A级 基础巩固
一、选择题
1.下面抽样方法是简单随机抽样的是( )
A.从平面直角坐标系中抽取5个点作为样本
B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查
C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动
D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)
解析:A中平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.
答案:D
2.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量.下列说法正确的是( )
A.总体是240名 B.个体是每一个学生
C.样本是40名学生 D.样本容量是40
解析:在这个问题中,总体是240名学生的身高,个体是每个学生的身高,样本是40名学生的身高,样本容量是40.
答案:D
3.某总体容量为M,其中带有标记的有N个,现用简单随机抽样的方法从中抽取一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为( )
A. B. C. D.N
解析:总体中带有标记的比例是,则抽取的m个个体中带有标记的个数估计为.
答案:A
4.某年级文科班共有4个班级,每班各有40名学生(其中男生8人,女生32人).若从该年级文科生中以简单随机抽样的方式抽出20人,则下列选项中正确的是( )
A.每班至少会有一人被抽中
B.抽出来的女生人数一定比男生人数多
C.已知小文是男生,小美是女生,则小文被抽中的可能性小于小美被抽中的可能性
D.若学生甲和学生乙在同一班,学生丙在另外一班,则甲、乙两人同时被抽中的可能性跟甲、丙两人同时被抽中的可能性一样
解析:因为每个个体被抽中的可能性相同,所以抽取的20人不一定每班都有,也不一定女生多于男生.
答案:D
5.某工厂的质检人员对生产的100件产品采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是( )
A.①② B.①③ C.②③ D.③
解析:根据随机数表法的要求,只有编号数字位数相同,才能达到随机等可能抽样.
答案:C
二、填空题
6.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是________位.
解析:由于所编号码的位数和读数的位数要一致,因此所编号码的位数最少是四位.从0000到1000,或者是从0001到1001等.
答案:4
7.一个总体的60个个体编号为00,01,…,59,现需从中抽取一个容量为6的样本,请从随机数表的倒数第5行(如下表,且表中下一行接在上一行右边)第10列开始,向右读取,直到取足样本,则抽取样本的号码是________.
95 33 95 22 00 18 74 72 00 18 38
79 58 69 32 81 76 80 26 92 82 80
84 25 39
解析:读取的数字两个一组为01,87,47,20,01,83,87,95,86,93,28,17,68,02,…,则抽取的样本号码是01,47,20,28,17,02.
答案:01,47,20,28,17,02
8.已知下列抽取样本的方式:
①从无限多个个体中抽取100个个体作为样本;
②盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出1个零件进行质量检验后再把它放回盒子里;
③从20件玩具中一次性抽取3件进行质量检验;
④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.
其中,不是简单随机抽样的是________(填序号).
解析:①不是简单随机抽样,因为被抽取的总体的个体数是无限的,而不是有限的;②不是简单随机抽样,因为它是放回抽样;③不是简单随机抽样,因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样,因为指定个子最高的5名同学是56名同学中特指的,不存在随机性,不是等可能抽样.
答案:①②③④
三、解答题
9.广州某中学从50名学生中选1人作为学校男子篮球啦啦队的成员,采用下面两种选法:
选法一 将这50名学生从1~50进行编号,相应地制作1~50的50个号签,把这50个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;
选法二 将49个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让50名学生逐一从中摸取一球,则摸到红球的学生成为啦啦队成员.
试问:这两种选法是否都是抽签法?为什么?这两种选法有何异同?
解:选法一满足抽签法的特征,是抽签法;选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,选法二中的49个白球无法相互区分.这两种选法相同之处在于每名学生被选中的可能性都相等,均为.
10.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?
解:第一步,将元件的编号调整为010,011,012,…,099,100,…,600.
第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.
第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.
第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.
B级 能力提升
1.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )
A.134石 B.169石
C.338石 D.1 365石
解析:254粒和1 534石中夹谷的百分比含量是大致相同的,可据此估计这批米内夹谷的数量.
设1 534石米内夹谷x石,则由题意知=,解得x≈169.故这批米内夹谷约为169石.
答案:B
2.某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性为20%,用随机数法在该中学抽取容量为n的样本,则n等于________.
解析:由=20%,解得n=200.
答案:200
3.某电视台举行颁奖典礼,邀请港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.
解:第一步:先确定艺人:(1)将30名内地艺人从01~30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.
第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上01~20这20个编号,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的编号就是这位演员的演出顺序,再汇总即可.
课件27张PPT。第二章 统 计