3.1 用树状图或表格求概率 第一课时 课件(23张PPT)+教案

文档属性

名称 3.1 用树状图或表格求概率 第一课时 课件(23张PPT)+教案
格式 zip
文件大小 619.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2019-07-30 15:48:47

文档简介

用树状图或表格求概率 教学设计
第1课时 用树状图和表格求概率
教材分析:
学生在七年级已经认识了许多随机事件,研究了一些简单的随机事件发生的可能性(概率),并对一些现象作出了合理的解释,对一些游戏活动的公平性作出了自己的评判。本节主要通过对第1课时所做试验进一步分析,体会两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性。
教学目标:
【知识与技能】
1.进一步理解当试验次数较大时试验频率稳定于概率.
2.会借助树状图和列表法计算涉及两步试验的随机事件发生的概率.
【过程与方法】
合作探究,培养合作交流的意识和良好思维习惯.
【情感态度与价值观 】
积极参与数学活动, 提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣.发展学生初步的辩证思维能力.
教学重难点:
【教学重点】
会用画树状图或列表的方法计算简单随机事件发生的概率;
【教学难点】
1.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况
2.会用概率的相关知识解决实际问题.
课前准备:多媒体
教学过程:
一、温故知新
问题:小明、小凡和小颖都想去看周末电影,但只有一张电影票。三人决定一起做游戏,谁获胜谁就去看电影。游戏规则如下:
连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜。
你认为这个游戏公平吗?(如果不公平,猜猜谁获胜的可能性更大?)
【设计意图】使学生再次体会“游戏对双方是否公平”,并由学生用自己的语言描述出“游戏公平吗”的含义是游戏的双方获胜的概率要相同。同时,巧妙的利用一个“如果是你,你会设计一个什么游戏活动判断胜负?”的问题,引发学生的思考及参与的热情,如果学生说出“掷硬币”的方法,自然引出本节课的内容。
二、讲授新课
活动内容:(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:
抛掷的结果
两枚正面朝上
两枚反面朝上
一枚正面朝上、一枚反面朝上
频数
频率
(2)5个同学为一个小组,依次累计各组的试验数据,相应得到试验100次、200次、300次、400次、500次……时出现各种结果的频率,填写下表,并绘制成相应的折现统计图。
试验次数
100
200
300
400
500

两枚正面朝上的次数
两枚正面朝上的频率
两枚反面朝上的次数
两枚反面朝上的频率
一枚正面朝上、一枚反面朝上的次数
一枚正面朝上、一枚反面朝上的频率
(3)由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率。由此,你认为这个游戏公平吗?
深入探究:在上面抛掷硬币试验中,
(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?
(2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?
(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生可能性是否一样?如果第一枚硬币反面朝上呢?
请将各自的试验数据汇总后,填写下面的表格:
抛掷第一枚硬币
抛掷第二枚硬币
正面朝上的次数
正面朝上的次数
反面朝上的次数
反面朝上的次数
正面朝上的次数
反面朝上的次数
表格中的数据支持你的猜测吗?
因此,我们可以用下面的树状图或表格表示所有可能出现的结果:
/
其中,小明获胜的结果有一种:(正,正)。所以小明获胜的概率是/;
小颖获胜的结果有一种:(反,反)。所以小颖获胜的概率也是/;
小凡获胜的结果有两种:(正,反)(反,正)。所以小凡获胜的概率是/。
因此,这个游戏对三人是不公平的。
利用树状图或表格,我们可以不重复,不遗留地列出所有可能的结果,从而比较方便地求出某些事件发生的概率。
【设计意图】对于随机现象,学生一般都有一些朴素的想法,这些想法有的是正确的,有的是错误的,因此要让学生亲自经历对随机现象的探索过程,亲自经历猜测、试验、收集试验数据、设计试验方案、分析试验结果等活动过程,以获得事件发生的概率。了解随机现象的特点,了解概率的意义,树立试验探究的观念,这是概率教学的核心思想。
典例精析
例1:小颖有两件上衣,分别红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?
解:解法一: 画树状图如图所示:
/
由图中可知共有4种等可能结果,而白衣、黑裤只有1种可能,概率为 .
解法二:将可能出现的结果列表如下:
黑色
白色
白色
(白,黑)
(白,白)
红色
(红,黑)
(红,白)
例2:小可、子宣、欣怡三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪刀、布”的方式确定,那么在一个回合中,三个人都出“石头”的概率是多少?
解:用树状图分析所有可能的结果,如图:
/
/
由树状图可知所有等可能的结果有27种,三人都出“石头”的结果只有1种,所以在一个回合中三个人都出“石头”的概率为
方法归纳:画树状图求概率的基本步骤
(1)明确一次试验的几个步骤及顺序;
(2)画树状图列举一次试验的所有可能结果;
(3)数出随机事件A包含的结果数m,试验的所有可能结果数n;
(4)用概率公式进行计算.
列表法求概率的基本步骤
第一步:列表格;
第二步:在所有可能情况n中,再找到满足条件的事件的个数m;
第三步:代入概率公式 计算事件的概率.
【设计意图】通过儿时的游戏,激发学生学习新知的兴趣。使学生意识到是比较事件发生的概率,是评判规则公平与否的依据。
延伸拓展:
一只箱子里共有3个球,其中有2个白球,1个红球,它们除了颜色外均相同.
.从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率;(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.
.从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.
【设计意图】学生一般都会用树状图或表格求出某些事件发生的概率,也能体会到这种方法的简便性,但是容易忽略各种情况出现的可能性是相同的这个条件.教师注意提醒,在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的.
四、应用与巩固
当堂练习:
1.一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性是(  )
A. B. C. D.
2.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是 ( )
A. B. C. D.
3.如果有两组牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌.
(1)摸出两张牌的数字之和为4的概念为多少?
(2)摸出为两张牌的数字相等的概率为多少?
4.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同.先从盒子里随机取出一个小球,记下数字后放回盒子里,摇匀后再随机取出一个小球,记下数字.请你用列表或画树状图的方法求下列事件的概率.
(1)两次取出的小球上的数字相同;
(2)两次取出的小球上的数字之和大于10.
【设计意图】本环节的设置,开放性更强,让学生在问题中需求解决方案。加强对列表法和树状图求概率的理解,从中也体会本题因为结果较多,使用列表法更好一些,感受两种求概率方式的优劣。
五、课堂小结
活动内容:1、本节课你有哪些收获?有何感想?
2、用列表法求概率时应注意什么情况?
【设计意图】通过对本节课的小结,加深对本节知识的理解,理解掌握树状图和列表法求理论概率的方法,并熟练应用,同时注意用列表法求概率时应注意各种情况发生的可能性务必相同。
六、布置作业
(必做题)随堂练习.
(选做题)请同学们课后完成下面练习:
(提升)小明和小颖做掷骰子的游戏,规则如下:① 游戏前,每人选一个数字: ② 每次同时掷两枚均匀骰子;③ 如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.
/(1)在下表中列出同时掷两枚均匀骰子所有可能出现的结果:
1
2
3
4
5
6
1
2
3
4
5
6
(2)小明选的数字是5,小颖选的数字是6.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.
教学反思:
在教学时要反复强调:在借助于树状图或表格求事件发生的概率时,应注意到各种情况出现的等可能性.以免学生忽略这个条件错误使用树状图或表格求事件发生的概率.
课件23张PPT。(第一课时)做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:
连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜.小明小颖小凡导入新课问题1:你认为上面游戏公平吗?
活动探究:
(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:讲授新课(2)由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率.问题2:通过实验数据,你认为该游戏公平吗?
从上面的试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上.一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,它对小凡比较有利.议一议:在上面抛掷硬币试验中,
(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?
(2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?
(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生可能性是否一样?如果第一枚硬币反面朝上呢? 由于硬币质地是均匀的,因此抛掷第一枚硬币出现“正面朝上”和“反面朝上”的概率相同.无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的.我们可以用树状图或表格表示所有可能出现的结果.开始正正第一枚硬币 第二枚硬币 所有可能出现的结果树状图反(正,正)(正,反)反正反(反,正)(反,反)表格第一枚硬币第二枚硬币(正,正)(反,正)(正,反)(反,反)总共有4中结果,每种结果出现的可能性相同.其中:
小明获胜的概率: 小颖获胜的概率: 小凡获胜的概率: 利树状图或表格,我们可以不重复、不遗漏地列出所有可能性相同的结果,从而比较方便地求出某些事件发生的概率.例1:小颖有两件上衣,分别红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?解析:可采用画树状图或列表法把所有的情况都列举出来.
解:解法一: 画树状图如图所示:开始白色红色黑色白色黑色白色上衣裤子由图中可知共有4种等可能结果,而白衣、黑裤只有1种可能,
概率为 .解法二:将可能出现的结果列表如下:上衣裤子 由图中可知共有4种等可能结果,而白衣、黑裤只有1种可能,概率为 .例2:小可、子宣、欣怡三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪刀、布”的方式确定,那么在一个回合中,三个人都出“石头”的概率是多少?解:用树状图分析所有可能的结果,如图:开始石头剪刀布石头剪刀布石头剪刀布石头剪刀布石头剪刀布石头剪刀布石头剪刀布石头剪刀布石头剪刀布...... ...... ...... ...... 由树状图可知所有等可能的结果有27种,三人都出“石头”的结果只有1种,所以在一个回合中三个人都出“石头”的概率为 . 当一次试验涉及三个或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用树状图. 画树状图求概率的基本步骤(1)明确一次试验的几个步骤及顺序;
(2)画树状图列举一次试验的所有可能结果;
(3)数出随机事件A包含的结果数m,试验的所有可能结果数n;
(4)用概率公式进行计算.
列表法求概率应注意的问题 确保试验中每种结果出现的可能性大小相等. 第一步:列表格;
第二步:在所有可能情况n中,再找到满足条件的事件的个数m;
第三步:代入概率公式 计算事件的概率.列表法求概率的基本步骤 一只箱子里共有3个球,其中有2个白球,1个红球,它们除了颜色外均相同.
(1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率;12解:(1)列表如下:第二次第一次拓展延伸(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.12第二次第一次(1)当小球取出后不放入箱子时, 共有6种结果,每个结果的可能性相同,摸出两个白球概率为:
(2)小球取出后放入是,共有9种结果,每种结果的可能性相同,摸出两个白球概率为:1.一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性是(  )
A. B. C. D.
2.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是 ( )
A. B. C. D. DC当堂练习????????3.如果有两组牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌.(1)摸出两张牌的数字之和为4的概念为多少?(2)摸出为两张牌的数字相等的概率为多少?321321 解:(1)P(数字之和为4)= . (2)P(数字相等)=4.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同.先从盒子里随机取出一个小球,记下数字后放回盒子里,摇匀后再随机取出一个小球,记下数字.请你用列表或画树状图的方法求下列事件的概率.
(1)两次取出的小球上的数字相同;
(2)两次取出的小球上的数字之和大于10.(1)两次取出的小球上的数字相同的可能性只有3种,所以P(数字相同)=(2)两次取出的小球上的数字之和大于10的可能性只有4种,所以P(数字之和大于10)=解:根据题意,画出树状图如下列举法关键常用
方法直接列举法列表法画树状图法适用对象两个试验因素或分两步进行的试验.基本步骤列表;
确定m、n值
代入概率公式计算.在于正确列举出试验结果的各种可能性.确保试验中每种结果出现的可能性大小相等.前提条件课堂小结树状图步骤用法是一种解决试验有多步(或涉及多个因素)的好方法.注意弄清试验涉及试验因素个数或试验步骤分几步;
在摸球试验一定要弄清“放回”还是“不放回”.关键要弄清楚每一步有几种结果;
在树状图下面对应写着所有可能的结果;
利用概率公式进行计算.课后作业(必做题)随堂练习
(选做题)请同学们课后完成下面练习
(提升)小明和小颖做掷骰子的游戏,规则如下:① 游戏前,每人选一个数字: ② 每次同时掷两枚均匀骰子;③ 如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.
(1)、在下表中列出同时掷两枚均匀骰子所有可能出现的结果:
(2)、小明选的数字是5,小颖选的数字是6.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.