§2.2.2 椭圆及其简单几何性质(1)
学习目标
1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;
2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图.
学习过程
一、课前准备
(预习教材理P43~ P46,文P37~ P40找出疑惑之处)
复习1: 椭圆上一点到左焦点的距离是,那么它到右焦点的距离是 .
复习2:方程表示焦点在轴上的椭圆,则的取值范围是 .
二、新课导学
※ 学习探究
问题1:椭圆的标准方程,它有哪些几何性质呢?
图形:
范围:: :
对称性:椭圆关于 轴、 轴和 都对称;
顶点:( ),( ),( ),( );
长轴,其长为 ;短轴,其长为 ;
离心率:刻画椭圆 程度.
椭圆的焦距与长轴长的比称为离心率,
记,且.
试试:椭圆的几何性质呢?
图形:
范围:: :
对称性:椭圆关于 轴、 轴和 都对称;
顶点:( ),( ),( ),( );
长轴,其长为 ;短轴,其长为 ;
离心率: = .
反思:或的大小能刻画椭圆的扁平程度吗?
※ 典型例题
例1 求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标.
变式:若椭圆是呢?
小结:①先化为标准方程,找出 ,求出;
②注意焦点所在坐标轴.
例2 点与定点的距离和它到直线的距离的比是常数,求点的轨迹.
小结:到定点的距离与到定直线的距离的比为常数(小于1)的点的轨迹是椭圆 .
※ 动手试试
练1.求适合下列条件的椭圆的标准方程:
⑴焦点在轴上,,;
⑵焦点在轴上,,;
⑶经过点,;
⑷长轴长等到于,离心率等于.
三、总结提升
※ 学习小结
1 .椭圆的几何性质:
图形、范围、对称性、顶点、长轴、短轴、离心率;
2 .理解椭圆的离心率.
※ 知识拓展
(数学与生活)已知水平地面上有一篮球,在斜平行光线的照射下,其阴影为一椭圆,且篮球与地面的接触点是椭圆的焦点.
学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1.若椭圆的离心率,则的值是( ).
A. B.或 C. D.或
2.若椭圆经过原点,且焦点分别为,,则其离心率为( ).
A. B. C. D.
3.短轴长为,离心率的椭圆两焦点为,过作直线交椭圆于两点,则的周长为( ).
A. B. C. D.
4.已知点是椭圆上的一点,且以点及焦点为顶点的三角形的面积等于,则点的坐标是 .
5.某椭圆中心在原点,焦点在轴上,若长轴长为,且两个焦点恰好将长轴三等分,则此椭圆的方程是 .
课后作业
1.比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?
⑴与 ;
⑵与 .
2.求适合下列条件的椭圆的标准方程:
⑴经过点,;
⑵长轴长是短轴长的倍,且经过点;
⑶焦距是,离心率等于.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.(2018·人大附中月考)焦点在x轴上,短轴长为8,离心率为的椭圆的标准方程是( )
A.+=1 B.+=1
C.+=1 D.+=1
【解析】 由题意知2b=8,得b=4,所以b2=a2-c2=16,又e==,解得c=3,a=5,又焦点在x轴上,故椭圆的标准方程为+=1,故选C.
【答案】 C
2.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为( )
A. B.
C. D.
【解析】 由题意知a=2c,∴e===.
【答案】 A
3.曲线+=1与+=1(0A.有相等的焦距,相同的焦点
B.有相等的焦距,不同的焦点
C.有不等的焦距,不同的焦点
D.以上都不对
【解析】 曲线+=1的焦距为2c=8,而曲线+=1(0<k<9)表示的椭圆的焦距也是8,但由于焦点所在的坐标轴不同,故选B.
【答案】 B
4.已知O是坐标原点,F是椭圆+=1的一个焦点,过F且与x轴垂直的直线与椭圆交于M,N两点,则cos∠MON的值为( )
A. B.-
C. D.-
【解析】 由题意,a2=4,b2=3,
故c===1.
不妨设M(1,y0),N(1,-y0),所以+=1,
解得y0=±,
所以|MN|=3,|OM|=|ON|==.
由余弦定理知cos∠MON===-.
【答案】 B
5.如图2-2-4,直线l:x-2y+2=0过椭圆的左焦点F1和一个顶点B,该椭圆的离心率为( )
图2-2-4
A. B.
C. D.
【答案】 D
二、填空题
6.已知长方形ABCD,AB=4,BC=3,则以A,B为焦点,且过C、D的椭圆的离心率为________.
【解析】 如图,AB=2c=4,∵点C在椭圆上,∴CB+CA=2a=3+5=8,∴e===.
【答案】
7.设AB是椭圆+=1的不垂直于对称轴的弦,M为AB的中点,O为坐标原点,则kAB·kOM=________.
【解析】 设A(x1,y1),B(x2,y2),则中点坐标M,得kAB=,
kOM=,kAB·kOM=,
b2x+a2y=a2b2,b2x+a2y=a2b2,
得b2(x-x)+a2(y-y)=0,即=-.
【答案】 -
8.已知P(m,n)是椭圆x2+=1上的一个动点,则m2+n2的取值范围是________.
【解析】 因为P(m,n)是椭圆x2+=1上的一个动点,所以m2+=1,即n2=2-2m2,所以m2+n2=2-m2,又-1≤m≤1,所以1≤2-m2≤2,所以1≤m2+n2≤2.
【答案】 [1,2]
三、解答题
9.(1)求与椭圆+=1有相同的焦点,且离心率为的椭圆的标准方程;
(2)已知椭圆的两个焦点间的距离为8,两个顶点坐标分别是(-6,0),(6,0),求焦点在x轴上的椭圆的标准方程.
【解】 (1)∵c==,
∴所求椭圆的焦点为(-,0),(,0).
设所求椭圆的方程为+=1(a>b>0).
∵e==,c=,
∴a=5,b2=a2-c2=20,
∴所求椭圆的方程为+=1.
(2)因为椭圆的焦点在x轴上,
所以设它的标准方程为+=1(a>b>0),
∵2c=8,∴c=4,
又a=6,∴b2=a2-c2=20.
∴椭圆的方程为+=1.
10.设椭圆+=1(a>b>0)与x轴交于点A,以OA为边作等腰三角形OAP,其顶点P在椭圆上,且∠OPA=120°,求椭圆的离心率.
【解】 不妨设A(a,0),点P在第一象限内,由题意知,点P的横坐标是,设P,由点P在椭圆上,得+=1,y2=b2,即P,又∠OPA=120°,所以∠POA=30°,故tan∠POA==,所以a=3b,所以e====.
[能力提升]
1.(2018·福州高二期末)设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是( )
A. B.-1
C.2- D.
【解析】 设椭圆的方程为+=1(a>b>0),
由题意得|PF2|==2c,
即=2c,
得离心率e=-1,故选B.
【答案】 B
2.“m=3”是“椭圆+=1的离心率为”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 椭圆+=1的离心率为,
当0当m>4时,=,得m=,
即“m=3”是“椭圆+=1的离心率为”的充分不必要条件.
【答案】 A
3.(2018·济南历城高二期末)已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是________.
【解析】 由=2,得|AO|=2|FO|(O为坐标原点),即a=2c,
则离心率e=.
【答案】
4.已知点A,B分别是椭圆+=1的左、右顶点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,且M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.
【解】 (1)由已知可得A(-6,0),B(6,0),F(4,0),
设点P的坐标是(x,y),
则=(x+6,y),=(x-4,y).
由已知得
则2x2+9x-18=0,解得x=或x=-6.
由于y>0,所以只能取x=,于是y=.
所以点P的坐标是.
(2)直线AP的方程是x-y+6=0.
设点M的坐标是(m,0),
则M到直线AP的距离是,又B(6,0),
于是=|m-6|,
又-6≤m≤6,解得m=2,
设椭圆上的点(x,y)到点M的距离为d,有
d2=(x-2)2+y2=x2-4x+4+20-x2
=+15,
由于-6≤x≤6,所以当x=时,d取最小值为.
2.2.2 椭圆的简单几何性质
课时目标 1.掌握椭圆的范围、对称性、顶点、离心率等几何性质.2.明确标准方程中a,b以及c,e的几何意义,a、b、c、e之间的相互关系.3.能利用椭圆的几何性质解决椭圆的简单问题.
1.椭圆的简单几何性质
焦点的
位置
焦点在x轴上
焦点在y轴上
图形
标准
方程
范围
顶点
轴长
短轴长=____,长轴长=____
焦点
焦距
对称性
对称轴是______,对称中心是______
离心率
2.直线与椭圆
直线y=kx+b与椭圆+=1 (a>b>0)的位置关系:
直线与椭圆相切?有______组实数解,即Δ______0.直线与椭圆相交?有______组实数解,即Δ______0,直线与椭圆相离?________实数解,即Δ______0.
一、选择题
1.椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是( )
A.5,3, B.10,6,
C.5,3, D.10,6,
2.焦点在x轴上,长、短半轴长之和为10,焦距为4,则椭圆的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
3.若焦点在x轴上的椭圆+=1的离心率为,则m等于( )
A. B. C. D.
4.如图所示,A、B、C分别
为椭圆+=1 (a>b>0)的顶点与焦点,若∠ABC=90°,则该椭圆的离心率为( )
A. B.1-
C.-1 D.
5.若直线mx+ny=4与圆O:x2+y2=4没有交点,则过点P(m,n)的直线与椭圆+=1的交点个数为( )
A.至多一个 B.2
C.1 D.0
A.(0,1) B.
C. D.
题 号
1
2
3
4
5
6
答 案
二、填空题
7.已知椭圆的中心在原点,焦点在x轴上,离心率为,且过点P(-5,4),则椭圆的方程为______________.
8.直线x+2y-2=0经过椭圆+=1 (a>b>0)的一个焦点和一个顶点,则该椭圆的离心率等于______.
9.椭圆E:+=1内有一点P(2,1),则经过P并且以P为中点的弦所在直线方程为____________.
三、解答题
10.
如图,已知P是椭圆+=1 (a>b>0)上且位于第一象限的一点,F是椭圆的右焦点,O是椭圆中心,B是椭圆的上顶点,H是直线x=- (c是椭圆的半焦距)与x轴的交点,若PF⊥OF,HB∥OP,试求椭圆的离心率e.
11.已知椭圆4x2+y2=1及直线y=x+m.
(1)当直线和椭圆有公共点时,求实数m的取值范围;
(2)求被椭圆截得的最长弦所在的直线方程.
能力提升
12.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )
A. B. C. D.
13.已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F1(-,0),且右顶点为D(2,0).设点A的坐标是.
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程.
1.椭圆的范围实质就是椭圆上点的横坐标和纵坐标的取值范围,在求解一些存在性和判断性问题中有着重要的应用.
2.椭圆既是一个轴对称图形,又是一个中心对称图形.椭圆的对称性在解决直线与椭圆的位置关系以及一些有关面积的计算问题时,往往能起到化繁为简的作用.
3.椭圆的离心率是反映椭圆的扁平程度的一个量,通过解方程或不等式可以求得离心率的值或范围.
4.在与椭圆有关的求轨迹方程的问题中要注意挖掘几何中的等量关系.
2.2.2 椭圆的简单几何性质
知识梳理
1.
焦点的
位置
焦点在x轴上
焦点在y轴上
图形
标准
方程
+=1
+=1
范围
-a≤x≤a,-b≤y≤b
-b≤x≤b,-a≤y≤a
顶点
(±a,0),(0,±b)
(±b,0),(0,±a)
轴长
短轴长=2b,长轴长=2a
焦点
(±c,0)
(0,±c)
焦距
2c=2
对称性
对称轴是坐标轴,对称中心是原点
离心率
e=,02.一 = 二 > 没有 <
作业设计
1.B [先将椭圆方程化为标准形式:+=1,
其中b=3,a=5,c=4.]
2.A 3.B
4.A [由(a+c)2=a2+2b2+c2,
∵b2=a2-c2,∴c2+ac-a2=0,
∵e=,∴e2+e-1=0,∴e=.]
5.B [∵>2,∴<4.
∴点P(m,n)在椭圆+=1的内部,
∴过点P(m,n)的直线与椭圆+=1有两个交点.]
∴M点轨迹方程为x2+y2=c2,其中F1F2为直径,
由题意知椭圆上的点在圆x2+y2=c2外部,
设点P为椭圆上任意一点,则|OP|>c恒成立,
由椭圆性质知|OP|≥b,其中b为椭圆短半轴长,
∴b>c,∴c22c2,
∴2<,∴e=<.又∵07.+=1
解析 设椭圆的方程为+=1 (a>b>0),
将点(-5,4)代入得+=1,
又离心率e==,即e2===,
解之得a2=45,b2=36,故椭圆的方程为+=1.
8.
解析 由题意知椭圆的焦点在x轴上,又直线x+2y-2=0与x轴、y轴的交点分别为(2,0)、(0,1),它们分别是椭圆的焦点与顶点,所以b=1,c=2,从而a=,e==.
9.x+2y-4=0
解析 设弦的两个端点为M(x1,y1),N(x2,y2),
则,
两式相减,得+=0.
又x1+x2=4,y1+y2=2,kMN=,
∴kMN=-,由点斜式可得弦所在直线的方程为
y=-(x-2)+1,即x+2y-4=0.
10.解 依题意知H,F(c,0),B(0,b).
设P(xP,yP),且xP=c,代入到椭圆的方程,
得yP=.∴P.
∵HB∥OP,∴kHB=kOP,即=.∴ab=c2.
∴e==,∴e2==e-2-1.
∴e4+e2-1=0.∵011.解 (1)由得5x2+2mx+m2-1=0.
因为直线与椭圆有公共点,
所以Δ=4m2-20(m2-1)≥0.
解得-≤m≤.
(2)设直线与椭圆交于A(x1,y1)、B(x2,y2),
由(1)知,5x2+2mx+m2-1=0,
由根与系数的关系得x1+x2=-,
x1x2=(m2-1).
设弦长为d,且y1-y2=(x1+m)-(x2+m)=x1-x2,
∴d==
=
=
=.
∴当m=0时,d最大,此时直线方程为y=x.
12.B [由题意知2b=a+c,又b2=a2-c2,
∴4(a2-c2)=a2+c2+2ac.
∴3a2-2ac-5c2=0.∴5c2+2ac-3a2=0.
∴5e2+2e-3=0.∴e=或e=-1(舍去).]
13.解 (1)∵a=2,c=,∴b==1.
∴椭圆的标准方程为+y2=1.
(2)设P(x0,y0),M(x,y),由中点坐标公式,
得 ∴
又∵+y=1,∴+2=1
即为中点M的轨迹方程.
课件17张PPT。2.2.2 椭圆的简单几何性质
第1课时 椭圆的简单几何性质 10cm8cm长方形 如何将一个长、宽分别为10cm,8cm的矩形纸板制作成一个最大的椭圆呢?1.熟悉椭圆的几何性质(范围,对称性,顶点,
离心率).(重点)
2.理解离心率的大小对椭圆形状的影响.(重点)
3.通过数形结合、观察分析、归纳出椭圆的几何
性质,进一步体会数形结合的思想.(难点)探究点1 椭圆的简单几何性质1.范围:
-a≤x≤a, -b≤y≤b
故椭圆落在x=±a,y= ± b组成的矩形中.椭圆的标准方程是什么?x2.椭圆的对称性:在方程中,把 换成 ,
方程不变,说明:
椭圆关于 轴对称;
椭圆关于 轴对称;
椭圆关于 点对称;
坐标轴是椭圆的对称轴,
原点是椭圆的对称中心,又叫做椭圆的中心.x-xxy(0,0)y -yx -x
y -y Q(-x,y)P(x,y)M(x,-y)N(-x,-y)想一想:椭圆的对称轴一定是x轴和y轴吗?对称中
心一定是原点吗? oxy说明椭圆的对称性不随位置的改变而改变.椭圆顶点坐标为:3.顶点与长短轴:椭圆与它的对称轴的四个
交点——椭圆的顶点.回顾:焦点坐标(±c,0) oxyA2(a, 0)A1(-a, 0)B2(0,b)B1(0,-b)(a>b>0)长轴:线段A1A2;长轴长 |A1A2|=2a.短轴:线段B1B2;短轴长 |B1B2|=2b.焦 距 |F1F2|=2c.①a和b分别叫做椭圆的长半轴长和短半轴长;③焦点必在长轴上.②a2=b2+c2,B2(0,b)B1(0,-b)bac|B2F2|=a;注意4.离心率:因为a>c>0,所以0 < e <1.椭圆的焦距与长轴长的比 叫做椭圆的离心率,用e离心率越大,椭圆越扁
离心率越小,椭圆越圆Oxyab●c表示,即(c,0)、(?c,0)(0,c)、(0,?c)(?a,0)、(0,?b)|x|? a |y|? b|x|? b |y|? a关于x轴、y轴、原点对称(?b,0)、(0,?a)【提升总结】焦点在y轴上的椭圆的几何性质又如何呢?xA2B2F2yOA1B1F1yOA1B1xA2B2F1F2( 0 < e < 1 )例1求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标.解:把已知方程化成标准方程于是椭圆的长轴长和短轴长分别是四个顶点坐标分别为两个焦点坐标分别为基本量:a,b,c,e(共四个量).
基本点:四个顶点、两个焦点(共六个点).离心率【提升总结】 我们的新课讲到这里,前面提出的问题就可以解决了!8cm10cmOx 3.求下列各椭圆的长轴长和短轴长,离心率,焦点坐标,顶点坐标.(1)【解析】
故可得长轴长为8,短轴长为4,离心率为
焦点坐标为 ,顶点坐标(±4,0),(0,±2).
(2)已知方程化为标准方程为 故可得长轴长
为18,短轴长为6,离心率为
焦点坐标为 ,顶点坐标(0,±9),(±3,0).(2) xyOA2(a, 0)A1(-a, 0)B2(0,b)B1(0,-b)一个框,四个点,
注意光滑和圆扁,
莫忘对称要体现.1.(2014·广东高考)用曲线的图形和方程来研究椭圆的简单几何性质 追赶时间的人,生活就会宠爱他;放弃时间的人,生活就会冷落他.课题: 椭圆的简单几何性质
课时:04
课型:新授课
教学目标:
1.知识与技能目标
了解用方程的方法研究图形的对称性;了解椭圆的第二定义,准线及焦半径的概念
理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;
2.过程与方法目标
引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.
3.情感、态度与价值观目标
在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新.
教学过程:
复习和预习:
知道对椭圆的标准方程的讨论来研究椭圆的几何性质.
提问:研究曲线的几何特征有什么意义?从哪些方面来研究?
通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.
(2)椭圆的简单几何性质
①范围:由椭圆的标准方程可得,,进一步得:,同理可得:,即椭圆位于直线和所围成的矩形框图里;
②对称性:由以代,以代和代,且以代这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以轴和轴为对称轴,原点为对称中心;
③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;
④离心率: 椭圆的焦距与长轴长的比叫做椭圆的离心率(),; .
(3)例题讲解与引申、扩展
例4: 求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标.
分析:由椭圆的方程化为标准方程,容易求出.引导学生用椭圆的长轴、短轴、离心率、焦点和顶点的定义即可求相关量.
扩展:已知椭圆的离心率为,求的值.
解法剖析:依题意,,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在轴上,即时,有,∴,得;②当焦点在轴上,即时,有,∴.
例5: 如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上,由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点.已知,,.建立适当的坐标系,求截口所在椭圆的方程.
解法剖析:建立适当的直角坐标系,设椭圆的标准方程为,算出的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.
引申:如图所示, “神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心为一个焦点的椭圆,近地点距地面,远地点距地面,已知地球的半径.建立适当的直角坐标系,求出椭圆的轨迹方程.
例6:如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程.
分析:若设点,则,到直线:的距离,则容易得点的轨迹方程.
引申:(用《几何画板》探究)若点与定点的距离和它到定直线:的距离比是常数,则点的轨迹方程是椭圆.其中定点是焦点,定直线:相应于的准线;由椭圆的对称性,另一焦点,相应于的准线:.
课堂练习:第49页6、7、8
课学小结:
课后作业:第50页1、2、3
课件46张PPT。2.2 椭 圆
2.2.2 椭圆的简单几何性质
第一课时 椭圆的简单几何性质自主学习 新知突破1.通过对椭圆标准方程的研究,掌握椭圆的简单几何性质.
2.了解椭圆的离心率对椭圆扁平程度的影响.北京国家大剧院拥有许多世界之最,不但有世界上最大的椭圆穹顶外观,它的内装,还运用了世界上最先进的自动舞台和声学设计,不需要任何电子扩音设备,在音乐厅的每一个角落,都能听到最完美的自然音.那么,是什么让它如此神奇呢?这其中,它的椭圆设计就是一个特别之处,音乐在椭圆的一个焦点处传出,便可以通过独特的设计传递到每个角落.椭圆的简单几何性质-a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a (-c,0) (c,0) (0,-c) (0,c) 2c 2c (-a,0) (a,0) (0,-b) (0,b) (0,-a) (0,a) (-b,0) (b,0) 2a 2b 2a 2b (0,1) (0,1) 关于椭圆的顶点应注意的问题
(1)椭圆有四个顶点、两个焦点共六个特殊点,研究椭圆时一定要注意这六个特殊点的位置.
(2)明确a,b的几何意义,由a2-b2=c2,可以得到“已知椭圆的四个顶点,求焦点”的几何作法,只要以短轴的一个端点为圆心,以a为半径作弧,交长轴于两点,这两点就是焦点.
(3)短轴端点、中心、焦点构成一直角三角形,且三边长为a,b,c.
(4)解题时,一定要注意题目给的是长轴长2a,还是长半轴长a,很多同学由于审题不认真,一字之差导致错误.椭圆的离心率e越大(0于是6<m<10,再由(m-2)-(10-m)=22,得m=8.
答案: A3.椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(4,0),(0,2),则此椭圆的方程是____________.合作探究 课堂互动 已知椭圆的方程为4x2+9y2=36,
(1)求椭圆的顶点坐标、焦点坐标、长轴长、短轴长以及离心率;
(2)结合椭圆的对称性,运用描点法画出这个椭圆.椭圆的简单几何性质 已知椭圆的方程讨论其性质时,应先把椭圆的方程化成标准形式,找准a与b,才能正确地写出其相关性质.在求顶点坐标和焦点坐标时,应注意焦点所在的坐标轴. 利用椭圆的几何性质求标准方程 (1)利用椭圆的几何性质求标准方程通常采用待定系数法.
(2)根据已知条件求椭圆的标准方程的思路是“选标准,定参数”,一般步骤是:①求出a2,b2的值;②确定焦点所在的坐标轴;③写出标准方程. 思路点拨: 先求出直线AB的方程,根据点到直线的距离公式以及b2=a2-c2得到关于e的一元二次方程解出e即可.求椭圆的离心率 3.如图所示,椭圆的中心在原点,焦点F1,F2在x轴上,A,B是椭圆的顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,求此椭圆的离心率.【错因】 仅根据椭圆的离心率不能确定焦点的位置,而上述解法默认为焦点在x轴上,而没有对焦点的位置进行讨论.谢谢观看!