§2.1.1 曲线与方程(1)
学习目标
1.理解曲线的方程、方程的曲线;
2.求曲线的方程.
学习过程
一、课前准备
(预习教材理P34~ P36,找出疑惑之处)
复习1:画出函数 的图象.
复习2:画出两坐标轴所成的角在第一、三象限的平分线,并写出其方程.
二、新课导学
※ 学习探究
探究任务一:
到两坐标轴距离相等的点的集合是什么?写出它的方程.
问题:能否写成,为什么?
新知:曲线与方程的关系:一般地,在坐标平面内的一条曲线与一个二元方程之间,
如果具有以下两个关系:
1.曲线上的点的坐标,都是 的解;
2.以方程的解为坐标的点,都是
的点,
那么,方程叫做这条曲线的方程;
曲线叫做这个方程的曲线.
注意:1( 如果……,那么……;
2( “点”与“解”的两个关系,缺一不可;
3( 曲线的方程和方程的曲线是同一个概念,相对不同角度的两种说法;
4( 曲线与方程的这种对应关系,是通过坐标平面建立的.
试试:
1.点在曲线上,则a=___ .
2.曲线上有点,则= .
新知:根据已知条件,求出表示曲线的方程.
※ 典型例题
例1 证明与两条坐标轴的距离的积是常数的点的轨迹方程式是.
变式:到x轴距离等于的点所组成的曲线的方程是吗?
例2设两点的坐标分别是,,求线段的垂直平分线的方程.
变式:已知等腰三角形三个顶点的坐标分别是,,.中线(为原点)所在直线的方程是吗?为什么?
反思:边的中线的方程是吗?
小结:求曲线的方程的步骤:
①建立适当的坐标系,用表示曲线上的任意一点的坐标;
②写出适合条件的点的集合;
③用坐标表示条件,列出方程;
④将方程化为最简形式;
⑤说明以化简后的方程的解为坐标的点都在曲线上.
※ 动手试试
练1.下列方程的曲线分别是什么?
(1) (2) (3)
练2.离原点距离为的点的轨迹是什么?它的方程是什么?为什么?
三、总结提升
※ 学习小结
1.曲线的方程、方程的曲线;
2.求曲线的方程的步骤:
①建系,设点;
②写出点的集合;
③列出方程;
④化简方程;
⑤验证.
※ 知识拓展
求轨迹方程的常用方法有:直接法,定义法,待定系数法,参数法,相关点法(代入法),交轨法等.
学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 与曲线相同的曲线方程是( ).
A. B.
C. D.
2.直角坐标系中,已知两点,,若点满足=+,其中,,+=, 则点的轨迹为 ( ) .
A.射线 B.直线 C.圆 D.线段
3.,,线段的方程是( ).
A. B.
C. D.
4.已知方程的曲线经过点和点,则= ,= .
5.已知两定点,,动点满足,则点的轨迹方程是 .
课后作业
点,,是否在方程
表示的曲线上?为什么?
2 求和点,距离的平方差为常数的点的轨迹方程.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.曲线x2-xy-y2-3x+4y-4=0与x轴的交点坐标是( )
A.(4,0)和(-1,0) B.(4,0)和(-2,0)
C.(4,0)和(1,0) D.(4,0)和(2,0)
【解析】 在曲线x2-xy-y2-3x+4y-4=0中,令y=0,则x2-3x-4=0,∴x=-1或x=4.
∴交点坐标为(-1,0)和(4,0).
【答案】 A
2.方程(x2-4)(y2-4)=0表示的图形是( )
A.两条直线 B.四条直线
C.两个点 D.四个点
【解析】 由(x2-4)(y2-4)=0得(x+2)(x-2)(y+2)·(y-2)=0,所以x+2=0或x-2=0或y+2=0或y-2=0,表示四条直线.
【答案】 B
3.在平面直角坐标系xOy中,若定点A(1,2)与动点P(x,y)满足·=4,则点P的轨迹方程是( )
A.x+y=4 B.2x+y=4
C.x+2y=4 D.x+2y=1
【解析】 由=(x,y),=(1,2)得·=(x,y)·(1,2)=x+2y=4,则x+2y=4即为所求的轨迹方程,故选C.
【答案】 C
4.方程(2x-y+2)·=0表示的曲线是( )
A.一个点与一条直线
B.两个点
C.两条射线或一个圆
D.两个点或一条直线或一个圆
【解析】 原方程等价于x2+y2-1=0,即x2+y2=1,或故选C.
【答案】 C
5.已知方程y=a|x|和y=x+a(a>0)所确定的两条曲线有两个交点,则a的取值范围是( )
A.a>1 B.0<a<1
C.0<a<1或a>1 D.a∈?
【答案】 A
二、填空题
6.“曲线C上的点的坐标都是方程f(x,y)=0的解”是“方程f(x,y)=0是曲线C的方程”的________条件.
【解析】 “方程f(x,y)=0是曲线C的方程 ”?“曲线C上的点的坐标都是方程f(x,y)=0的解”,反之不成立.
【答案】 必要不充分
7.方程·(x+y+1)=0表示的几何图形是________________.
【解析】 由方程得或x-3=0,
即x+y+1=0(x≥3)或x=3.
【答案】 一条射线和一条直线
8.(2018·广东省华南师大附中月考)已知定点F(1,0),动点P在y轴上运动,点M在x轴上,且·=0,延长MP到点N,使得||=||,则点N的轨迹方程是________.
【解析】 由于||=||,则P为MN的中点.设N(x,y),则M(-x,0),P,由·=0,得·=0,所以(-x)·1+·=0,则y2=4x,即点N的轨迹方程是y2=4x.
【答案】 y2=4x
三、解答题
9.如图2-1-1,圆O1与圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1、圆O2的切线PM,PN(M,N分别为切点),使得|PM|=|PN|,试建立适当的坐标系,并求动点P的轨迹方程.
图2-1-1
【解】 以O1O2的中点为原点,O1O2所在直线为x轴,建立如图所示的平面直角坐标系,
得O1(-2,0),O2(2,0).
连结PO1,O1M,PO2,O2N.
由已知|PM|=|PN|,得
|PM|2=2|PN|2,
又在Rt△PO1M中,|PM|2=|PO1|2-|MO1|2,
在Rt△PO2N中,|PN|2=|PO2|2-|NO2|2,
即得|PO1|2-1=2(|PO2|2-1).
设P(x,y),则(x+2)2+y2-1=2[(x-2)2+y2-1],
化简得(x-6)2+y2=33.
因此所求动点P的轨迹方程为(x-6)2+y2=33.
10.△ABC的三边长分别为|AC|=3,|BC|=4,|AB|=5,点P是△ABC内切圆上一点,求|PA|2+|PB|2+|PC|2的最小值与最大值.
【解】 因为|AB|2=|AC|2+|BC|2,所以∠ACB=90°.
以C为原点O,CB,CA所在直线分别为x轴、y轴建立如图所示的平面直角坐标系,由于|AC|=3,|BC|=4,得C(0,0),A(0,3),B(4,0).
设△ABC内切圆的圆心为(r,r),
由△ABC的面积=×3×4=r+2r+r,
得r=1,
于是内切圆的方程为(x-1)2+(y-1)2=1?x2+y2=2x+2y-1,
由(x-1)2≤1?0≤x≤2.
设P(x,y),那么|PA|2+|PB|2+|PC|2=x2+(y-3)2+(x-4)2+y2+x2+y2=3(x2+y2)-8x-6y+25=3(2x+2y-1)-8x-6y+25=22-2x,
所以当x=0时,|PA|2+|PB|2+|PC|2取最大值为22,
当x=2时取最小值为18.
[能力提升]
1.到点A(0,0),B(-3,4)的距离之和为5的轨迹方程是( )
A.y=-x(-3≤x≤0)
B.y=-x(0≤x≤4)
C.y=-x(-3≤x≤4)
D.y=-x(0≤x≤5)
【解析】 注意到|AB|=5,则满足到点A(0,0),B(-3,4)的距离之和为5的点必在线段AB上,因此,方程为y=-x(-3≤x≤0),故选A.
【答案】 A
2.(2018·河南省实验中学月考)已知动点P到定点(1,0)和定直线x=3的距离之和为4,则点P的轨迹方程为( )
A.y2=4x
B.y2=-12(x-4)
C.y2=4x(x≥3)或y2=-12(x-4)(x<3)
D.y2=4x(x≤3)或y2=-12(x-4)(x>3)
【解析】 设P(x,y),由题意得+|x-3|=4.若x≤3,则y2=4x;若x>3,则y2=-12(x-4),故选D.
【答案】 D
3.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于________.
【解析】 设动点P(x,y),
依题意|PA|=2|PB|,
∴=2,
化简得(x-2)2+y2=4,
方程表示半径为2的圆,
因此图形的面积S=π·22=4π.
【答案】 4π
4.过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.
【解】 法一 设点M的坐标为(x,y),
∵M为线段AB的中点,
∴A点的坐标为(2x,0),B点的坐标为(0,2y).
∵l1⊥l2,且l1,l2过点P(2,4),
∴PA⊥PB,即kPA·kPB=-1,
而kPA==(x≠1),
kPB==,
∴·=-1(x≠1),
整理得x+2y-5=0(x≠1).
∵当x=1时,A,B的坐标分别为(2,0),(0,4),
∴线段AB的中点坐标是(1,2),它满足方程x+2y-5=0.
综上所述,点M的轨迹方程是x+2y-5=0.
法二 设点M的坐标为(x,y),则A,B两点的坐标分别是(2x,0),(0,2y),连结PM.
∵l1⊥l2,∴2|PM|=|AB|.
而|PM|=,
|AB|=,
∴2=,
化简得x+2y-5=0,即为所求的点M的轨迹方程.
第二章 圆锥曲线与方程
§2.1 曲线与方程
课时目标 1.结合实例,了解曲线与方程的对应关系.2.了解求曲线方程的步骤.3.会求简单曲线的方程.
1.在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做______________;这条曲线叫做________________.
2.如果曲线C的方程是f(x,y)=0,点P的坐标是(x0,y0),则①点P在曲线C上?____________;②点P不在曲线C上?____________.
3.求曲线方程的一般步骤
(1)建立适当的坐标系,用有序实数对________表示曲线上任意一点M的坐标;
(2)写出适合条件p的点M的集合P=__________;
(3)用________表示条件p(M),列出方程f(x,y)=0;
(4)化方程f(x,y)=0为最简形式;
(5)说明以化简后的方程的解为坐标的点都在曲线上.
一、选择题
1.方程x+|y-1|=0表示的曲线是( )
2.已知直线l的方程是f(x,y)=0,点M(x0,y0)不在l上,则方程f(x,y)-f(x0,y0)=0表示的曲线是( )
A.直线l B.与l垂直的一条直线
C.与l平行的一条直线 D.与l平行的两条直线
3.下列各对方程中,表示相同曲线的一对方程是( )
A.y=与y2=x
B.y=x与=1
C.y2-x2=0与|y|=|x|
D.y=lg x2与y=2lg x
4.已知点A(-2,0),B(2,0),C(0,3),则△ABC底边AB的中线的方程是( )
A.x=0 B.x=0(0≤y≤3)
C.y=0 D.y=0(0≤x≤2)
5.在第四象限内,到原点的距离等于2的点的轨迹方程是( )
A.x2+y2=4
B.x2+y2=4 (x>0)
C.y=-
D.y=- (06.如果曲线C上的点的坐标满足方程F(x,y)=0,则下列说法正确的是( )
A.曲线C的方程是F(x,y)=0
B.方程F(x,y)=0的曲线是C
C.坐标不满足方程F(x,y)=0的点都不在曲线C上
D.坐标满足方程F(x,y)=0的点都在曲线C上
题 号
1
2
3
4
5
6
答 案
二、填空题
7.若方程ax2+by=4的曲线经过点A(0,2)和B,则a=________,b=________.
8.到直线4x+3y-5=0的距离为1的点的轨迹方程为
______________________________.
9.已知点O(0,0),A(1,-2),动点P满足|PA|=3|PO|,则点P的轨迹方程是________________.
三、解答题
10.已知平面上两个定点A,B之间的距离为2a,点M到A,B两点的距离之比为2∶1,求动点M的轨迹方程.
11.动点M在曲线x2+y2=1上移动,M和定点B(3,0)连线的中点为P,求P点的轨迹方程.
能力提升
12.若直线y=x+b与曲线y=3-有公共点,则b的取值范围是( )
A. B.
C. D.
1.曲线C的方程是f(x,y)=0要具备两个条件:①曲线C上的点的坐标都是方程f(x,y)=0的解;②以方程f(x,y)=0的解为坐标的点都在曲线C上.
2.求曲线的方程时,要将所求点的坐标设成(x,y),所得方程会随坐标系的不同而不同.
3.方程化简过程中如果破坏了同解性,就需要剔除不属于轨迹上的点,找回属于轨迹而遗漏的点.求轨迹时需要说明所表示的是什么曲线,求轨迹方程则不必说明.
第二章 圆锥曲线与方程
§2.1 曲线与方程
知识梳理
1.(2)曲线的方程 方程的曲线
2.①f(x0,y0)=0 ②f(x0,y0)≠0
3.(1)(x,y) (2){M|p(M)} (3)坐标
作业设计
1.B [可以利用特殊值法来选出答案,如曲线过点(-1,0),(-1,2)两点.]
2.C [方程f(x,y)-f(x0,y0)=0表示过点M(x0,y0)且和直线l平行的一条直线.故选C.]
3.C [考虑x、y的范围.]
4.B [直接法求解,注意△ABC底边AB的中线是线段,而不是直线.]
5.D [注意所求轨迹在第四象限内.]
6.C [直接法:
原说法写成命题形式即“若点M(x,y)是曲线C上的点,则M点的坐标适合方程F(x,y)=0”,其逆否命题是“若M点的坐标不适合方程F(x,y)=0,则M点不在曲线C上”,此即说法C.
特值方法:作如图所示的曲线C,考查C与方程F(x,y)=x2-1=0的关系,显然A、B、D中的说法都不正确.]
7.16-8 2
8.4x+3y-10=0和4x+3y=0
解析 设动点坐标为(x,y),则=1,
即|4x+3y-5|=5.
∴所求轨迹方程为4x+3y-10=0和4x+3y=0.
9.8x2+8y2+2x-4y-5=0
10.解
以两个定点A,B所在的直线为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系(如图所示).
由于|AB|=2a,
则设A(-a,0),B(a,0),
动点M(x,y).
因为|MA|∶|MB|=2∶1,
所以∶=2∶1,
即=2,
化简得2+y2=a2.
所以所求动点M的轨迹方程为
2+y2=a2.
11.解 设P(x,y),M(x0,y0),∵P为MB的中点,
∴,即,
又∵M在曲线x2+y2=1上,∴(2x-3)2+4y2=1.
∴点P的轨迹方程为(2x-3)2+4y2=1.
12.C [曲线方程可化简为(x-2)2+(y-3)2=4 (1≤y≤3),即表示圆心为(2,3),半径为2的半圆,依据数形结合,当直线y=x+b与此半圆相切时须满足圆心(2,3)到直线y=x+b的距离等于2,解得b=1+2或b=1-2,因为是下半圆故可得b=1-2,当直线过(0,3)时,解得b=3,故1-2≤b≤3,所以C正确.]
课件20张PPT。2.1 曲线与方程
2.1.1 曲线与方程第二章 圆锥曲线与方程 下图为卫星绕月球飞行示意图,据图回答下面问题:假若卫星在某一时间内飞行轨迹上任意一点到月球球心和月球表面上一定点的距离之和近似等于定值2a,视月球为球体,半径为R,你能写出一个轨迹的方程吗?1.理解曲线与方程的概念、意义.(重点、难点)
2.了解数与形结合的基本思想.(难点)探究点1 曲线的方程与方程的曲线
问题1:在直角坐标系中,平分第一、三象限的直线和方程x-y=0有什么关系?(1)在直线上任找一点 则
是方程x-y=0的解;
(2)如果 的解,那么图象上的点M与此方程 ,有什么关系?(1)圆上任一点 的解.按某种规律运动几何对象点曲线C坐标(x,y)方程f(x,y)=0 通过探究可知,在直角坐标系建立以后,平面内的点与数对(x,y)建立了一一对应关系.点的运动形成曲线C,与之对应的实数对的变化就形成了方程f(x,y)=0.曲线的方程与方程的曲线
一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点.
那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 由曲线的方程的定义可知,如果曲线C的方程为
f(x,y)=0,那么点 在曲线C上的充分必要
条件是问题3:曲线C上点的坐标都是方程f(x,y)=0的解,
能否说f(x,y)=0是曲线C的方程? 解:不能,还要验证以方程f(x,y)=0的解为坐标的点是不是都在曲线上,如,以原点为圆心,以2为半径的圆上半部分和方程【提升总结】问题4:曲线的方程与方程的曲线有什么区别? 曲线的方程与方程的曲线是两个不同的概念,“曲线的方程”强调的是图形所满足的数量关系;而“方程的曲线”强调的是数量关系所表示的图形.两者通过曲线上的点的坐标建立起一一对应关系,使方程成为曲线(几何图形)的代数表示,从而将研究曲线的性质转化到讨论相应方程的问题上. 例1 证明与两条坐标轴的距离的积是常数k(k>0)的点的轨迹方程是xy=±k .证明:(1)设 是轨迹上的任意一点.
因为点M与x轴的距离为 ,与y轴的距离为 ,
所以即 而 正是点M1到纵轴、横轴的距离,因
此点M1到这两条直线的距离的积是常数k,点M1是
曲线上的点.
由(1)(2)可知, 是与两条坐标轴的距离的
积为常数k(k>0)的点的轨迹方程.
C例2 方程x2+y2=1(xy<0)的曲线形状是 ( )解析:选C.方程x2+y2=1表示以原点为圆心,半径为1的单位圆,而约束条件xy<0则表明单位圆上点的横、
纵坐标异号,即单位圆位于第二或第四象限的部分.
故选C.
解析:选C.由x2+xy=x,得x(x+y-1)=0,
即x=0或x+y-1=0.
由此知方程x2+xy=x表示两条直线.
故选C.【变式练习】
方程x2+xy=x表示的曲线是( )
A.一个点 B.一条直线
C.两条直线 D.一个点和一条直线C1.若命题“曲线C上的点的坐标都是方程f(x,y)=0
的解”是正确的,则下列命题为真命题的是( )
A.不是曲线C上的点的坐标,一定不满足方程f(x,y)=0
B.坐标满足方程f(x,y)=0的点均在曲线C上
C.曲线C是方程f(x,y)=0的曲线
D.不是方程f(x,y)=0的解,一定不是曲线C上的点[思路探索] 从定义入手,考查定义中的两个条件.D2.下面四组方程表示同一条曲线的一组是( )
A.y2=x 与 y=
B.y=lg x2 与 y=2lg x
C. =1 与 lg (y+1)=lg (x-2)
D.x2+y2=1 与 |y|=解析:选D.主要考虑x与y的范围.D3.方程y= 所表示的曲线是______.答案:以(1,0)为端点的两条射线4.已知曲线C的方程为x= ,说明曲线C是什
么样的曲线,并求该曲线与y轴围成的图形的面积.解:由x= ,得x2+y2=4,又x≥0,
所以方程x= 表示的曲线是以原点为圆心,
2为半径的右半圆,
从而该曲线C与y轴围成的图形是半圆,
其面积S= π·4=2π.
所以所求图形的面积为2π. 在轨迹的基础上将轨迹和条件化为曲线和方程,当说某方程是曲线的方程或某曲线是方程的曲线时就意味着具备上述两个条件,只有具备上述两个方面的要求,才能将曲线的研究化为方程的研究,几何问题化为代数问题,以数助形正是解析几何的思想,本节课正是这一思想的基础. 所有的胜利,与征服自己的胜利比起来,都是微不足道;所有的失败,与失去自己的失败比起来,更是微不足道.第二章 圆锥曲线与方程
课题:2.1曲线与方程
课时:01
课型:新授课
一、教学目标
(一)知识教学点
使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.
(二)能力训练点
通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力.
(三)学科渗透点
通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.
二、教材分析
1.重点:求动点的轨迹方程的常用技巧与方法.
(解决办法:对每种方法用例题加以说明,使学生掌握这种方法.)
2.难点:作相关点法求动点的轨迹方法.
(解决办法:先使学生了解相关点法的思路,再用例题进行讲解.)
教具准备:与教材内容相关的资料。
教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.
三、教学过程
(一)复习引入
大家知道,平面解析几何研究的主要问题是:
(1)根据已知条件,求出表示平面曲线的方程;
(2)通过方程,研究平面曲线的性质.
我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.
(二)几种常见求轨迹方程的方法
1.直接法
由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.
例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;
(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.
对(1)分析:
动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.
解:设动点P(x,y),则有|OP|=2R或|OP|=0.
即x2+y2=4R2或x2+y2=0.
故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.
对(2)分析:
题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:
设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,
其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).
2.定义法
利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.
直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.
分析:
∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.
又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.
故P点到两定点距离之和是定值,可用椭圆定义
写出P点的轨迹方程.
解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.
又P在半径OQ上.∴|PO|+|PQ|=2.
由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.
3.相关点法
若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).
例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.
分析:
P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.
解:设点P(x,y),且设点B(x0,y0)
∵BP∶PA=1∶2,且P为线段AB的内分点.
4.待定系数法
求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.
例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲
曲线方程.
分析:
因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方
ax2-4b2x+a2b2=0
∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.
∴△=16b4-4a4b2=0,即a2=2b.
(以下由学生完成)
由弦长公式得:
即a2b2=4b2-a2.
(三)巩固练习
用十多分钟时间作一个小测验,检查一下教学效果.练习题用一小黑板给出.
1.△ABC一边的两个端点是B(0,6)和C(0,-6),另两边斜率的
2.点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形?
3.求抛物线y2=2px(p>0)上各点与焦点连线的中点的轨迹方程.
答案:
义法)
由中点坐标公式得:
(四)、教学反思
求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.
五、布置作业
1.两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.
2.动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹.
3.已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.
作业答案:
1.以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4
2.∵|PF2|-|PF|=2,且|F1F2|∴P点只能在x轴上且x<1,轨迹是一条射线
六、板书设计
课件44张PPT。2.1 曲线与方程自主学习 新知突破1.结合实例,了解曲线与方程的对应关系.
2.了解求曲线方程的步骤.
3.会求简单曲线的方程.在平面直角坐标系中,到两坐标轴距离相等的点的轨迹方程中.
[问题1] 直线y=-x上任一点M到两坐标轴的距离相等吗?
[提示1] 相等.
[问题2] 到两坐标轴距离相等的点都在直线y=-x上吗?
[提示2] 不是.
[问题3] 到两坐标轴距离相等的点的轨迹方程是什么?
[提示3] y=±x.曲线的方程和方程的曲线的定义点的坐标解坐标的点正确理解曲线与方程的概念
(1)定义中的条件(1)阐明了曲线具有纯粹性(或方程具有完备性),即曲线上的所有点的坐标都适合这个方程而毫无例外;条件(2)阐明了曲线具有完备性(或方程具有纯粹性),即适合条件的点都在曲线上而毫无遗漏.
(2)曲线的方程和方程的曲线是两个不同的概念,曲线的方程反映的是图形所满足的数量关系,而方程的曲线反映的是数量关系所表示的图形,其实质是曲线C的点集{M|p(M)}和方程f(x,y)=0的解集{(x,y)|f(x,y)=0}之间的一一对应关系.曲线的性质完全反映在它的方程上,方程的性质又反映在它的曲线上.求曲线方程的一般步骤正确认识求曲线方程的一般步骤
求曲线方程的五个步骤构成一个有机的整体,每一步都有其特点和重要性.第一步在具体问题中有两种情况.
(1)所研究的问题中已给定了坐标系,此时就在给定的坐标系中求方程即可;(2)原题中没有坐标系,此时必须建立适当的坐标系,通常选取特殊位置的点为原点,相互垂直的直线为坐标轴.
第二步是求方程的重要一环,应仔细分析曲线的几何特征,注意揭示隐含条件,抓住与曲线上任意一点M有关的等量关系,列出几何等式.第三步将几何条件转化为代数方程的过程中常用到一些基本公式,如两点间的距离公式、点到直线的距离公式、直线的斜率公式等.第四步在化简方程的过程中,注意运算的合理性与准确性,尽量避免“失解”和“增解”.对于第五步“证明”,从理论上讲是必要的,但在实际处理中常被省略掉,这在多数情况下是没有问题的,如遇特殊情况,可适当予以说明.1.方程x2+xy=x的曲线是( )
A.一个点 B.一个点和一条直线
C.一条直线 D.两条直线
解析: 方程可化为x(x+y-1)=0,∴x=0或x+y-1=0.因此方程的曲线是两条直线.
答案: D
2.已知曲线C的方程为x2-xy+y-5=0,则下列各点中,在曲线C上的点是( )
A.(-1,2) B.(1,-2)
C.(2,-3) D.(3,6)
解析: 将四个点的坐标一一代入曲线C的方程,若成立,则说明点在曲线上.
答案: A
3.过点A(2,0)的直线与圆x2+y2=16交于两点M,N,则弦MN的中点P的轨迹方程是________.
解析: 由于OP⊥MN且A在圆x2+y2=16内,故P点轨迹是以OA为直径的圆.
答案: (x-1)2+y2=1
4.到两坐标轴距离相等的点满足的方程是x-y=0吗?为什么?
解析: 显然不对(只具备条件(2),而不具备条件(1)).这是因为,到两坐标轴距离相等的点的轨迹是两条直线:l1:x-y=0和l2:x+y=0,直线l1上的点的坐标都是方程x-y=0的解,但直线l2上的点(除原点外)的坐标不是方程x-y=0的解,方程x-y=0只是直线l1的方程,它不是所求轨迹的方程.合作探究 课堂互动曲线与方程的概念 由曲线方程的定义,点是否在曲线上的条件为点的坐标是否为方程的解.解决此类问题时,只要将点的坐标代入到曲线方程中即可.这是曲线与方程最简单的内容,同学们应该理解曲线与方程概念的基础上熟练把握. 讨论方程x2y+y-2x=0的曲线的性质,并描绘其曲线.
思路点拨: 画方程的曲线时,应从对称性、单调性、与坐标轴的交点等几个方面考虑.由方程研究曲线的性质 讨论了曲线的范围、对称性和截距等曲线的变化情况以后,再进行描点画图,只要描出较少的点,就能得到较准确的图形. 在△ABC中,B(-1,0),C(1,0),若BC边上的高为2,求垂心H的轨迹方程.求曲线的方程 求曲线方程的基本步骤是,建系设点、列等式、代换、化简、说明“五步法”,在解题时,根据题意,正确列出方程是关键,还要注意最后一步,如果不符合题意的特殊点要加以说明.这里还要提出一点,一般情况下,求出曲线方程后的证明可以省去. 3.过定点A(a,b)任作互相垂直的两条线l1与l2,且l1与x轴交于M点,l2与y轴交于N点,求线段MN中点P的轨迹方程.◎等腰三角形的顶点是A(4,2),底边一个顶点是B(3,5),求另一个顶点C的轨迹方程,并说明它的轨迹是什么?
【错因】 造成以上错误的原因是没有认真考虑题目要求的几何条件实际上有两个:(1)A,B,C三点要组成一个三角形;(2)A,B,C三点组成的三角形是一个等腰三角形.错解过程中,只是根据条件(2),由|AC|=|AB|求出方程,所得方程保证满足条件(2),而无法保证满足条件(1),解题后没有进行检验,因此造成解题不严密.谢谢观看!