首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标A版
必修5
第三章 不等式
3.1 不等关系与不等式
2019秋数学人教A版必修5(课件34张 训练):3.1 不等式关系与不等式(2份)
文档属性
名称
2019秋数学人教A版必修5(课件34张 训练):3.1 不等式关系与不等式(2份)
格式
zip
文件大小
5.8MB
资源类型
教案
版本资源
人教新课标A版
科目
数学
更新时间
2019-08-05 07:54:20
点击下载
文档简介
A级 基础巩固
一、选择题
1.下列命题正确的是( )
A.某人月收入x不高于2 000元可表示为“x<2 000”
B.小明的身高x,小华的身高y,则小明比小华矮表示为“x>y”
C.某变量x至少是a可表示为“x≥a”
D.某变量y不超过a可表示为“y≥a”
解析:对于A,x应满足x≤2 000,故A错; 对于B,x,y应满足x<y,故B不正确;C正确;对于D,y与a的关系可表示为y≤a,故D错误.
答案:C
2.若x∈R,y∈R,则( )
A.x2+y2>2xy-1 B.x2+y2=2xy-1
C.x2+y2<2xy-1 D.x2+y2≤2xy-1
解析:因为x2+y2-(2xy-1)=x2-2xy+y2+1=(x-y)2+1>0,所以x2+y2>2xy-1.
答案:A
3.设a>1>b>-1,则下列不等式中恒成立的是( )
A.a>b2 B.>
C.< D.a2>2b
解析:对于A,因为-1
1,所以a>b2,故A正确;对于B,若a=2,b=,此时满足a>1>b>-1,但<,故B错误;对于C,若a=2,b=-,此时满足a>1>b>-1,但>,故C错误;对于D,若a=,b=,此时满足a>1>b>-1,但a2<2b,故D错误.
答案:A
4.已知三个正实数a,b,c满足b
A. B.
C. D.
解析:依条件有
从而有b-2a
即有又a>0,b>0,
所以<<.
答案:A
5.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则谁先到教室( )
A.甲 B.乙
C.同时到达 D.无法判断
解析:设路程为s,步行速度v1,跑步速度v2,则
甲用时t1=+,
乙用时t2=,
t1-t2=+-
=s
=·s
=>0,
所以甲用时多.
答案:B
二、填空题
6.给出下列命题:①a>b?ac2>bc2;②a>|b|?a2>b2;③a>b?a3>b3;④|a|>b?a2>b2.其中正确的命题序号是________.
解析:①当c2=0时不成立.
②一定成立.
③当a>b时,a3-b3=(a-b)(a2+ab+b2)=(a-b)·>0成立.
④当b<0时,不一定成立.如:|2|>-3,但22<(-3)2.
答案:②③
7.若a>b>c,则+________(填“>”“=”或“<”).
解析:因为a>b>c,所以a-b>0,b-c>0,a-c>0,
所以+-
=
=
=>0,
所以+>.
答案:>
8.某校高一年级的213名同学去科技馆参观,租用了某公交公司的几辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满,则题目中所包含的不等关系为________.
解析:设租车x辆,根据题意得:
答案:
三、解答题
9.(1)已知x≤1,比较3x3与3x2-x+1的大小;
(2)若-1<a<b<0,试比较,,a2,b2的大小.
解:(1)3x3-(3x2-x+1)=(3x3-3x2)+(x-1)=3x2(x-1)+(x-1)=(x-1)·(3x2+1).
因为x≤1,所以x-1≤0,又3x2+1>0,
所以(x-1)(3x2+1)≤0,
所以3x3≤3x2-x+1.
(2)因为-1<a<b<0,所以-a>-b>0,
所以a2>b2>0.
因为a<b<0,所以a·<b·<0,
即0>>,
所以a2>b2>>.
10.已知x>y>0,试比较x3-2y3与xy2-2x2y的大小.
解:由题意,知(x3-2y3)-(xy2-2x2y)=x3-xy2+2x2y-2y3=x(x2-y2)+2y(x2-y2)=(x2-y2)(x+2y)=(x-y)(x+y)(x+2y).
因为x>y>0,所以x-y>0,x+y>0,x+2y>0,
所以(x3-2y3)-(xy2-2x2y)>0,
即x3-2y3>xy2-2x2y.
B级 能力提升
1.(2016·全国卷Ⅰ)若a>b>1,0<c<1,则( )
A.ac<bc B.abc<bac
C.alogbc<blogac D.logac<logbc
解析:用特殊值法,令a=3,b=2,c=得3>2,选项A错误,3×2>2×3,选项B错误,3log2<2log32,选项C正确,log3>log2,选项D错误.
答案:C
2.已知实数x,y满足-4≤x-y≤-1,-1≤4x-y≤5,则9x-3y的取值范围是________.
解析:设9x-3y=a(x-y)+b(4x-y)=(a+4b)x-(a+b)y,
所以解得
所以9x-3y=(x-y)+2(4x-y),
因为-1≤4x-y≤5,
所以-2≤2(4x-y)≤10,
又-4≤x-y≤-1,
所以-6≤9x-3y≤9.
答案:[-6,9]
3.已知a>0,b>0,且m,n∈N*,1≤m≤n,比较an+bn与an-mbm+ambn-m的大小.
解:an+bn-(an-mbm+ambn-m)=an-m·(am-bm)+bn-m(bm-am)=(am-bm)·(an-m-bn-m).
因为a>0,b>0,m,n∈N*,1≤m≤n,
当a=b>0时,an+bn-(an-mbm+ambn-m)=0;
当a>b>0时,am>bm,an-m≥bn-m,
所以an+bn-(an-mbm+ambn-m)≥0;
当b>a>0时,am<bm,an-m≤bn-m,
所以an+bn-(an-mbm+ambn-m)≥0.
综上所述,an+bn≥an-mbm+ambn-m.
课件34张PPT。第三章 不等式
点击下载
同课章节目录
第一章解三角形
1.1 正弦定理和余弦定理
1.2 应用举例
探究与发现 解三角形的进一步讨论
第二章 数列
2.1 数列的概念与简单表示法
2.2 等差数列
2.3 等差数列的前n项和
2.4 等比数列
2.5 等比数列的前n项和
第三章 不等式
3.1 不等关系与不等式
3.2 一元二次不等式及其解法
3.3 二元一次不等式(组)与简单的线性
3.4 基本不等式
点击下载
VIP下载