高中数学(人教版A版选修2-1)配套课件2份、教案、学案、同步练习题,补习复习资料:2.2.1 椭圆及其标准方程

文档属性

名称 高中数学(人教版A版选修2-1)配套课件2份、教案、学案、同步练习题,补习复习资料:2.2.1 椭圆及其标准方程
格式 zip
文件大小 2.7MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-08-03 13:37:39

文档简介

§2.2.1椭圆及其标准方程(1)
学习目标
1.从具体情境中抽象出椭圆的模型;
2.掌握椭圆的定义;
3.掌握椭圆的标准方程.
学习过程
一、课前准备
(预习教材理P38~ P40,文P32~ P34找出疑惑之处)
复习1:过两点,的直线方程 .
复习2:方程 表示以 为圆心, 为半径的 .
二、新课导学
※ 学习探究
取一条定长的细绳,
把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .
如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?
思考:移动的笔尖(动点)满足的几何条件是什么?
经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.
新知1: 我们把平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .
反思:若将常数记为,为什么?
当时,其轨迹为     ;
当时,其轨迹为     .
试试:
  已知,,到,两点的距离之和等于8的点的轨迹是 .
小结:应用椭圆的定义注意两点:
①分清动点和定点;
②看是否满足常数.
新知2:焦点在轴上的椭圆的标准方程
  其中
若焦点在轴上,两个焦点坐标 ,
则椭圆的标准方程是        .
※ 典型例题
例1 写出适合下列条件的椭圆的标准方程:
⑴,焦点在轴上;
⑵,焦点在轴上;
⑶.
变式:方程表示焦点在轴上的椭圆,则实数的范围 .

小结:椭圆标准方程中: ; .
例2 已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程 .
变式:椭圆过点 ,,,求它的标准方程.
小结:由椭圆的定义出发,得椭圆标准方程 .
※ 动手试试
练1. 已知的顶点、在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的周长是( ).
A. B.6 C. D.12
练2 .方程表示焦点在轴上的椭圆,求实数的范围.
三、总结提升
※ 学习小结
1. 椭圆的定义:
2. 椭圆的标准方程:
※ 知识拓展
1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空 1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.
学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1.平面内一动点到两定点、距离之和为常数,则点的轨迹为(  ).
A.椭圆 B.圆
C.无轨迹 D.椭圆或线段或无轨迹
2.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是( ).
A. B.
C. D.
3.如果椭圆上一点到焦点的距离等于6,那么点到另一个焦点的距离是( ).
A.4 B.14 C.12 D.8
4.椭圆两焦点间的距离为,且椭圆上某一点到两焦点的距离分别等于和,则椭圆的标准方程
是 .
5.如果点在运动过程中,总满足关系式,点的轨迹是     ,它的方程是       .
课后作业
1. 写出适合下列条件的椭圆的标准方程:
⑴焦点在轴上,焦距等于,并且经过点;
⑵焦点坐标分别为,;
⑶.
2. 椭圆的焦距为,求的值.
§2.2.1 椭圆及其标准方程(2)
学习目标
1.掌握点的轨迹的求法;
2.进一步掌握椭圆的定义及标准方程.
学习过程
一、课前准备
(预习教材理P41~ P42,文P34~ P36找出疑惑之处)
复习1:椭圆上一点到椭圆的左焦点的距离为,则到椭圆右焦点的距离
是 .
复习2:在椭圆的标准方程中,,,则椭
圆的标准方程是 .
二、新课导学
※ 学习探究
问题:圆的圆心和半径分别是什么?
问题:圆上的所有点到 (圆心)的距离都等于 (半径) ;
反之,到点的距离等于的所有点都在
圆 上.
※ 典型例题
例1在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹是什么?
变式: 若点在的延长线上,且,则点的轨迹又是什么?
小结:椭圆与圆的关系:圆上每一点的横(纵)坐标不变,而纵(横)坐标伸长或缩短就可得到椭圆.
例2设点的坐标分别为,.直线相交于点,且它们的斜率之积是,求点的轨迹方程 .
变式:点的坐标是,直线相交于点,且直线的斜率与直线的斜率的商是,点的轨迹是什么?
※ 动手试试
练1.求到定点与到定直线的距离之比为的动点的轨迹方程.
练2.一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方程式,并说明它是什么曲线.
三、总结提升
※ 学习小结
1. ①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式;
②相关点法:寻求点的坐标与中间的关系,然后消去,得到点的轨迹方程.
※ 知识拓展
椭圆的第二定义:
到定点与到定直线的距离的比是常数的点的轨迹.
定点是椭圆的焦点;
定直线是椭圆的准线;
常数是椭圆的离心率.
学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1.若关于的方程所表示的曲线是椭圆,则在( ).
A.第一象限 B.第二象限
C.第三象限 D.第四象限
2.若的个顶点坐标、,的周长为,则顶点C的轨迹方程为( ).
A. B. C. D.
3.设定点 ,,动点满足条件,则点的轨迹是( ).
A.椭圆 B.线段
C.不存在 D.椭圆或线段
4.与轴相切且和半圆内切的动圆圆心的轨迹方程是 .
5. 设为定点,||=,动点满足,则动点的轨迹是 .
课后作业
1.已知三角形的一边长为,周长为,求顶点的轨迹方程.
2.点与定点的距离和它到定直线的距离的比是,求点的轨迹方程式,并说明轨迹是什么图形.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.(2018·潍坊高二检测)如果方程+=1表示焦点在x轴上的椭圆,则实数a的取值范围是(  )
A.(3,+∞)
B.(-∞,-2)
C.(3,+∞)∪(-∞,-2)
D.(3,+∞)∪(-6,-2)
【解析】 由于椭圆的焦点在x轴上,
所以即
解得a>3或-6<a<-2,故选D.
【答案】 D
2.已知椭圆过点P和点Q,则此椭圆的标准方程是(  )
A.+x2=1
B.+y2=1或x2+=1
C.+y2=1
D.以上都不对
【解析】 设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),
则
∴
∴椭圆的方程为x2+=1.
【答案】 A
3.(2018·合肥高二月考)设F1,F2是椭圆+=1的两个焦点,P是椭圆上的点,且|PF1|∶|PF2|=2∶1,则△F1PF2的面积等于(  )
A.5   B.4   
C.3    D.1
【解析】 由椭圆方程,得a=3,b=2,c=,∴|PF1|+|PF2|=2a=6,又|PF1|∶|PF2|=2∶1,∴|PF1|=4,|PF2|=2,由22+42=(2)2,可知△F1PF2是直角三角形,故△F1PF2的面积为|PF1|·|PF2|=×4×2=4,故选B.
【答案】 B
4.椭圆mx2+ny2=-mn(mA.(0,±) B.(±,0)
C.(0,±) D.(±,0)
【解析】 将mx2+ny2=-mn(m-n>0,得焦点在y轴上,即a2=-m,b2=-n,得c2=a2-b2=n-m,故选C.
【答案】 C
5.设P是椭圆+=1上一点,P到两焦点F1,F2的距离之差为2,则△PF1F2是(  )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.等腰直角三角形
【解析】 由椭圆定义知,|PF1|+|PF2|=2a=8,
又|PF1|-|PF2|=2,∴|PF1|=5,|PF2|=3,
又|F1F2|=2c=2=4,
即|F1F2|2+|PF2|2=|PF1|2,
∴△PF1F2为直角三角形.
【答案】 B
二、填空题
6.已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上一点,且⊥.若△PF1F2的面积为9,则b=________.
【解析】 依题意,有
可得4c2+36=4a2,即a2-c2=9,故有b=3.
【答案】 3
7.已知椭圆C经过点A(2,3),且点F(2,0)为其右焦点,则椭圆C的标准方程为________.
【解析】 法一:依题意,可设椭圆C的方程为+=1(a>b>0),且可知左焦点为F′(-2,0).
从而有
解得
又a2=b2+c2,所以b2=12,
故椭圆C的标准方程为+=1.
法二:依题意,可设椭圆C的方程为
+=1(a>b>0),
则
解得b2=12或b2=-3(舍去),
从而a2=16,所以椭圆C的标准方程为+=1.
【答案】 +=1
8.已知P是椭圆+=1上的一动点,F1,F2是椭圆的左、右焦点,延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹方程是________.
【解析】 如图,依题意,|PF1|+|PF2|=2a(a是常数且a>0).
又|PQ|=|PF2|,
∴|PF1|+|PQ|=2a,
即|QF1|=2a.
由题意知,a=2,b=,c===1.
∴|QF1|=4,F1(-1,0),
∴动点Q的轨迹是以F1为圆心,4为半径的圆,
∴动点Q的轨迹方程是(x+1)2+y2=16.
【答案】 (x+1)2+y2=16
三、解答题
9.设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点.设椭圆C上一点到两焦点F1,F2的距离和等于4,写出椭圆C的方程和焦点坐标.
【解】 ∵椭圆上一点到两焦点的距离之和为4,
∴2a=4,a2=4,
∵点是椭圆上的一点,
∴+=1,
∴b2=3,∴c2=1,
∴椭圆C的方程为+=1.
焦点坐标分别为(-1,0),(1,0).
10.求满足下列条件的椭圆的标准方程:
(1)焦点在y轴上,焦距是4,且经过点M(3,2);
(2)c∶a=5∶13,且椭圆上一点到两焦点的距离的和为26.
【解】 (1)由焦距是4,可得c=2,且焦点坐标为(0,-2),(0,2).
由椭圆的定义知,
2a=+=8,
所以a=4,所以b2=a2-c2=16-4=12.又焦点在y轴上,
所以椭圆的标准方程为+=1.
(2)由题意知,2a=26,即a=13,又因为c∶a=5∶13,所以c=5,
所以b2=a2-c2=132-52=144,
因为焦点所在的坐标轴不确定,
所以椭圆的标准方程为+=1或+=1.
[能力提升]
1.“0A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 曲线+=1表示椭圆等价于
得t∈∪.故选B.
【答案】 B
2.已知椭圆+=1的焦点为F1,F2,点P在椭圆上.若线段PF1的中点在y轴上,则|PF1|是|PF2|的(  )
A.7倍 B.5倍
C.4倍 D.3倍
【解析】 由已知F1(-3,0),F2(3,0),
由条件,知P,即|PF2|=.
由椭圆的定义,知|PF1|+|PF2|=2a=4.
所以|PF1|=.
所以|PF1|=7|PF2|.
【答案】 A
3.椭圆+=1的一个焦点为F1,点P在椭圆上.如果线段PF1的中点M在y轴上,那么点M的纵坐标是________.
【解析】 由条件可取F1(-3,0),∵PF1的中点在y轴上,
∴设P(3,y0),由P在椭圆+=1上得y0=±,
∴M的坐标为.
【答案】 ±
4.设椭圆C:+=1(a>b>0)的左右焦点分别为F1,F2,过点F2的直线与椭圆C相交于A,B两点(如图2-2-3),∠F1F2B=,△F1F2A的面积是△F1F2B面积的2倍.若|AB|=,求椭圆C的方程.
图2-2-3
【解】 由题意可得S△F1F2A=2S△F1F2B,
∴|F2A|=2|F2B|,
由椭圆的定义得
|F1B|+|F2B|=|F1A|+|F2A|=2a,
设|F2A|=2|F2B|=2m,
在△F1F2B中,由余弦定理得
(2a-m)2=4c2+m2-2·2c·m·cos?
m=.
在△F1F2A中,同理可得m=,
所以=,解得2a=3c,
可得m=,|AB|=3m==,c=4.
由=,得a=6,b2=20,
所以椭圆C的方程为+=1.

§2.2 椭圆
2.2.1 椭圆及其标准方程
课时目标 1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形.
1.椭圆的概念:平面内与两个定点F1,F2的距离的和等于________(大于|F1F2|)的点的轨迹叫做________.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.当|PF1|+|PF2|=|F1F2|时,轨迹是______________,当|PF1|+|PF2|<|F1F2|时__________轨迹.
2.椭圆的方程:焦点在x轴上的椭圆的标准方程为________________,焦点坐标为________________,焦距为____________;焦点在y轴上的椭圆的标准方程为________________.
一、选择题
1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是(  )
A.椭圆 B.直线
C.圆 D.线段
2.椭圆+=1的左右焦点为F1,F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为(  )
A.32 B.16 C.8 D.4
3.椭圆2x2+3y2=1的焦点坐标是(  )
A. B.(0,±1)
C.(±1,0) D.
4.方程+=1表示焦点在x轴上的椭圆,则实数a的取值范围是(  )
A.(-3,-1) B.(-3,-2)
C.(1,+∞) D.(-3,1)
5.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点,则该椭圆的方程是(  )
A.+=1 B.+=1
C.+=1 D.+=1
6.设F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,且P到两个焦点的距离之差为2,则△PF1F2是(  )
A.钝角三角形 B.锐角三角形
C.斜三角形 D.直角三角形
题 号
1
2
3
4
5
6
答 案
二、填空题
7.椭圆+=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|=________,∠F1PF2的大小为________.
8.P是椭圆+=1上的点,F1和F2是该椭圆的焦点,则k=|PF1|·|PF2|的最大值是______,最小值是______.
9.“神舟六号”载人航天飞船的运行轨道是以地球中心为一个焦点的椭圆,设其近地点距地面n千米,远地点距地面m千米,地球半径为R,那么这个椭圆的焦距为________千米.
三、解答题
10.根据下列条件,求椭圆的标准方程.
(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10;
(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点.
11.已知点A(0,)和圆O1:x2+(y+)2=16,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程.
能力提升
13.
如图△ABC中底边BC=12,其它两边AB和AC上中线的和为30,求此三角形重心G的轨迹方程,并求顶点A的轨迹方程.
1.椭圆的定义中只有当距离之和2a>|F1F2|时轨迹才是椭圆,如果2a=|F1F2|,轨迹是线段F1F2,如果2a<|F1F2|,则不存在轨迹.
2.椭圆的标准方程有两种表达式,但总有a>b>0,因此判断椭圆的焦点所在的坐标轴要看方程中的分母,焦点在分母大的对应轴上.
3.求椭圆的标准方程常用待定系数法,一般是先判断焦点所在的坐标轴进而设出相应的标准方程,然后再计算;如果不能确定焦点的位置,有两种方法求解,一是分类讨论,二是设椭圆方程的一般形式,即mx2+ny2=1 (m,n为不相等的正数).
§2.2 椭 圆
2.2.1 椭圆及其标准方程
知识梳理
1.常数 椭圆 焦点 焦距 线段F1F2 不存在
2.+=1 (a>b>0) F1(-c,0),F2(c,0) 2c +=1 (a>b>0)
作业设计
1.D [∵|MF1|+|MF2|=6=|F1F2|,
∴动点M的轨迹是线段.]
2.B [由椭圆方程知2a=8,
由椭圆的定义知|AF1|+|AF2|=2a=8,
|BF1|+|BF2|=2a=8,所以△ABF2的周长为16.]
3.D
4.B [|a|-1>a+3>0.]
5.D [椭圆的焦点在x轴上,排除A、B,又过点验证即可.]
6.D [由椭圆的定义,知|PF1|+|PF2|=2a=8.
由题可得||PF1|-|PF2||=2,则|PF1|=5或3,|PF2|=3或5.
又|F1F2|=2c=4,∴△PF1F2为直角三角形.]
7.2 120°
解析 
∵|PF1|+|PF2|=2a=6,
∴|PF2|=6-|PF1|=2.
在△F1PF2中,
cos∠F1PF2=

==-,∴∠F1PF2=120°.
8.4 3
解析 设|PF1|=x,则k=x(2a-x),
因a-c≤|PF1|≤a+c,即1≤x≤3.
∴k=-x2+2ax=-x2+4x=-(x-2)2+4,
∴kmax=4,kmin=3.
9.m-n
解析 设a,c分别是椭圆的长半轴长和半焦距,
则,则2c=m-n.
10.解 (1)∵椭圆的焦点在x轴上,
∴设椭圆的标准方程为+=1 (a>b>0).
∵2a=10,∴a=5,又∵c=4.
∴b2=a2-c2=52-42=9.
故所求椭圆的标准方程为+=1.
(2)∵椭圆的焦点在y轴上,
∴设椭圆的标准方程为+=1 (a>b>0).
由椭圆的定义知,2a= +
=+=2,
∴a=.
又∵c=2,∴b2=a2-c2=10-4=6.
故所求椭圆的标准方程为+=1.
11.解 ∵|PM|=|PA|,|PM|+|PO1|=4,
∴|PO1|+|PA|=4,又∵|O1A|=2<4,
∴点P的轨迹是以A、O1为焦点的椭圆,
∴c=,a=2,b=1,
∴动点P的轨迹方程为x2+=1.
13.解 以BC边所在直线为x轴,BC边中点为原点,建立如图所示坐标系,
则B(6,0),C(-6,0),CE、BD为AB、AC边上的中线,
则|BD|+|CE|=30.
由重心性质可知
|GB|+|GC|=(|BD|+|CE|)=20.
∵B、C是两个定点,G点到B、C距离和等于定值20,且20>12,
∴G点的轨迹是椭圆,B、C是椭圆焦点.
∴2c=|BC|=12,c=6,2a=20,a=10,
b2=a2-c2=102-62=64,
故G点的轨迹方程为+=1,
去掉(10,0)、(-10,0)两点.
又设G(x′,y′),A(x,y),则有+=1.
由重心坐标公式知
故A点轨迹方程为+=1.
即+=1,去掉(-30,0)、(30,0)两点.
课件34张PPT。2.2 椭圆
2.2.1 椭圆及其标准方程 通过图片我们看到,在我们所生活的世界中,随处可见椭圆这种图形,而且我们也已经知道了椭圆的大致形状,那么我们能否动手画一个标准的椭圆呢?1.了解椭圆的实际背景,感受椭圆在刻画现实世界和解决实际问题中的作用.(重点)
2.掌握椭圆的定义,会求椭圆的标准方程.(重点、难点)实验操作(1)取一条定长的细绳;
(2)把它的两端都固定在图板的同一点处;
(3)套上铅笔,拉紧绳子,移动笔尖,这时笔尖(动点)画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两点处套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是椭圆.探究点1 椭圆的定义根据刚才的实验请同学们回答下面几个题:
1.在画椭圆的过程中,细绳的两端的位置是固定的
还是运动的?
2.在画椭圆的过程中,绳子的长度变了没有?说明
了什么?
3.在画椭圆的过程中,绳子长度与两定点距离大小
有怎样的关系? 思考: 结合实验,请同学们思考:椭圆是怎样定义的?椭圆定义:
我们把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.
两个定点F1,F2叫做椭圆的焦点.
两焦点间的距离叫做椭圆的焦距.|MF1|+ |MF2|>|F1F2| 椭圆|MF1|+ |MF2|=|F1F2| 线段|MF1|+ |MF2|<|F1F2| 不存在思考:在平面内动点M到两个定点F1,F2的距离之和等于定值2a的点的轨迹是否一定为椭圆?【提升总结】探究点2 椭圆的标准方程根据椭圆的定义如何求椭圆的方程呢?  思考:求曲线的方程的基本步骤是什么呢?(1)建系设点;(2)写出点集;(3)列出方程;(4)化简方程;(5)检验.第一步: 如何建立适当的坐标系呢? 想一想:圆的最简单的标准方程,是以圆的两条相互垂直的对称轴为坐标轴,椭圆是否可以采用类似的方法呢?方案一 设M(x, y)是椭圆上任意一点,椭圆的两个焦点分别为F1和F2,椭圆的焦距为2c(c>0),M与F1和F2 的距离的和等于2a(2a>2c>0) .请同学们自己完成剩下的步骤,求出椭圆的方程.解:以焦点F1,F2的所在直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系xOy(如图). 设M(x, y )是椭圆上任意一点,椭圆的焦距为2c(c>0),M与F1和F2的距离的和等于正常数2a (2a>2c) ,则F1,F2的坐标分别是(?c,0)、(c,0) .xF1F2MOy由椭圆的定义得因为移项,再平方整理得两边再平方,得它表示焦点在y轴上的椭圆.它表示焦点在x轴上的椭圆.12yoFFMx(1)椭圆的标准方程的形式:左边是两个分式
的平方和,右边是1;
(2)椭圆的标准方程中,x2与y2的分母哪一个大,
则焦点在哪一个轴上;
(3)椭圆的标准方程中a,b,c满足a2=b2+c2.椭圆的标准方程有哪些特征呢?【提升总结】例1 已知椭圆的两个焦点坐标分别是(-2,0),
(2,0), 并且经过点 .求它的标准方程.解:因为椭圆的焦点在x轴上,所以设
它的标准方程为由椭圆的定义知因此, 所求椭圆的标准方程为能用其他方法求它的方程吗?另解:因为椭圆的焦点在x轴上,所以设它
的标准方程为:①②联立①②,因此, 所求椭圆的标准方程为:又∵焦点的坐标为【变式练习】已知椭圆经过两点 和 ,求椭圆的
标准方程.解:设椭圆的标准方程为则有 解得 所以,所求椭圆的标准方程为 .xyODMP例2 如图,在圆 上任取一点P,过点P
作x轴的垂线段PD,D为垂足.当点P在圆上运动
时,线段PD的中点M的轨迹是什么?为什么?解:设点M的坐标为(x,y),点P的坐标为(x0,y0),则因为点P(x0,y0)在圆..①把点x0=x,y0=2y代入方程①,得即所以点M的轨迹是一个椭圆.从例2你能发现椭圆与圆之间的关系吗?例3 如图,设点A,B的坐标分别是(-5,0)和(5,0),
直线AM,BM相交于点M,且它们的斜率之积是 ,求
点M的轨迹方程.yAxMBO解:设点M的坐标(x,y),因为点A的坐标是(-5,0),所以,直线AM的斜率为同理,直线BM的斜率由已知有化简,得点M的轨迹方程为1.已知F1,F2是椭圆 的两个焦点,
过F1的直线交椭圆于M,N两点,则三角形
MNF2的周长为( )
A.10 B.20
C.30 D.40BD2.椭圆的长轴是短轴的3倍,且过点A(3,0),则椭圆的标准方程是_________.
答案:3.已知一个运油车上的贮油罐横截面的外轮廓线是一个椭圆,它的焦距为2.4 m,外轮廓线
上的点到两个焦点的距离和为3 m,
求这个椭圆的标准方程.解:以两个焦点F1,F2所在的直线为x轴,以线段F1F2的垂直平分线为y轴,建立直角坐标系,则这个椭圆的标准方程为根据题意知,2a=3,2c=2.4,即a=1.5,c=1.2.所以b2=a2-c2=1.52-1.22=0.81,因此椭圆的标准方程为定 义图
形方 程焦 点F(±c,0)F(0,±c)a,b,c
的关系{P||PF1|+|PF2|=2a,2a>|F1F2|} 每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨.课题:椭圆及其标准方程
课时:02
课型:新授课
教学目标:
1.知识与技能目标
理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.
2.过程与方法目标:培养学生观察、实验、探究、验证与交流等数学活动能力。
3.情感、态度与价值观目标
通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线。
4.能力目标
(1).培养想象与归纳能力,培养学生的辩证思维能力,培养学生实际动手能力,综合利用已有的知识能力.
(2).数学活动能力:培养学生观察、实验、探究、验证与交流等数学活动能力.
(3).创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.
教学过程:
(1)预习与引入过程
当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起探究P41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm长,两端各结一个套),教师准备无弹性细绳子一条(约60cm,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?
〖板书〗2.1.1椭圆及其标准方程.
(2)新课讲授过程
(i)由上述探究过程容易得到椭圆的定义.
把平面内与两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆(ellipse).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为时,椭圆即为点集.
(ii)椭圆标准方程的推导过程
提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.
无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理.
设参量的意义:第一、便于写出椭圆的标准方程;第二、的关系有明显的几何意义.
类比:写出焦点在轴上,中心在原点的椭圆的标准方程.
(iii)例题讲解与引申
例1 :
已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程.
分析:由椭圆的标准方程的定义及给出的条件,容易求出.引导学生用其他方法来解.
另解:设椭圆的标准方程为,因点在椭圆上,
则.
例2:如图,在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹是什么?
分析:点在圆上运动,由点移动引起点的运动,则称点是点的伴随点,因点为线段的中点,则点的坐标可由点来表示,从而能求点的轨迹方程.
引申:设定点,是椭圆上动点,求线段中点的轨迹方程.
解法剖析:①(代入法求伴随轨迹)设,;②(点与伴随点的关系)∵为线段的中点,∴;③(代入已知轨迹求出伴随轨迹),∵,∴点的轨迹方程为;④伴随轨迹表示的范围.
例3:
如图,设,的坐标分别为,.直线,相交于点,且它们的斜率之积为,求点的轨迹方程.
分析:若设点,则直线,的斜率就可以用含的式子表示,由于直线,的斜率之积是,因此,可以求出之间的关系式,即得到点的轨迹方程.
解法剖析:设点,则,;
代入点的集合有,化简即可得点的轨迹方程.
引申:如图,设△的两个顶点,,顶点在移动,且,且,试求动点的轨迹方程.
引申目的有两点:①让学生明白题目涉及问题的一般情形;②当值在变化时,线段的角色也是从椭圆的长轴→圆的直径→椭圆的短轴.
练习:第48页1、2、3、4
作业:第49页2、3
教学反思:轨迹问题中的去除点问题,注重几何条件的应用。
课件46张PPT。2.2 椭 圆
2.2.1 椭圆及其标准方程自主学习 新知突破1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程.
2.了解椭圆的标准方程的推导及简化过程.
3.掌握椭圆的定义、标准方程及几何图形.取一条定长的无弹性的细绳,把它的两端分别固定在图板的两点F1,F2处,套上铅笔,拉紧绳子,移动笔尖.
[问题1] 若绳长等于两点F1,F2的距离,画出的轨迹是什么曲线?
[提示1] 线段F1F2.
[问题2] 若绳长L大于两点F1,F2的距离,移动笔尖(动点M)满足的几何条件是什么?动点的轨迹是什么?
[提示2] |MF1|+|MF2|=L.
动点的轨迹是椭圆.椭圆的定义距离之和等于常数定点距离|MF1|+|MF2|=2a对椭圆定义的理解
(1)集合的语言描述为P={M||MF1|+|MF2|=2a,2a>|F1F2|}.
(2)平面内到两定点F1,F2的距离的和为常数,即|MF1|+|MF2|=2a,
当2a>|F1F2|时,轨迹是椭圆,
当2a=|F1F2|时,轨迹是一条线段F1F2,
当2a<|F1F2|时,轨迹不存在.椭圆的标准方程(-c,0),(c,0) (0,-c),(0,c) c2=a2-b2 椭圆标准方程中注意的几个问题
(1)a2=c2+b2,a>b>0,a最大,其中a,b,c构成如图的直角三角形,我们把它称为“特征三角形”.
(2)方程中的两个参数a与b,确定椭圆的形状和大小;焦点F1,F2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型.
(3)方程Ax2+By2=C表示椭圆的充要条件是:
ABC≠0,且A,B,C同号,A≠B.
A>B时,焦点在y轴上,A|PF1|+|PF2|=2a=10.
答案: D答案: A答案: (-6,-2)∪(3,+∞)4.求适合下列条件的椭圆的方程.
(1)焦点在x轴上,且经过点(2,0)和点(0,1);
(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到它较近的一个焦点的距离等于2.合作探究 课堂互动求椭圆的标准方程思路点拨: 求椭圆标准方程的关注点
确定椭圆的方程包括“定位”和“定量”两个方面.
(1)“定位”是指确定与坐标系的相对位置,在中心为原点的前提下,确定焦点位于哪条坐标轴上,以判断方程的形式;
(2)“定量”是指确定a2,b2的具体数值,常根据条件列方程求解. 用待定系数法求椭圆的标准方程的解题步骤:  如图,在圆C:(x+1)2+y2=25内有一点A(1,0).Q为圆C上一点,AQ的垂直平分线与C,Q的连线交于点M,求点M的轨迹方程.利用椭圆的定义求轨迹方程
思路点拨: 首先观察图形,结合平面几何的性质得到点M到线段AQ两端的距离相等,然后由A,C这两个定点联想到椭圆的定义,得到点M到这两个定点A,C的距离的和等于圆C的半径5,从而可知所求点M的轨迹是椭圆. 由题意知点M在线段CQ上,
从而有|CQ|=|MQ|+|MC|.
又点M在AQ的垂直平分线上,
则|MA|=|MQ|,∴|MA|+|MC|=|CQ|=5.  求解有关椭圆的轨迹问题,一般有如下两种思路:
(1)首先通过题干中给出的等量关系列出等式,然后化简等式得到对应的轨迹方程;
(2)首先分析几何图形所揭示的几何关系,看所求动点轨迹是否符合椭圆的定义,若符合椭圆的定义,则用待定系数法求解即可. 2.已知圆A:(x+3)2+y2=100,圆A内一定点B(3,0),圆P过B点且与圆A内切,求圆心P的轨迹方程.思路点拨: 由余弦定理和椭圆定义分别建立|PF1|,|PF2|的方程,求出|PF1|,|PF2|后,再求△PF1F2的面积.椭圆定义的应用   椭圆上一点P与椭圆的两焦点F1,F2构成的△F1PF2称为焦点三角形,解关于椭圆中的焦点三角形问题时要充分利用椭圆的定义、三角形中的正弦定理、余弦定理等知识. 【错解一】 ∵2c=6,∴c=3,由椭圆的标准方程知a2=25,
b2=m2,a2=b2+c2,得25=m2+9,
∴m2=16,又∵m>0,
故实数m的值为4.【错因】 当椭圆的焦点位置不确定时,求椭圆的标准方程需要进行分类讨论,而错解的原因是忽略了对椭圆的焦点位置的讨论.谢谢观看!