§2.1.2 曲线与方程(2)
学习目标
1. 求曲线的方程;
2. 通过曲线的方程,研究曲线的性质.
学习过程
一、课前准备
(预习教材理P36~ P37,找出疑惑之处)
复习1:已知曲线C的方程为 ,曲线上有点,的坐标是不是 的解?点在曲线上,则=___ .
复习2:曲线(包括直线)与其所对应的方程之间有哪些关系?
二、新课导学
※ 学习探究
引入:
圆心的坐标为,半径为,求此圆的方程.
问题:此圆有一半埋在地下,求其在地表面的部分的方程.
探究:若,如何建立坐标系求的垂直平分线的方程.
※ 典型例题
例1 有一曲线,曲线上的每一点到轴的距离等于这点到的距离的倍,试求曲线的方程.
变式:现有一曲线在轴的下方,曲线上的每一点到轴的距离减去这点到点,的距离的差是,求曲线的方程.
小结:点到轴的距离是 ;
点到轴的距离是 ;
点到直线的距离是 .
例2已知一条直线和它上方的一个点,点到的距离是,一条曲线也在的上方,它上面的每一点到的距离减去到的距离的差都是,建立适当的坐标系,求这条曲线的方程.
※ 动手试试
练1. 有一曲线,曲线上的每一点到轴的距离等于这点到直线的距离的倍,试求曲线的方程.
练2. 曲线上的任意一点到,两点距离的平方和为常数,求曲线的方程.
三、总结提升
※ 学习小结
1. 求曲线的方程;
2. 通过曲线的方程,研究曲线的性质.
※ 知识拓展
圆锥曲线的统一定义:
到定点的距离与到定直线的距离之比为常数的点的轨迹是圆锥曲线.
:椭圆;
: 抛物线;
: 双曲线.
学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1.方程的曲线经过点,,,中的( ).
A.个 B.个 C.个 D.个
2.已知,,动点满足
,则点的轨迹方程是( ).
A. B. C. D.
3.曲线与曲线的交点个数一定是( ).
A.个 B.个 C.个 D.个
4.若定点与动点满足,则点的轨迹方程是 .
5.由方程确定的曲线所围成的图形的面积是 .
课后作业
1.以O为圆心,为半径,上半圆弧的方程是什么?在第二象限的圆弧的方程是什么?
2.已知点的坐标是,过点的直线与轴交于点,过点且与直线垂直的直线与轴交于点.设点是线段的中点,求点的轨迹方程.
第2章 2.1.2
一、选择题(每小题5分,共20分)
1.与点A(-1,0)和点B(1,0)连线的斜率之和为-1的动点P的轨迹方程是( )
A.x2+y2=3 B.x2+2xy=1(x≠±1)
C.y= D.x2+y2=9(x≠0)
解析: 设P(x,y),∵kPA+kPB=-1,
∴+=-1,整理得x2+2xy=1(x≠±1).
答案: B
2.已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足|·|+·=0,则动点P(x,y)的轨迹方程为( )
A.y2=-8x B.y2=8x
C.y2=4x D.y2=-4x
解析: 由|·|+·,得
4×+(4,0)·(x-2,y-0)=0,
∴y2=-8x.
答案: A
3.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于( )
A.π B.4π
C.8π D.9π
解析: 设P(x,y),由|PA|=2|PB|得
=2,
整理得x2-4x+y2=0
即(x-2)2+y2=4.
所以点P的轨迹是以(2,0)为圆心,以2为半径的圆,
故S=4π.
答案: B
4.已知A(-1,0),B(1,0),且·=0,则动点M的轨迹方程是( )
A.x2+y2=1 B.x2+y2=2
C.x2+y2=1(x≠±1) D.x2+y2=2(x≠±)
解析: 设动点M(x,y),则=(-1-x,-y),
=(1-x,-y).
由·=0,得(-1-x)(1-x)+(-y)2=0,
即x2+y2=1.故选A.
答案: A
二、填空题(每小题5分,共10分)
5.已知点A(0,-1),当点B在曲线y=2x2+1上运动时,线段AB的中点M的轨迹方程是________.
解析: 设点B(x0,y0),则y0=2x+1.①
设线段AB中点为M(x,y),则x=,y=,
即x0=2x,y0=2y+1,代入①式,得
2y+1=2·(2x)2+1.
即y=4x2为线段AB中点的轨迹方程.
答案: y=4x2
6.已知动圆P与定圆C:(x+2)2+y2=1相外切,又与定直线l:x=1相切,那么动圆的圆心P的轨迹方程是________.
解析: 设P(x,y),动圆P在直线x=1的左侧,
其半径等于1-x,则|PC|=1-x+1,
即=2-x,
整理得y2=-8x.
答案: y2=-8x
三、解答题(每小题10分,共20分)
7.设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点,若B=2P,且O·A=1.求P点的轨迹方程.
解析: 由B=2P,P(x,y)可得B(0,3y),A,
∴A=.
∵Q与P关于y轴对称,
∴Q(-x,y),且=(-x,y).
由O·A=1得x2+3y2=1(x>0,y>0).
8.过点P1(1,5)作一条直线交x轴于点A,过点P2(2,7)作直线P1A的垂线,交y轴于点B,点M在线段AB上,且BM∶MA=1∶2,求动点M的轨迹方程.
解析: 如图所示,
设过P2的直线方程为y-7=k(x-2)(k≠0),则过P1的直线方程为y-5=-(x-1),
所以A(5k+1,0),B(0,-2k+7).①
设M(x,y),则由BM∶MA=1∶2,
得②
消去k,整理得12x+15y-74=0.
故点M的轨迹方程为12x+15y-74=0.③
?尖子生题库?☆☆☆
9.(10分)已知圆C:x2+(y-3)2=9,过原点作圆C的弦OP,求OP中点Q的轨迹方程.(分别用直接法、定义法、代入法求解)
解析: 方法一(直接法):
如图,因为Q是OP的中点,
所以∠OQC=90°.
设Q(x,y),由题意,得|OQ|2+|QC|2=|OC|2,
即x2+y2+[x2+(y-3)2]=9,
所以x2+2=(去掉原点).
方法二(定义法):
如图所示,因为Q是OP的中点,
所以∠OQC=90°,则Q在以OC为直径的圆上,故Q点的轨迹方程为x2+2=(去掉原点).
方法三(代入法):设P(x1,y1),Q(x,y),
由题意,得,即,
又因为x+(y1-3)2=9,
所以4x2+42=9,
即x2+2=(去掉原点).
课件16张PPT。2.1曲线和方程—— 2.1.2求曲线的方程(二)自学指导看课本P35—P36
掌握求曲线方程的一般步骤(共五步)
10分钟后回答问题(如有疑问可以问老师或同桌小声讨论)
台风移动 示意图引例:在美丽的南沙群岛中,甲岛与乙岛相距8海里,一艘军舰在海上巡逻,巡逻过程中,从军舰上看甲乙两岛,保持视角为直角,你认为军舰巡逻的路线应是怎样的曲线,你能为它写出一个方程吗? 思考:①如果把这条垂直平分线看成是动点运动的轨迹,那么这条垂直平分线上任意一点应该满足怎样的几何条件?
②几何条件能否转化为代数方程?用什么方法进行转化?
③用新方法求得的直线方程,是否已符合要求?为什么?(提示:方程与曲线构成对应关系,必须满足什么条件?) 发散1:已知线段AB长为5,动点P到线段AB两端点的距离相等,求动点P的轨迹方程。思考1.与例1相比,有什么显著的不同点?2.你准备如何建立坐标系,为什么?3.比较所求的轨迹方程有什么区别?
从中得到什么体会?(1)没有确定坐标系时,要求方程首先必须建立坐标系;
(2)同一条曲线,在不同的坐标系中可能有不同的方程;
(3)坐标系选取适当,可以使运算简单,所得的方程也 比较简单。你能说出它的轨迹吗?解题心得求曲线方程的一般步骤:1.建系设点-- 建立适当的直角坐标系,用有序实数对(x,y)表示曲线上任一点M的坐标;(如果题目中已确定坐标系就不必再建立)2.寻找条件-- 写出适合条件P的点M的集合3.列出方程--用坐标表示条件p(M),列出方程f(x,y)=0;4.化简--化方程f(x,y)=0为最简形式;5.证明--证明以化简后的方程的解为坐标的点都是曲线上的点。一般地,求曲线方程的基本步骤为: (1)建立适当的坐标系,并设动点坐标M(x,y);(2)写出适合条件p的点M的集合 P={M|p(M)};(3)用坐标表示条件p(M),列出方程 f(x,y)=0;(4)将方程f(x,y)=0化简;(5)说明以化简后的方程的解为坐标的点都在曲线上.建系、设点限制条件化简验证直接法坐标代换建设现代化思考2例2. 长为2的线段AB的两端点分别在两条互相垂直的直线上滑动,求线段AB的中点M的轨迹方程.x2+y2=1 点差法返回返回小结:
1.知识方面:
2.能力方面:
3.数学思想方法:
4.由本节课的学习得到的体会和想法。作业:
必做题:P72 4、5
在上两题的基础上编题,并写出解题过程。
选做题:过点P(2,4)做两条互相垂直的直线,若
交x轴于A点,交y轴于B点,求线段AB的
中点M的轨迹方程。
再见学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.曲线x2-xy-y2-3x+4y-4=0与x轴的交点坐标是( )
A.(4,0)和(-1,0) B.(4,0)和(-2,0)
C.(4,0)和(1,0) D.(4,0)和(2,0)
【解析】 在曲线x2-xy-y2-3x+4y-4=0中,令y=0,则x2-3x-4=0,∴x=-1或x=4.
∴交点坐标为(-1,0)和(4,0).
【答案】 A
2.方程(x2-4)(y2-4)=0表示的图形是( )
A.两条直线 B.四条直线
C.两个点 D.四个点
【解析】 由(x2-4)(y2-4)=0得(x+2)(x-2)(y+2)·(y-2)=0,所以x+2=0或x-2=0或y+2=0或y-2=0,表示四条直线.
【答案】 B
3.在平面直角坐标系xOy中,若定点A(1,2)与动点P(x,y)满足·=4,则点P的轨迹方程是( )
A.x+y=4 B.2x+y=4
C.x+2y=4 D.x+2y=1
【解析】 由=(x,y),=(1,2)得·=(x,y)·(1,2)=x+2y=4,则x+2y=4即为所求的轨迹方程,故选C.
【答案】 C
4.方程(2x-y+2)·=0表示的曲线是( )
A.一个点与一条直线
B.两个点
C.两条射线或一个圆
D.两个点或一条直线或一个圆
【解析】 原方程等价于x2+y2-1=0,即x2+y2=1,或故选C.
【答案】 C
5.已知方程y=a|x|和y=x+a(a>0)所确定的两条曲线有两个交点,则a的取值范围是( )
A.a>1 B.0<a<1
C.0<a<1或a>1 D.a∈?
【答案】 A
二、填空题
6.“曲线C上的点的坐标都是方程f(x,y)=0的解”是“方程f(x,y)=0是曲线C的方程”的________条件.
【解析】 “方程f(x,y)=0是曲线C的方程 ”?“曲线C上的点的坐标都是方程f(x,y)=0的解”,反之不成立.
【答案】 必要不充分
7.方程·(x+y+1)=0表示的几何图形是________________.
【解析】 由方程得或x-3=0,
即x+y+1=0(x≥3)或x=3.
【答案】 一条射线和一条直线
8.(2018·广东省华南师大附中月考)已知定点F(1,0),动点P在y轴上运动,点M在x轴上,且·=0,延长MP到点N,使得||=||,则点N的轨迹方程是________.
【解析】 由于||=||,则P为MN的中点.设N(x,y),则M(-x,0),P,由·=0,得·=0,所以(-x)·1+·=0,则y2=4x,即点N的轨迹方程是y2=4x.
【答案】 y2=4x
三、解答题
9.如图2-1-1,圆O1与圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1、圆O2的切线PM,PN(M,N分别为切点),使得|PM|=|PN|,试建立适当的坐标系,并求动点P的轨迹方程.
图2-1-1
【解】 以O1O2的中点为原点,O1O2所在直线为x轴,建立如图所示的平面直角坐标系,
得O1(-2,0),O2(2,0).
连结PO1,O1M,PO2,O2N.
由已知|PM|=|PN|,得
|PM|2=2|PN|2,
又在Rt△PO1M中,|PM|2=|PO1|2-|MO1|2,
在Rt△PO2N中,|PN|2=|PO2|2-|NO2|2,
即得|PO1|2-1=2(|PO2|2-1).
设P(x,y),则(x+2)2+y2-1=2[(x-2)2+y2-1],
化简得(x-6)2+y2=33.
因此所求动点P的轨迹方程为(x-6)2+y2=33.
10.△ABC的三边长分别为|AC|=3,|BC|=4,|AB|=5,点P是△ABC内切圆上一点,求|PA|2+|PB|2+|PC|2的最小值与最大值.
【解】 因为|AB|2=|AC|2+|BC|2,所以∠ACB=90°.
以C为原点O,CB,CA所在直线分别为x轴、y轴建立如图所示的平面直角坐标系,由于|AC|=3,|BC|=4,得C(0,0),A(0,3),B(4,0).
设△ABC内切圆的圆心为(r,r),
由△ABC的面积=×3×4=r+2r+r,
得r=1,
于是内切圆的方程为(x-1)2+(y-1)2=1?x2+y2=2x+2y-1,
由(x-1)2≤1?0≤x≤2.
设P(x,y),那么|PA|2+|PB|2+|PC|2=x2+(y-3)2+(x-4)2+y2+x2+y2=3(x2+y2)-8x-6y+25=3(2x+2y-1)-8x-6y+25=22-2x,
所以当x=0时,|PA|2+|PB|2+|PC|2取最大值为22,
当x=2时取最小值为18.
[能力提升]
1.到点A(0,0),B(-3,4)的距离之和为5的轨迹方程是( )
A.y=-x(-3≤x≤0)
B.y=-x(0≤x≤4)
C.y=-x(-3≤x≤4)
D.y=-x(0≤x≤5)
【解析】 注意到|AB|=5,则满足到点A(0,0),B(-3,4)的距离之和为5的点必在线段AB上,因此,方程为y=-x(-3≤x≤0),故选A.
【答案】 A
2.(2018·河南省实验中学月考)已知动点P到定点(1,0)和定直线x=3的距离之和为4,则点P的轨迹方程为( )
A.y2=4x
B.y2=-12(x-4)
C.y2=4x(x≥3)或y2=-12(x-4)(x<3)
D.y2=4x(x≤3)或y2=-12(x-4)(x>3)
【解析】 设P(x,y),由题意得+|x-3|=4.若x≤3,则y2=4x;若x>3,则y2=-12(x-4),故选D.
【答案】 D
3.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于________.
【解析】 设动点P(x,y),
依题意|PA|=2|PB|,
∴=2,
化简得(x-2)2+y2=4,
方程表示半径为2的圆,
因此图形的面积S=π·22=4π.
【答案】 4π
4.过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.
【解】 法一 设点M的坐标为(x,y),
∵M为线段AB的中点,
∴A点的坐标为(2x,0),B点的坐标为(0,2y).
∵l1⊥l2,且l1,l2过点P(2,4),
∴PA⊥PB,即kPA·kPB=-1,
而kPA==(x≠1),
kPB==,
∴·=-1(x≠1),
整理得x+2y-5=0(x≠1).
∵当x=1时,A,B的坐标分别为(2,0),(0,4),
∴线段AB的中点坐标是(1,2),它满足方程x+2y-5=0.
综上所述,点M的轨迹方程是x+2y-5=0.
法二 设点M的坐标为(x,y),则A,B两点的坐标分别是(2x,0),(0,2y),连结PM.
∵l1⊥l2,∴2|PM|=|AB|.
而|PM|=,
|AB|=,
∴2=,
化简得x+2y-5=0,即为所求的点M的轨迹方程.
课件25张PPT。2.1.2 求曲线的方程 “天宫一号”运行要经过两次轨道控制,从入轨时的椭圆轨道进入近圆轨道. 在这里我们必须要知道“天宫一号”运行的轨道(轨迹),那么科学家们是如何进行计算的呢?接下来我们就来探究一下轨迹方程的求法.1.理解坐标法的作用及意义.
2.掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系.(重点、难点)探究 求曲线的方程的步骤 上一节,我们已经学习了曲线的方程与方程的曲线的概念.利用这两个重要概念,就可以借助于坐标系,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(x, y)所满足的方程f(x, y)=0表示曲线,通过研究方程的性质间接地来研究曲线的性质. 我们把借助于坐标系研究几何图形的方法叫做坐标法. 在数学中,用坐标法研究几何图形的知识形成的学科叫做解析几何.因此,解析几何是用代数方法研究几何问题的一门数学学科.问题1:解析几何与坐标法.问题2:平面解析几何研究的两个基本问题.(1)根据已知条件,求出表示平面曲线的方程;(2)通过曲线的方程,研究平面曲线的性质.【例1】设A,B两点的坐标分别是(-1,-1),(3,7),求线段AB的垂直平分线的方程.解析:设点M(x,y)是线段AB的垂直平分
线上的任意一点,也就是点M属于集合由两点间的距离公式,点M适合的条件可表示为上式两边平方,并整理得
x+2y-7=0. ①我们证明方程①是线段AB的垂直平分线的方程.
(1)由求方程的过程可知,垂直平分线上每一点的坐标都是方程①的解;
(2)设点M1的坐标(x1,y1)是方程①的解,即
x1+2y1-7=0,
x1=7-2y1.
点M1到A,B的距离分别是即点M在线段AB的垂直平分线上.
由(1)、(2)可知,方程①是线段AB的垂直平分线的方程. 由上述例子可以看出,求曲线的方程,一般有下面几个步骤:
(1)建系设动点:建立适当的坐标系,用有序实数对(x,y)表示所求曲线上任意一点M的坐标;(求谁设谁)
(2)列几何条件:写出适合条件p的点M的集合P={M|p(M)};
(3)坐标代换:用坐标表示条件p(M),列出方程f(x,y)=0;说明:一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明. 另外,也可以根据情况省略步骤(2),直接列出曲线方程.(4)化简:化方程f(x,y)=0为最简形式;
(5)证明:说明以化简后的方程的解为坐标的点都在曲线上.【例2】已知一条直线l和它上方的一个点F,点F到l的距离是2.一条曲线也在l的上方,它上面的每一点到F的距离减去到l的距离的差都是2,建立适当的坐标系,求这条曲线的方程.分析:在建立坐标系时,一般应当充分
利用已知条件中的定点、定直线等,
这样可以使问题中的几何特征得到更好的表示,从而使曲线方程的形式简单一些.解:如图,取直线l为x轴,过点F且垂直于直线l的直线为y轴, 建立坐标系xOy. 设点M(x,y)是曲线上任意一点,作MB⊥x轴,垂足为B,那么点M属于集合 由两点间的距离公式,点M适合的条件可表示为① 将①式移项后两边平方,得化简得 因为曲线在x轴的上方,所以y>0.虽然原点O的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应是 通过上述两个例题了解坐标法的解题方法,明确建立适当的坐标系是求解曲线方程的基础;同时,根据曲线上的点应适合的条件列出等式,是求曲线方程的重要环节,严格按步骤解题是基本能力.【提升总结】【变式练习】【提升总结】建立适当坐标系的基本原则:(1)定点、定线段常选在坐标轴上;(2)原点有时选在定点;(3)充分利用对称性,坐标轴可选为对称轴.另外注意:坐标系不同虽曲线形状一样其方程却不同;要注意选择几何图形与坐标系的适当相对位置,以简化方程形式.1.圆心在直线x-2y+7=0上的圆C与x轴交于两点A(-2,0),B(-4,0),则圆C的方程为_______.
答案:(x+3)2+(y-2)2=52.在△ABC中,B,C 坐标分别为(-3,0),
(3,0),且三角形周长为16,则点A的轨迹方
程是_______________________________.3.在平面直角坐标系xOy中,点B与点A(-1,1)关
于原点O对称,P是动点,且直线AP与BP的斜率之
积等于- .求动点P的轨迹方程.解析:因为点B与点A(-1,1)关于原点对称,得B点坐标为(1,-1).1.本节学习了一种方法--直接法求曲线方程;2.直接法求曲线方程五个步骤的实质是将产生曲线的几何条件逐步转化为含动点坐标的代数方程的过程.(因此求曲线方程时要注意挖掘题中形成曲线的等量关系);3.求曲线方程时,五个步骤不一定要全部实施.如第二步、第五步;4.注意:(1)建系要适当;
(2)化简变形要考查等价与否(即考察曲线的完备性和纯粹性). 时间是最公开合理的,它从不多给谁一份,勤劳者能叫时间留给串串的果实,懒惰者时间给予他们一头白发,两手空空.