,初步感受了每件事情发生的可能性为下一环节的学习打好基础。
三、拓展延伸
例3:王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.
(1)用画树状图的方法表示三次抛掷硬币的所有结果;
(2)这个游戏规则对两个球队是否公平?为什么?
【设计意图】本节课实用性较强选用的情境符合学生的年龄特点和认知水平,使他感受用数学解决问题的幸福。教学中,应鼓励学生自我探究,寻求方法,进行推理,得到判断游戏公平与否的准则。
四、课堂小结
利用树状图和列表法求概率时应注意什么?
你还有哪些收获和疑惑?
/
教学反思:
1.创造性地使用教材
在处理本堂课时注意让学生先通过自学找出自己不会的地方然后到课堂上通过小组交流的方式解决问题,而不是直接给出答案让学生经历的解决问题的过程提高了学生解决问题的能力。
2.利用几何画板、flash动画辅助教学
本堂课多次运用到几何画板、flash动画辅助教学使整个课堂清晰、有趣起到了意想不到的效果。
3.小组合作增强学生之间的交流
我在本节课多次用到小组合作的方式进行交流提高了学生的学习效率让学生体会到团结协作的力量是巨大的。
课件15张PPT。(第二课时) 小颖为学校联欢会设计一个“配紫色”游戏:如下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.
问题:利用画树状图或列表的方法表示游戏所以可能出现的结果.A盘红白B盘黄蓝绿导入新课树状图画树状图如图所示:开始白色红色黄色绿色A盘B盘蓝色黄色绿色蓝色列表法B盘A盘例1:若将A,B盘进行以下修改.其他条件不变,请求出获胜概率?A盘红蓝B盘蓝红问题1:下面是小颖和小亮的解答过程,两人结果都是 ,你认为谁对?120°讲授新课小颖制作下图:开始蓝色红色蓝色红色A盘B盘蓝色红色配成紫色的情况有:(红,蓝),(蓝,红)2种.总共有4种结果.
所以配成紫色的概率P = .小亮制作下表:小亮将A盘中红色区域等分成2份,分别记“红1”,“红2”B盘A盘红蓝120°红1红2配成紫色的情况有:(红1,蓝),(红2,蓝),(蓝,红)3种.
所以配成紫色的概率P = . 小颖的做法不正确.因为右边的转盘中红色部分和蓝色部分的面积不相同,因而指针落在这两个区域的可能性不同.
小亮的做法是解决这类问题的一种常用方法.问题2:用树状图和列表的方法求概率时应注意些什么? 用树状图和列表的方法求概率时应注意各种结果出现的可能性务必相同.红蓝120°红1红2112例2:一个盒子中装有两个红球,两个白球和一个蓝球,这些球出颜色外都相同了.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到的球得颜色能配成紫色的概率.2解:现将两个红球分别记作“红1”“红2”,两个白球分别记作“白1”“白2”,然后列表如下.第二次第一次总共有25种结果,每种结果出现的可能性相同,而两次摸到的球的颜色能配成紫色的结果有4种即(红1,蓝),(红2,蓝),(蓝,红1),(蓝,红2), P(配成紫色)=同步练习 如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形). 如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.12123 总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1/6.解:每次游戏时,所有可能出现的结果如下:转盘摸球问题3:用树状图怎么解答该题?例3:王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.
(1)用画树状图的方法表示三次抛掷硬币的所有结果;
(2)这个游戏规则对两个球队是否公平?为什么?解:(1)根据题意画出树状图,如图.开始正反正反第一次第二次正反第三次正反正反正反正反(2)这个游戏规则对两个球队公平.理由如下:
两次正面朝上一次正面朝下有3种结果:正正反,正反正,反正正;
两次反面朝上一次反面朝下有3种结果:正反反,反正反,反反正.
所以P(王铮去足球队)=P(王铮去篮球队)= 3/8 .概率与游戏的综合应用配紫色判断游戏公平性课堂小结配红色+蓝色=紫色判断游戏参与者获
胜的概率是否相同谢 谢