课件11张PPT。1.2.2基本初等函数的导数公式 及导数的运算法则我们今后可以直接使用的基本初等函数的导数公式导数的运算法则:法则1:两个函数的和(差)的导数,等于这两个函数的导数的
和(差),即:法则2:两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数 ,即:法则3:两个函数的商的导数,等于第一个函数的导数乘第二个函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函数的平方.即:例2.求函数y=x3-2x+3的导数.例4:求下列函数的导数:答案:例5.某运动物体自始点起经过t秒后的距离s满足s=
-4t3+16t2.
(1)此物体什么时刻在始点?
(2)什么时刻它的速度为零?解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得:
t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在
始点. 即t3-12t2+32t=0,
解得:t1=0,t2=4,t3=8,故在t=0,t=4和t=8秒时物体运动的速度为零.例6.已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均
相切,求l的方程.解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2).对于 则与S1相切于P点的切线方程为y-x12
=2x1(x-x1),即y=2x1x-x12.①对于 与S2相切于Q点的切线方程为y+
(x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.②因为两切线重合,若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4.所以所求l的方程为:y=0或y=4x-4. 作业:
作业: P93 2、3、4、5§1.2.2基本初等函数的导数公式及导数的运算法则
教学目标:
1.熟练掌握基本初等函数的导数公式;
2.掌握导数的四则运算法则;
3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
教学重点:基本初等函数的导数公式、导数的四则运算法则
教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用
教学过程:
一.创设情景
函数
导数
四种常见函数、、、的导数公式及应用
二.新课讲授
(一)基本初等函数的导数公式表
函数
导数
(二)导数的运算法则
导数运算法则
1.
2.
3.
(2)推论:
(常数与函数的积的导数,等于常数乘函数的导数)
三.典例分析
例1.假设某国家在20年期间的年均通货膨胀率为,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价.假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?
解:根据基本初等函数导数公式表,有
所以(元/年)
因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.
例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.
(1)
(2)y =;
(3)y =x · sin x · ln x;
(4)y =;
(5)y =.
(6)y =(2 x2-5 x +1)ex
(7) y =
【点评】
① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.
例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为时所需费用(单位:元)为
求净化到下列纯净度时,所需净化费用的瞬时变化率:(1) (2)
解:净化费用的瞬时变化率就是净化费用函数的导数.
因为,所以,纯净度为时,费用的瞬时变化率是52.84元/吨.
因为,所以,纯净度为时,费用的瞬时变化率是1321元/吨.
函数在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,.它表示纯净度为左右时净化费用的瞬时变化率,大约是纯净度为左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.
四.课堂练习
1.课本P92练习
2.已知曲线C:y =3 x 4-2 x3-9 x2+4,求曲线C上横坐标为1的点的切线方程;
(y =-12 x +8)
五.回顾总结
(1)基本初等函数的导数公式表
(2)导数的运算法则
六.布置作业
§1.2.2复合函数的求导法则
教学目标 理解并掌握复合函数的求导法则.
教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积.
教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确.
一.创设情景
(一)基本初等函数的导数公式表
函数
导数
(二)导数的运算法则
导数运算法则
1.
2.
3.
(2)推论:
(常数与函数的积的导数,等于常数乘函数的导数)
二.新课讲授
复合函数的概念 一般地,对于两个函数和,如果通过变量,可以表示成的函数,那么称这个函数为函数和的复合函数,记作。
复合函数的导数 复合函数的导数和函数和的导数间的关系为,即对的导数等于对的导数与对的导数的乘积.
若,则
三.典例分析
例1求y =sin(tan x2)的导数.
【点评】
求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果.
例2求y =的导数.
【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理.
例3求y =sin4x +cos 4x的导数.
【解法一】y =sin 4x +cos 4x=(sin2x +cos2x)2-2sin2cos2x=1-sin22 x
=1-(1-cos 4 x)=+cos 4 x.y′=-sin 4 x.
【解法二】y′=(sin 4 x)′+(cos 4 x)′=4 sin 3 x(sin x)′+4 cos 3x (cos x)′=4 sin 3 x cos x +4 cos 3 x (-sin x)=4 sin x cos x (sin 2 x -cos 2 x)=-2 sin 2 x cos 2 x=-sin 4 x
【点评】
解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步.
例4曲线y =x(x +1)(2-x)有两条平行于直线y =x的切线,求此二切线之间的距离.
【解】y =-x 3 +x 2 +2 x y′=-3 x 2+2 x +2
令y′=1即3 x2-2 x -1=0,解得 x =-或x =1.
于是切点为P(1,2),Q(-,-),
过点P的切线方程为,y -2=x -1即 x -y +1=0.
显然两切线间的距离等于点Q 到此切线的距离,故所求距离为=.
四.课堂练习
1.求下列函数的导数 (1) y =sinx3+sin33x;(2);(3)
2.求的导数
五.回顾总结
六.布置作业
1.2.2 基本初等函数的导数公式及导数的运算法则(二)
/
[学习目标]
1.理解函数的和、差、积、商的求导法则.
2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.
3.能运用复合函数的求导法则进行复合函数的求导.
[知识链接]
前面我们已经学习了几个常用函数的导数和基本初等函数的导数公式,这样做起题来比用导数的定义显得格外轻松.我们已经会求f(x)=5和g(x)=1.05x等基本初等函数的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢?
答 利用导数的运算法则.
[预习导引]
1.导数运算法则
法则
语言叙述
[f(x)±g(x)]′=f′(x)±g′(x)
两个函数的和(或差)的导数,等于这两个函数的导数的和(或差)
[f(x)·g(x)]′=f′(x)·g(x)+f(x)·g′(x)
两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数
′=(g(x)≠0)
两个函数的商的导数,等于分子的导数乘上分母减去分子乘上分母的导数,再除以分母的平方
2.复合函数的求导法则
复合函数
的概念
一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为y=f(u)和u=g(x)的复合函数,记作y=f(g(x))
复合函数的求导法则
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′,即y对x的导数等于y对u的导数与u对x的导数的乘积
/
要点一 利用导数的运算法则求函数的导数
例1 求下列函数的导数:
(1) y=x3-2x+3;
(2)y=(x2+1)(x-1);
(3)y=3x-lg x.
解 (1)y′=(x3)′-(2x)′+3′=3x2-2.
(2)∵y=(x2+1)(x-1)=x3-x2+x-1,
∴y′=(x3)′-(x2)′+x′-1′=3x2-2x+1.
(3)函数y=3x-lg x是函数f(x)=3x与函数g(x)=lg x的差.由导数公式表分别得出f′(x)=3xln 3,g′(x)=,利用函数差的求导法则可得
(3x-lg x)′=f′(x)-g′(x)=3xln 3-.
规律方法 本题是基本函数和(差)的求导问题,求导过程要紧扣求导法则,联系基本函数求导法则,对于不具备求导法则结构形式的可先进行适当的恒等变形转化为较易求导的结构形式再求导数.
跟踪演练1 求下列函数的导数:
(1)y=5-4x3;(2)y=3x2+xcos x;
(3)y=ex·ln x;(4)y=lg x-.
解 (1)y′=-12x2;
(2)y′=(3x2+xcos x)′=6x+cos x-xsin x;
(3)y′=+ex·ln x;
(4)y′=+.
要点二 求复合函数的导数
例2 求下列函数的导数:
(1)y=ln(x+2);
(2)y=(1+sin x)2;
解 (1)y=ln u,u=x+2
∴y′x=y′u·u′x=(ln u)′·(x+2)′=·1=.
(2)y=u2,u=1+sin x,
∴yx′=yu′·ux′=(u2)′·(1+sin x)′
=2u·cos x=2cos x(1+sin x).
规律方法 应用复合函数的求导法则求导,应注意以下几个方面:
(1)中间变量的选取应是基本函数结构.
(2)正确分析函数的复合层次,并要弄清每一步是哪个变量对哪个变量的求导.
(3)一般是从最外层开始,由外及里,一层层地求导.
(4)善于把一部分表达式作为一个整体.
(5)最后要把中间变量换成自变量的函数.熟练后,就不必再写中间步骤.
跟踪演练2 (1)y=e2x+1;
(2)y=(-2)2.
解 (1)y=eu,u=2x+1,
∴y′x=y′u·u′x=(eu)′·(2x+1)′=2eu=2e2x+1.
(2)法一 ∵y=(-2)2=x-4+4,
∴y′=x′-(4)′+4′
=1-4×x-=1-.
法二 令u=-2,
则yx′=yu′·ux′=2(-2)·(-2)′=
2(-2)=1-.
要点三 导数的应用
例3 求过点(1,-1)与曲线f(x)=x3-2x相切的直线方程.
解 设P(x0,y0)为切点,则切线斜率为
k=f′(x0)=3x-2
故切线方程为y-y0=(3x-2)(x-x0) ①
∵(x0,y0)在曲线上,∴y0=x-2x0 ②
又∵(1,-1)在切线上,
∴将②式和(1,-1)代入①式得
-1-(x-2x0)=(3x-2)(1-x0).
解得x0=1或x0=-.
故所求的切线方程为y+1=x-1或y+1=-(x-1).
即x-y-2=0或5x+4y-1=0.
规律方法 (1,-1)虽然在曲线上,但是经过该点的切线不一定只有一条,即该点有可能是切点,也可能是切线与曲线的交点,解题时注意不要失解.
跟踪演练3 已知某运动着的物体的运动方程为s(t)=+2t2(位移单位:m,时间单位:s),求t=3 s时物体的瞬时速度.
解 ∵s(t)=+2t2=-+2t2=-+2t2,
∴s′(t)=-+2·+4t,
∴s′(3)=-++12=,
即物体在t=3 s时的瞬时速度为 m/s.
/
1.下列结论不正确的是( )
A.若y=3,则y′=0
B.若f(x)=3x+1,则f′(1)=3
C.若y=-+x,则y′=-+1
D.若y=sin x+cos x,则y′=cos x+sin x
答案 D
解析 利用求导公式和导数的加、减运算法则求解.D项,∵y=sin x+cos x,
∴y′=(sin x)′+(cos x)′=cos x-sin x.
2.函数y=的导数是( )
A. B.
C. D.
答案 C
解析 y′=′=
=.
3.曲线y=在点(-1,-1)处的切线方程为( )
A.y=2x+1 B.y=2x-1
C.y=-2x-3 D.y=-2x+2
答案 A
解析 ∵y′==,
∴k=y′|x=-1==2,
∴切线方程为y+1=2(x+1),即y=2x+1.
4.直线y=x+b是曲线y=ln x(x>0)的一条切线,则实数b=________.
答案 ln 2-1
解析 设切点为(x0,y0),
∵ y′=,∴=,
∴x0=2,∴y0=ln 2,ln 2=×2+b,∴b=ln 2-1.
/
求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要进行适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.
/
一、基础达标
1.设y=-2exsin x,则y′等于( )
A.-2excos x B.-2exsin x
C.2exsin x D.-2ex(sin x+cos x)
答案 D
解析 y′=-2(exsin x+excos x)=-2ex(sin x+cos x).
2.当函数y=(a>0)在x=x0处的导数为0时,那么x0=( )
A.a B.±a
C.-a D.a2
答案 B
解析 y′=′==,
由x-a2=0得x0=±a.
3.设曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a等于( )
A.2 B.
C.- D.-2
答案 D
解析 ∵y==1+,
∴y′=-.∴y′|x=3=-.
∴-a=2,即a=-2.
4.已知曲线y=x3在点P处的切线斜率为k,则当k=3时的P点坐标为( )
A.(-2,-8) B.(-1,-1)或(1,1)
C.(2,8) D.
答案 B
解析 y′=3x2,∵k=3,∴3x2=3,∴x=±1,
则P点坐标为(-1,-1)或(1,1).
5.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为________.
答案 4
解析 依题意得f′(x)=g′(x)+2x,
f′(1)=g′(1)+2=4.
6.已知f(x)=x3+3xf′(0),则f′(1)=________.
答案 1
解析 由于f′(0)是一常数,所以f′(x)=x2+3f′(0),
令x=0,则f′(0)=0,
∴f′(1)=12+3f′(0)=1.
7.求下列函数的导数:
(1)y=(2x2+3)(3x-1);
(2)y=x-sin cos .
解 (1)法一 y′=(2x2+3)′(3x-1)+(2x2+3)(3x-1)′=4x(3x-1)+3(2x2+3)=18x2-4x+9.
法二 ∵y=(2x2+3)(3x-1)=6x3-2x2+9x-3,
∴y′=(6x3-2x2+9x-3)′=18x2-4x+9.
(2)∵y=x-sin cos =x-sin x,
∴y′=x′-′=1-cos x.
二、能力提升
8.曲线y=-在点M处的切线的斜率为( )
A.- B.
C.- D.
答案 B
解析 y′==,故y′|=,
∴曲线在点M处的切线的斜率为.
9.已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是( )
A.[0,) B.[,)
C.(,] D.[,π)
答案 D
解析 y′=-=-,设t=ex∈(0,+∞),则y′=-=-,∵t+≥2,∴y′∈[-1,0),α∈[,π).
10.(2013·江西)设函数f(x)在(0,+∞)内可导,且f(ex)=x+ex,则f′(1)=________.
答案 2
解析 令t=ex,则x=ln t,所以函数为f(t)=ln t+t,即f(x)=ln x+x,所以f′(x)=+1,即f′(1)=+1=2.
11.求过点(2,0)且与曲线y=x3相切的直线方程.
解 点(2,0)不在曲线y=x3上,可令切点坐标为(x0,x).由题意,所求直线方程的斜率k==y′|x=x0=3x,即=3x,解得x0=0或x0=3.
当x0=0时,得切点坐标是(0,0),斜率k=0,则所求直线方程是y=0;
当x0=3时,得切点坐标是(3,27),斜率k=27,
则所求直线方程是y-27=27(x-3),
即27x-y-54=0.
综上,所求的直线方程为y=0或27x-y-54=0.
12.已知曲线f(x)=x3-3x,过点A(0,16)作曲线f(x)的切线,求曲线的切线方程.
解 设切点为(x0,y0),
则由导数定义得切线的斜率k=f′(x0)=3x-3,
∴切线方程为y=(3x-3)x+16,
又切点(x0,y0)在切线上,
∴y0=3(x-1)x0+16,
即x-3x0=3(x-1)x0+16,
解得x0=-2,
∴切线方程为9x-y+16=0.
三、探究与创新
13.设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求此定值.
(1)解 由7x-4y-12=0得y=x-3.
当x=2时,y=,∴f(2)=, ①
又f′(x)=a+,
∴f′(2)=, ②
由①,②得
解之得.
故f(x)=x-.
(2)证明 设P(x0,y0)为曲线上任一点,由y′=1+知
曲线在点P(x0,y0)处的切线方程为
y-y0=(x-x0),
即y-=(x-x0).
令x=0得y=-,从而得切线与直线x=0的交点坐标为.
令y=x得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).
所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为=6.
故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.
课件47张PPT。1.2.2 基本初等函数的导数公式
及导数的运算法则(二)自主学习 新知突破1.能利用导数的四则运算法则求解导函数.
2.能利用复合函数的求导法则进行复合函数的求导.[问题2] 试求F(x)=f(x)+g(x)的导数.[问题3] F(x)的导数与f(x),g(x)的导数有何关系?
[提示3] F(x)的导数等于f(x),g(x)导数和.设两个函数分别为f(x)和g(x)导数的运算法则 f′(x)+g′(x)f′(x)-g′(x)f′(x)g(x)+f(x)g′(x)1.应用导数的运算法则应注意的问题
(1)对于教材中给出的导数的运算法则,不要求根据导数定义进行推导,只要能熟练运用运算法则求简单函数的导数即可.
(2)对于和差的导数运算法则,此法则可推广到任意有限个可导函数的和或差,即[f1(x)±f2(x)±…±fn(x)]′=f′1(x)± f′2(x) ±…±f′n(x).复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=__________.即y对x的导数等于____________ ____________________.复合函数的导数yu′·ux′y对u的导数与u对x的导数的乘积2.复合函数求导应注意的问题
(1)简单复合函数均是由基本初等函数复合而成的,对于常用的基本函数要熟悉.
(2)求复合函数的导数,关键要分清函数的复合关系,特别要注意中间变量.
(3)要注意复合函数的求导法则与四则运算求导法则的综合运用.1.已知函数f(x)=cos x+ln x,则f′(1)的值为( )
A.1-sin 1 B.1+sin 1
C.sin 1-1 D.-sin 1
答案: A
2.函数y=sin x·cos x的导数是( )
A.y′=cos2x+sin2x B.y′=cos2x-sin2x
C.y′=2cos x·sin x D.y′=cos x·sin x
解析: y′=(sin x·cos x)′=cos x·cos x+sin x·(-sin x)=cos2x-sin2x.
答案: B
3.若f(x)=(2x+a)2,且f′(2)=20,则a=________.
解析: f(x)=4x2+4ax+a2,
∵f′(x)=8x+4a,
∴f′(2)=16+4a=20,∴a=1.
答案: 1
(3)方法一:∵y=(4x-x)(ex+1)=4xex+4x-xex-x,
∴y′=(4xex+4x-xex-x)′=(4x)′ex+4x(ex)′+(4x)′-[x′ex+x(ex)′]-x′=ex4xln 4+4xex+4xln 4-ex-xex-1=ex(4xln 4+4x-1-x)+4xln 4-1.
方法二:y′=(4x-x)′(ex+1)+(4x-x)(ex+1)′=(4xln 4-1)·(ex+1)+(4x-x)ex=ex(4xln 4+4x-1-x)+4xln 4-1.合作探究 课堂互动 导数运算法则的应用 根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. 解决函数的求导问题,应先分析所给函数的结构特点,选择正确的公式和法则,对较为复杂的求导运算,如综合了和、差、积、商几种运算的函数,在求导之前应先将函数化简,然后求导,以减少运算量.
解析: (1)y′=(x2)′·ex+x2·(ex)′
=2x·ex+x2·ex
=(2x+x2)·ex.
(2)令u=2x,y=cos u,
则yx′=yu′·ux′=(cos u)′·(2x)′
=-2sin 2x.复合函数的导数 写出下列各函数的中间变量,并利用复合函数的求导法则,求出函数的导数.
(2)引入中间变量u=φ(x)=2 008x+8,
则函数y=cos(2 008x+8)是由函数f(u)=cos u与u=φ(x)=2 008x+8复合而成的,查导数公式表可得
f′(u)=-sin u,φ′(x)=2 008.
根据复合函数求导法则可得
[cos(2 008x+8)]′=f′(u)φ′(x)=(-sin u)·2 008
=-2 008sin u=-2 008sin( 2 008x+8).
(3)引入中间变量u=φ(x)=1-3x,
则函数y=21-3x是由函数f(u)=2u与u=φ(x)=1-3x复合而成的,
查导数公式表得f′(u)=2uln 2,φ′(x)=-3,
根据复合函数求导法则可得
(21-3x)′=f′(u)φ′(x)=2uln 2·(-3)=-3×2uln 2
=-3×21-3xln 2. 复合函数求导的注意事项
(1)求复合函数的导数,关键在于分析清楚函数的复合关系,选好中间变量.
(2)要分清每一步的求导是哪个变量对哪个变量的求导,不能混淆,如y=cos 2x可由y=cos u和u=2x复合而成,第一步为y对u求导,第二步为u对x求导.
(3)复合函数求导后,要把中间变量换成自变量的函数.
(4)开始学习求复合函数的导数要一步步写清楚,熟练后中间步骤可省略.
特别提醒:只要求会求形如f(ax+b)的复合函数的导数.求曲线的切线方程 已知函数f(x)=x3+x-16.
(1)求曲线y=f(x)在点(2,-6)处的切线方程;
(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.
[思路点拨] 利用导数的几何意义解决切线问题的关键是判断已知点是否是切点.若已知点是切点,则该点处的切线斜率就是该点处的导数;如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. 3.已知抛物线y=ax2+bx+c通过点(1,1),且在点(2,-1)处与直线y=x-3相切,求a,b,c的值.
解析: 因为y=ax2+bx+c过点(1,1),
所以a+b+c=1.
y′=2ax+b,曲线过点(2,-1)的切线的斜率为4a+b=1.谢谢观看!