课件8张PPT。2、求最大(最小)值应用题的一般方法:(1)分析实际问题中各量之间的关系,把实际问题化为数学问题,建立函数关系式,这是关键一步;(2)确定函数定义域,并求出极值点;(3)比较各极值与定义域端点函数的大小, 结合实际,确定最值或最值点.1、实际应用问题的表现形式,常常不是以纯数学模式反映出来:首先,通过审题,认识问题的背景,抽象出问题的实质;
其次,建立相应的数学模型, 将应用问题转化为数学问题,再解.3.4生活中的优化问题解:设箱底边长为x,则箱高h=(60-x)/2.箱子容积
V(x)=x2h=(60x2-x3)/2(0
A(x, 4x-x2).从而|AB|= 4x-x2,|BC|=2(2-x).故矩形ABCD的面积
为:S(x)=|AB||BC|=2x3-12x2+16x(0 不等式的证明及解法中有广泛的作用。(2)在实际问题中如果可以判定可导函数在定义域内
存在最大(小)值,而且函数在这个定义域内又只有
唯一的极值点,那么立即可以判定,这个极值点的函
数值就是最大(小)值,这一点在解决实际问题时很
有用.课堂小结1.4 生活中的优化问题(一)
教学目标:掌握利用导数求函数最大值和最小值的方法.会求一些实际问题(一般指单峰函数)的最大值和最小值.-------面积、容积最大(最小)问题
教学重点:利用导数求函数最值的方法.用导数方法求函数最值的方法步骤
教学难点:对最值的理解及与极值概念的区别与联系.求一些实际问题的最大值与最小值
教学过程:
例1在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?
解:设箱底边长为xcm,则箱高
箱子容积(0<x<60).
解得 (不合题意,舍去) 并求得
由题意知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值.
答:当x=40 cm时,箱子容积最大,最大容积是16 000cm3.
在实际问题中,有时会遇到函数在区间内只有一个点使 f '(x)=0 的情形,若函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.
这里所说的也适用于开区间或者无穷区间.
求最大(最小)值应用题的一般方法:
⑴ 分析问题中各量之间的关系,把实际问题化为数学问题,建立函数关系式;
⑵ 确定函数的定义域,并求出极值点;
⑶ 比较各极值与定义域端点函数的大小, 结合实际,确定最值或最值点.
练习
1.把长为60 cm的铁丝围成矩形,长、宽、高各为多少时,面积最大?
2.把长为100 cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之和最小?
变为:围成一个正方形与一个圆,怎样分法,能使面积之和最小?
练习2.用总长为14.8 m的钢条制作一个长方形容器的框架,如果所制作容器的底面的一边比另一边长0.5 m,那么高为多少时容器的容积最大?并求出它的最大容积.
例2.教材P34面的例1。
课后作业
阅读教科书P.34
《习案》作业十一
1.4 生活中的优化问题(二)
教学目标:掌握利用导数求函数最大值和最小值的方法.会求一些实际问题(一般指单峰函数)的最大值和最小值.---------用材最省的问题----
教学重点:利用导数求函数最值的方法.用导数方法求函数最值的方法步骤
教学难点:对最值的理解及与极值概念的区别与联系.求一些实际问题的最大值与最小值
教学过程:
例1圆柱形金属饮料罐的容积一定时,它的高与底半径应怎样选取,才能使所用材料最省?
解:设圆柱的高为h,底半径为R,则表面积 S=2(Rh+2(R2.
则
从而 即h=2R.
因为S(R)只有一个极值,所以它是最小值. 答:当罐的高与底直径相等时,所用材料最省.
例2 已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的
函数关系式为求产量q为何值时,利润L最大.
分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润.
解:
求得唯一的极值点 q=84.
因为L只有一个极值,所以它是最大值.
答:产量为84时,利润L最大.
练习1.某商品一件的成本为30元,在某段时间内若以每件x元出售,可卖出(200-x)件,应如何定价才能使利润最大?
例3.教材P34面的例2
课后作业
4we1.4 生活中的优化问题(三)
教学目标:掌握利用导数求函数最大值和最小值的方法.会求一些实际问题(一般指单峰函数)的最大值和最小值.---------用材最省的问题----
教学重点:利用导数求函数最值的方法.用导数方法求函数最值的方法步骤
教学难点:对最值的理解及与极值概念的区别与联系.求一些实际问题的最大值与最小值
教学过程:
例1 。教材P35面的例3
例2.某公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤a≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).
例3.请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大?
解:设OO1为,则
由题设可得正六棱锥底面边长为:
,(单位:)
故底面正六边形的面积为:
=,(单位:)
帐篷的体积为:
求导得。
令,解得(不合题意,舍去),,
当时,,为增函数;
当时,,为减函数。
∴当时,最大。
答:当OO1为时,帐篷的体积最大,最大体积为。
例4.水库的需水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系为:
(1)该水库的蓄水量小于50的时期称为枯水期,以i-1(2)求一年内该水库的最大蓄水量(取e=2.7计算).
课后作业
阅读教科书P.34-----P35
《学案》P32面双基训练
1.4 生活中的优化问题举例
[学习目标]
1.了解导数在解决实际问题中的作用.
2.掌握利用导数解决简单的实际生活中的优化问题.
[知识链接]
设两正数之和为常数c,能否借助导数求两数之积的最大值,并由此证明不等式≥(a,b>0)?
答 设一个正数为x,则另一个正数为c-x,两数之积为
f(x)=x(c-x)=cx-x2(0<x<c),f′(x)=c-2x.
令f′(x)=0,即c-2x=0,得x=.
故当x=时,f(x)有最大值f=,即两个正数的积不大于这两个正数的和的平方的.
若设这两个正数分别为a,b,则有≥ab(a>0,b>0),即≥(a,b>0),当且仅当a=b时等号成立.
[预习导引]
1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.
2.利用导数解决优化问题的实质是求函数最值.
3.解决优化问题的基本思路是
←
上述解决优化问题的过程是一个典型的数学建模过程.
要点一 用料最省问题
例1 有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40千米的B处,乙厂到河岸的垂足D与A相距50千米,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?
解
如图,由题意知,只有点C位于线段AD上某一适当位置时,才能使总费用最省,设点C距点D为x km,则BC==,又设总的水管费用为y元,依题意有y=3a(50-x)+5a(0∴y′=-3a+.令y′=0,解得x=30,(x=-30舍去)
在(0,50)上,y只有一个极值点,根据问题的实际意义,函数在x=30处取得最小值,此时AC=50-x=20 (km).
∴供水站建在A、D之间距甲厂20 km处,可使水管费用最省.
规律方法 用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象,正确书写函数表达式,准确求导,结合实际作答.
跟踪演练1 一艘轮船在航行中每小时的燃料费和它的速度的立方成正比.已知速度为每小时10海里时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1海里所需的费用总和最小?
解 设速度为每小时v海里的燃料费是每小时p元,那么由题设的比例关系得p=k·v3,其中k为比例系数(k≠0),它可以由v=10,p=6求得,即k==0.006,于是有p=0.006v3.
又设当船的速度为每小时v海里时,航行1海里所需的总费用为q元,那么每小时所需的总费用是0.006v3+96(元),而航行1海里所需时间为小时,所以,航行1海里的总费用为:
q=(0.006v3+96)=0.006v2+.
q′=0.012v-=(v3-8 000),
令q′=0,解得v=20.∵当v<20时,q′<0;
当v>20时,q′>0,
∴当v=20时,q取得最小值,
即速度为20海里/时时,航行1海里所需费用总和最小.
要点二 面积、容积的最值问题
例2 如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?
解 设广告的高和宽分别为x cm,y cm,
则每栏的高和宽分别为x-20 cm, cm,
其中x>20,y>25.
两栏面积之和为2(x-20)·=18 000,
由此得y=+25.
广告的面积S=xy=x=+25x,
∴S′=+25=+25.
令S′>0得x>140,令S′<0得20∴函数在(140,+∞)上单调递增,在(20,140)上单调递减,∴S(x)的最小值为S(140).
当x=140时,y=175.即当x=140,y=175时,S取得最小值24 500,故当广告的高为140 cm,宽为175 cm时,可使广告的面积最小.
规律方法 (1)解决面积、容积的最值问题,要正确引入变量,将面积或容积表示为变量的函数,结合实际问题的定义域,利用导数求解函数的最值.
(2)利用导数解决生活中优化问题的一般步骤
①找关系:分析实际问题中各量之间的关系;②列模型:列出实际问题的数学模型;③写关系:写出实际问题中变量之间的函数关系y=f(x);④求导:求函数的导数f′(x),解方程f′(x)=0;⑤比较:比较函数在区间端点和使f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;⑥结论:根据比较值写出答案.
跟踪演练2 圆柱形金属饮料罐的容积一定时,它的高与底面半径应怎样选取,才能使所用的材料最省?
解
如图,设圆柱的高为h,底半径为R,则表面积
S=2πRh+2πR2,
由V=πR2h,得h=,
则S(R)=2πR+2πR2=+2πR2,
令S′(R)=-+4πR=0,解得R=,
从而h=== =2 ,即h=2R.
因为S(R)只有一个极值,所以它是最小值.
所以,当罐的高与底面直径相等时,所用材料最省.
要点三 成本最省,利润最大问题
例3 甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v千米/时的平方成正比,比例系数为b(b>0);固定部分为a元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
解 (1)依题意汽车从甲地匀速行驶到乙地所用的时间为,全程运输成本为
y=a·+bv2·=s,
∴所求函数及其定义域为y=s,v∈(0,c]
(2)由题意s、a、b、v均为正数.
y′=s=0得v= .但v∈(0,c].
①若≤c,则当v= 时,全程运输成本y最小;
②若 >c,则v∈(0,c],
此时y′<0,即y在(0,c]上为减函数.
所以当v=c时,y最小.
综上可知,为使全程运输成本y最小,
当 ≤c时,行驶速度v= ;
当 >c时,行驶速度v=c.
规律方法 正确理解题意,建立数学模型,利用导数求解是解题的主要思路.另外需注意:
①合理选择变量,正确给出函数关系式.
②与实际问题相联系.
③必要时注意分类讨论思想的应用.
跟踪演练3 已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为p=25-q.求产量q为何值时,利润L最大?
解 收入R=q·p=q=25q-q2,
利润L=R-C=-(100+4q)
=-q2+21q-100(0L′=-q+21
令L′=0,即-q+21=0,求得唯一的极值点q=84.
所以产量为84时,利润L最大.
1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时,原油温度(单位:℃)为f(x)=x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是( )
A.8 B.
C.-1 D.-8
答案 C
解析 原油温度的瞬时变化率为f′(x)=x2-2x=(x-1)2-1(0≤x≤5),所以当x=1时,原油温度的瞬时变化率取得最小值-1.
2.设底为等边三角形的直三棱柱的体积为V,那么其表面积最小时底面边长为( )
A. B.
C. D.2
答案 C
解析 设底面边长为x,则表面积S=x2+V(x>0).∴S′=(x3-4V).令S′=0,得x=.
3.在边长为60 cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?
解 设箱底边长为x cm,则箱高h= cm,箱子容积V(x)=x2h=(0<x<60).
V′(x)=60x-x2令V′(x)=60x-x2=0,
解得x=0(舍去)或x=40,并求得V(40)=16 000.
由题意知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值.
答 当x=40 cm时,箱子容积最大,最大容积是16 000 cm3.
4.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为y=x3-x+8(0解 当速度为x千米/时时,汽车从甲地到乙地行驶了小时,设耗油量为h(x)升,
依题意得h(x)=×=x2+-(0h′(x)=-=(0令h′(x)=0,得x=80.
因为x∈(0,80)时,h′(x)<0,h(x)是减函数;
x∈(80,120)时,h′(x)>0,h(x)是增函数,
所以当x=80时,h(x)取得极小值h(80)=11.25(升).
因为h(x)在(0,120]上只有一个极小值,所以它是最小值.
答 汽车以80千米/时匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.
1.解有关函数最大值、最小值的实际问题,在分析问题中的各个变量之间的关系的基础上,列出合乎题意的函数关系式,并确定函数的定义域.注意所求得的结果一定符合问题的实际意义.
2.利用导数解决生活中的优化问题时,有时会遇到在定义域内只有一个点使f′(x)=0,如果函数在该点取得极大(小)值,极值就是函数的最大(小)值,因此在求有关实际问题的最值时,一般不考虑端点.
一、基础达标
1.方底无盖水箱的容积为256,则最省材料时,它的高为( )
A.4 B.6
C.4.5 D.8
答案 A
解析 设底面边长为x,高为h,
则V(x)=x2·h=256,∴h=,
∴S(x)=x2+4xh=x2+4x·=x2+,
∴S′(x)=2x-.
令S′(x)=0,解得x=8,∴h==4.
2.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k(k>0).已知贷款的利率为0.048 6,且假设银行吸收的存款能全部放贷出去.设存款利率为x,x∈(0,0.048 6),若使银行获得最大收益,则x的取值为( )
A.0.016 2 B.0.032 4
C.0.024 3 D.0.048 6
答案 B
解析 依题意,得存款量是kx2,银行支付的利息是kx3,获得的贷款利息是0.048 6kx2,其中x∈(0,0.048 6).
所以银行的收益是y=0.048 6kx2-kx3(0令y′=0,得x=0.032 4或x=0(舍去).
当00;
当0.032 4所以当x=0.032 4时,y取得最大值,即当存款利率为0.032 4时,银行获得最大收益.
3.如果圆柱轴截面的周长l为定值,则体积的最大值为( )
A.3π B.3π
C.3π D.3π
答案 A
解析 设圆柱的底面半径为r,高为h,体积为V,则4r+2h=l,∴h=,V=πr2h=πr2-2πr3.
则V′=lπr-6πr2,令V′=0,得r=0或r=,而r>0,
∴r=是其唯一的极值点.
∴当r=时,V取得最大值,最大值为3π.
4.用边长为120 cm的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱最大容积为( )
A.120 000 cm3 B.128 000 cm3
C.150 000 cm3 D.158 000 cm3
答案 B
解析 设水箱底边长为x cm,则水箱高h=60-(cm).
水箱容积V=V(x)=x2h=60x2- (0V′(x)=120x-x2.令V′(x)=0,得x=0(舍去)或x=80.可判断得x=80 cm时,V取最大值为128 000 cm3.
5.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.
答案 3
解析 设圆柱的底面半径为R,母线长为L,则V=πR2L=27π,∴L=,要使用料最省,只须使圆柱表面积最小,由题意,S表=πR2+2πRL=πR2+2π·,
∴S′(R)=2πR-=0,∴R=3,则当R=3时,S表最小.
6.电动自行车的耗电量y与速度x之间的关系为y=x3-x2-40x(x>0),为使耗电量最小,则其速度应定为________.
答案 40
解析 由题设知y′=x2-39x-40,
令y′>0,解得x>40,或x<-1,
故函数y=x3-x2-40x(x>0)在[40,+∞)上递增,在(0,40]上递减.∴当x=40时,y取得最小值.
由此得为使耗电量最小,则其速度应定为40.
7.学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128 dm2,上、下两边各空2 dm,左、右两边各空1 dm.如何设计海报的尺寸,才能使四周空白面积最小?
解
设版心的高为x dm,则版心的宽为
dm,此时四周空白面积为
S(x)=(x+4)-128
=2x++8,x>0.
求导数,得S′(x)=2-.
令S′(x)=2-=0,解得x=16(x=-16舍去).
于是宽为==8.当x∈(0,16)时,S′(x)<0;
当x∈(16,+∞)时,S′(x)>0.
因此,x=16是函数S(x)的极小值点,也是最小值点.
所以,当版心高为16 dm,宽为8 dm时,能使四周空白面积最小.
二、能力提升
8.把长为12 cm的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是( )
A. cm2 B.4 cm2
C.3 cm2 D.2 cm2
答案 D
解析 设一个正三角形的边长为x cm,则另一个正三角形的边长为(4-x)cm,则这两个正三角形的面积之和为S=x2+(4-x)2=[(x-2)2+4]≥2(cm2),故选D.
9.某公司生产一种产品, 固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x的关系是R(x)=则当总利润最大时,每年生产产品的单位数是( )
A.150 B.200
C.250 D.300
答案 D
解析 由题意得,总利润
P(x)=
令P′(x)=0,得x=300,故选D.
10.为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出,设箱体的长为a米,高为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比,现有制箱材料60平方米,问当a=________,b=________时,经沉淀后流出的水中该杂质的质量分数最小(A,B孔的面积忽略不计).
答案 6 3
解析 设y为流出的水中杂质的质量分数,则y=,其中k(k>0)为比例系数.依题意,即所求的a,b值使y值最小,根据题设,4b+2ab+2a=60(a>0,b>0)得b=.于是y===.(0令y′==0
得a=6或a=-10(舍去).
∵只有一个极值点,∴此极值点即为最值点.
当a=6时,b=3,即当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小.
11.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使y最小?
解 (1)设需新建n个桥墩,则(n+1)x=m,
即n=-1.
所以y=f(x)=256n+(n+1)(2+)x
=256+(2+)x
=+m+2m-256.
(2)由(1)知,f′(x)=-+mx-=(x-512).
令f′(x)=0,得x=512,所以x=64.
当0当640,f(x)在区间(64,640)内为增函数,所以f(x)在x=64处取得最小值.
此时n=-1=-1=9.
故需新建9个桥墩才能使y最小.
12.一火车锅炉每小时煤消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h时,每小时消耗的煤价值40元,其他费用每小时需200元,火车的最高速度为100 km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?
解 设速度为x km/h,甲、乙两城距离为a km.
则总费用f(x)=(kx3+200)·=a(kx2+).
由已知条件,得40=k·203,∴k=,
∴f(x)=a(0<x<100).
令f′(x)==0,
得x=10.
当0当100.
∴当x=10时,f(x)有最小值,
即速度为10 km/h时,总费用最少.
三、探究与创新
13.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.
(1)写出y关于r的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的r.
解 (1)设容器的容积为V,由题意知V=πr2l+πr3,
又V=,
故l==-=.由于l≥2r,因此0所以建造费用y=2πrl×3+4πr2c=2πr××3+4πr2c,
因此y=4π(c-2)r2+,0(2)由(1)得y′=8π(c-2)r-=(r3-),0由于c>3,所以c-2>0.
当r3-=0时,r=.令=m,则m>0,
所以y′=(r-m)(r2+rm+m2).
①当0时,令y′=0,得r=m.
当r∈(0,m)时,y′<0;当r∈(m,2]时,y′>0,
所以r=m是函数y的极小值点,也是最小值点.
②当m≥2,即3综上所述,当3时,建造费用最小时r=.
【创新设计】2016-2017学年高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例课时作业 新人教版选修2-2
明目标、知重点
1.了解导数在解决实际问题中的作用.
2.掌握利用导数解决简单的实际生活中的优化问题.
1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.
2.利用导数解决优化问题的实质是求函数最值.
3.解决优化问题的基本思路是:
→
←
上述解决优化问题的过程是一个典型的数学建模过程.
情境导学]
生活中经常遇到求利润最大、用料最省、效率最高等问题?这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具,本节我们运用导数,解决一些生活中的优化问题.
探究点一 面积、体积的最值问题
思考 如何利用导数解决生活中的优化问题?
答 (1)函数建模,细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量y与自变量x,把实际问题转化为数学问题,即列出函数关系式y=f(x).
(2)确定定义域,一定要从问题的实际意义去考察,舍去没有实际意义的变量的范围.
(3)求最值,此处尽量使用导数法求出函数的最值.
(4)下结论,回扣题目,给出圆满的答案.
例1 学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128 dm2,上、下两边各空2 dm,左、右两边各空1 dm.如何设计海报的尺寸,才能使四周空白面积最小?
解 设版心的高为x dm,则版心的宽为 dm,此时四周空白面积为
S(x)=(x+4)-128
=2x++8,x>0.
求导数,得
S′(x)=2-.
令S′(x)=2-=0,解得x=16(x=-16舍去).
于是宽为==8.
当x∈(0,16)时,S′(x)<0;
当x∈(16,+∞)时,S′(x)>0.
因此,x=16是函数S(x)的极小值点,也是最小值点.
所以,当版心高为16 dm,宽为8 dm时,能使海报四周空白面积最小.
反思与感悟 (1)在求最值时,往往建立函数关系式,若问题中给出的量较多时,一定要通过建立各个量之间的关系,通过消元法达到建立函数关系式的目的.
(2)在列函数关系式时,要注意实际问题中变量的取值范围,即函数的定义域.
跟踪训练1 如图所示,某厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为________米.
答案 32,16
解析 要求材料最省就是要求新砌的墙壁总长度最短,设场地宽为x米,则长为米,
因此新墙壁总长度L=2x+(x>0),则L′=2-.
令L′=0,得x=±16.
∵x>0,∴x=16.
当x=16时,Lmin=64,此时堆料场的长为=32(米).
探究点二 利润最大问题
例2 某制造商制造并出售球形瓶装的某种饮料.瓶子的制造成本是0.8πr2分,其中r(单位:cm)是瓶子的半径.已知每出售1 mL的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6 cm.则瓶子半径多大时,能使每瓶饮料的利润最大?瓶子半径多大时,每瓶饮料的利润最小?
解 由于瓶子的半径为r,所以每瓶饮料的利润是
y=f(r)=0.2×πr3-0.8πr2
=0.8π,0令f′(r)=0.8π(r2-2r)=0.
当r=2时,f′(r)=0.
当r∈(0,2)时,f′(r)<0;
当r∈(2,6)时,f′(r)>0.
因此,当半径r>2时,f′(r)>0,它表示f(r)单调递增,即半径越大,利润越高;半径r<2时,f′(r)<0,它表示f(r)单调递减,即半径越大,利润越低.
∴半径为2 cm时,利润最小,这时f(2)<0,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.
半径为6 cm时,利润最大.
反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有:
(1)利润=收入-成本;
(2)利润=每件产品的利润×销售件数.
跟踪训练2 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2,其中3(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
解 (1)因为x=5时,y=11,所以+10=11,
所以a=2.
(2)由(1)可知,该商品每日的销售量
y=+10(x-6)2,
所以商场每日销售该商品所获得的利润
f(x)=(x-3)+10(x-6)2]=2+10(x-3)(x-6)2,3从而,f′(x)=10(x-6)2+2(x-3)(x-6)]
=30(x-4)(x-6).
于是,当x变化时,f′(x),f(x)的变化情况如下表:
x
(3,4)
4
(4,6)
f′(x)
+
0
-
f(x)
单调递增
极大值42
单调递减
由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.
所以,当x=4时,函数f(x)取得最大值,且最大值等于42.
答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.
探究点三 费用(用材)最省问题
例3 已知A、B两地相距200 km,一只船从A地逆水行驶到B地,水速为8 km/h,船在静水中的速度为v km/h(8解 设每小时的燃料费为y1,比例系数为k(k>0),
则y1=kv2,当v=12时,y1=720,
∴720=k·122,得k=5.
设全程燃料费为y,由题意,得
y=y1·=,
∴y′=
=.
令y′=0,得v=16,∴当v0≥16,
即v=16 km/h时全程燃料费最省,ymin=32 000(元);
当v0<16,即v∈(8,v0]时,y′<0,
即y在(8,v0]上为减函数,
∴当v=v0时,ymin=(元).
综上,当v0≥16时,v=16 km/h全程燃料费最省,
为32 000元;
当v0<16,即v=v0时全程燃料费最省,为元.
反思与感悟 本题在解题过程中容易忽视定义域,误以为v=16时取得最小值.本题的关键是弄清极值点是否在定义域范围内.
跟踪训练3 现有一批货物由海上从A地运往B地,已知轮船的最大航行速度为35海里/时,A地至B地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.
(1)把全程运输成本y(元)表示为速度x(海里/时)的函数;
(2)为了使全程运输成本最小,轮船应以多大速度行驶?
解 (1)依题意得y=(960+0.6x2)=+300x,且由题意知,函数的定义域为(0,35],
即y=+300x(0(2)由(1)知,y′=-+300,令y′=0,
解得x=40或x=-40(舍去).
因为函数的定义域为(0,35],所以函数在定义域内没有极值点.
又当0所以y=+300x在(0,35]上单调递减,
故当x=35时,函数y=+300x取得最小值.
故为了使全程运输成本最小,轮船应以35海里/时的速度行驶.
1.方底无盖水箱的容积为256,则最省材料时,它的高为( )
A.4 B.6 C.4.5 D.8
答案 A
解析 设底面边长为x,高为h,
则V(x)=x2·h=256,∴h=,
∴S(x)=x2+4xh=x2+4x·=x2+,
∴S′(x)=2x-.
令S′(x)=0,解得x=8,∴h==4.
2.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k(k>0).已知贷款的利率为0.048 6,且假设银行吸收的存款能全部放贷出去.设存款利率为x,x∈(0,0.048 6),若使银行获得最大收益,则x的取值为( )
A.0.016 2 B.0.032 4
C.0.024 3 D.0.048 6
答案 B
解析 依题意,得存款量是kx2,银行支付的利息是kx3,获得的贷款利息是0.048 6kx2,其中x∈(0,0.048 6).
所以银行的收益是y=0.048 6kx2-kx3(0令y′=0,得x=0.032 4或x=0(舍去).
当00;
当0.032 4所以当x=0.032 4时,y取得最大值,即当存款利率为0.032 4时,银行获得最大收益.
3.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为y=x3-x+8(0解 当速度为x千米/时时,汽车从甲地到乙地行驶了小时,设耗油量为h(x)升,
依题意得h(x)=×
=x2+-(0h′(x)=-=(0令h′(x)=0,得x=80.
因为x∈(0,80)时,h′(x)<0,h(x)是减函数;
x∈(80,120]时,h′(x)>0,h(x)是增函数,
所以当x=80时,h(x)取得极小值h(80)=11.25(升).
因为h(x)在(0,120]上只有一个极小值,所以它是最小值.
答 汽车以80千米/时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.
呈重点、现规律]
正确理解题意,建立数学模型,利用导数求解是解应用题的主要思路.另外需要特别注意:(1)合理选择变量,正确给出函数表达式;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.
一、基础过关
1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时,原油温度(单位:℃)为f(x)=x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是( )
A.8 B. C.-1 D.-8
答案 C
解析 原油温度的瞬时变化率为f′(x)=x2-2x=(x-1)2-1(0≤x≤5),
所以当x=1时,原油温度的瞬时变化率取得最小值-1.
2.设底为等边三角形的直三棱柱的体积为V,那么其表面积最小时底面边长为( )
A. B. C. D.2
答案 C
解析 设底面边长为x,
则表面积S=x2+V(x>0).
∴S′=(x3-4V).
令S′=0,得x=.
3.如果圆柱轴截面的周长l为定值,则体积的最大值为( )
A.3π B.3π
C.3π D.3π
答案 A
解析 设圆柱的底面半径为r,高为h,体积为V,
则4r+2h=l,
∴h=,
V=πr2h=πr2-2πr3.
则V′=lπr-6πr2,
令V′=0,得r=0或r=,而r>0,
∴r=是其唯一的极值点.
∴当r=时,V取得最大值,最大值为3π.
4.用边长为120 cm的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱最大容积为( )
A.120 000 cm3 B.128 000 cm3
C.150 000 cm3 D.158 000 cm3
答案 B
解析 设水箱底边长为x cm,则水箱高h=60-(cm).
水箱容积V=V(x)=x2h=60x2- (cm3)(0V′(x)=120x-x2.
令V′(x)=0,得x=0(舍去)或x=80.
可判断得x=80 (cm)时,V取最大值为128 000 cm3.
5.某公司生产一种产品, 固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x的关系是R(x)=则当总利润最大时,每年生产产品的单位数是( )
A.150 B.200 C.250 D.300
答案 D
解析 由题意得,总利润
P(x)=
令P′(x)=0,得x=300,故选D.
二、能力提升
6.为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出,设箱体的长为a米,高为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比,现有制箱材料60平方米,问当a=________,b=________时,经沉淀后流出的水中该杂质的质量分数最小(A,B孔的面积忽略不计).
答案 6 3
解析 设y为流出的水中杂质的质量分数,则y=,其中k(k>0)为比例系数.
依题意,即所求的a,b值使y值最小,根据题设,4b+2ab+2a=60(a>0,b>0)得b=(0于是y===.
令y′==0,
得a=6或a=-10(舍去).
∵本题只有一个极值点,∴此极值点即为最值点.
当a=6时,b=3,即当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小.
7.把长为12 cm的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是( )
A. cm2 B.4 cm2
C.3 cm2 D.2 cm2
答案 D
解析 设一个正三角形的边长为x cm,则另一个正三角形的边长为(4-x)cm,则这两个正三角形的面积之和为S=x2+(4-x)2=(x-2)2+4]≥2(cm2),故选D.
8.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.
答案 3
解析 设圆柱的底面半径为R,母线长为L,则V=πR2L=27π,∴L=,要使用料最省,只须使圆柱表面积最小,由题意,S表=πR2+2πRL=πR2+2π·,
∴S′(R)=2πR-=0,∴R=3,
则当R=3时,S表最小.
9.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?
解 设广告的高和宽分别为x cm,y cm,则每栏的高和宽分别为x-20,,其中x>20,y>25.
两栏面积之和为2(x-20)·=18 000,
由此得y=+25.
广告的面积S=xy=x(+25)=+25x.
∴S′=+25=+25.
令S′>0得x>140,
令S′<0得20∴函数在(140,+∞)上单调递增,在(20,140)上单调递减,
∴S(x)的最小值为S(140).
当x=140时,y=175.
即当x=140,y=175时,S取得最小值24 500,
故当广告的高为140 cm,宽为175 cm时,
可使广告的面积最小.
10.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使y最小?
解 (1)设需新建n个桥墩,
则(n+1)x=m,即n=-1.
所以y=f(x)=256n+(n+1)(2+)x
=256+(2+)x
=+m+2m-256.
(2)由(1)知,f′(x)=-+mx-
=(x-512).
令f′(x)=0,得x=512,所以x=64.
当0当640,f(x)在区间(64,640)内为增函数,所以f(x)在x=64处取得最小值.
此时n=-1=-1=9.
故需新建9个桥墩才能使y最小.
11.一火车锅炉每小时煤消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h时,每小时消耗的煤价值40元,其他费用每小时需200元,火车的最高速度为100 km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?
解 设速度为x km/h,甲、乙两城距离为a km.
则总费用f(x)=(kx3+200)·=a(kx2+).
由已知条件,得40=k·203,∴k=,
∴f(x)=a(x2+).
令f′(x)==0,
得x=10.
当0当100.
∴当x=10时,f(x)有最小值,
即速度为10 km/h时,总费用最少.
三、探究与拓展
12.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.
(1)写出y关于r的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的r.
解 (1)设容器的容积为V,
由题意知V=πr2l+πr3,又V=,
故l==-r=(-r).
由于l≥2r,因此0所以建造费用y=2πrl×3+4πr2c
=2πr×(-r)×3+4πr2c,
因此y=4π(c-2)r2+,0(2)由(1)得y′=8π(c-2)r-
=(r3-),0由于c>3,所以c-2>0.
当r3-=0时,r= .
令 =m,则m>0,
所以y′=(r-m)(r2+rm+m2).
①当0时,
令y′=0,得r=m.
当r∈(0,m)时,y′<0;
当r∈(m,2]时,y′>0,
所以r=m是函数y的极小值点,也是最小值点.
②当m≥2,即3当r∈(0,2]时,y′≤0,函数单调递减,
所以r=2是函数y的最小值点.
综上所述,当3建造费用最小时r=2;
当c>时,建造费用最小时r= .
课件44张PPT。1.4 生活中的优化问题举例 自主学习 新知突破1.通过实例体会导数在解决实际问题中的应用.
2.能够利用导数解决简单的实际生活中的优化问题.
3.提高综合运用导数知识解题的能力,培养化归转化的思想意识.下面是某品牌饮料的三种规格不同的产品,若它们的价格如下表所示,则对消费者而言,选择哪一种更合算呢?[提示] 对消费者而言,选择规格为2 L的饮料更为合算.利用导数解决有关函数的最大值、最小值的实际问题,体现在以下几个方面:
(1)与几何有关的最值问题(求几何图形或几何体的面积与体积的最值);
(2)与物理学有关的最值问题;
(3)与利润及其成本有关的最值问题.导数在实际生活中的应用 解决优化问题的基本思路 解决优化问题的一般步骤:
(1)审题:阅读理解文字表达的题意,分清问题和结论,找出问题的主要关系.
(2)建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型,主要是函数模型:引入恰当的变量,把待求最值的对象表示为该变量的函数.
(3)解模:把数学问题化归为常规问题,选择合适的数学方法求解.此处主要是利用导数求函数最值.
(4)结合实际问题的实际意义,对结果进行验证评估,定性定量分析,作出正确的判断,并确定其答案.
答案: C解析: 原油温度的瞬时变化率为f′(x)=x2-2x=(x-1)2-1(0≤x≤5),所以当x=1时,原油温度的瞬时变化率取得最小值-1.
答案: D3.做一个容积为256 dm3的方底无盖水箱,它的高为________dm时最省材料.
答案: 4合作探究 课堂互动 面积容积最大最小问题 用长为90 cm,宽为48 cm的长方形铁皮做一个无盖的容器.先在四角分别截掉一个大小相同的小正方形,然后把四边翻折90°,再焊接而成.问该容器的高为多少时,容器的容积最大?最大容积是多少? 解决面积或体积的最值问题,要正确引入变量,将面积或体积表示为变量的函数,结合实际问题的定义域,利用导数求解函数的最值. 1.用长为18 m的钢条围成一个长方体的框架,要求长方体的长与宽之比为2∶1,则该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?费用最省(成本最低)问题
令h′(x)=0,得x=80,
当x∈(0,80)时,h′(x)<0,h(x)是减函数;
当x∈(80,120]时,h′(x)>0,h(x)是增函数.
∴当x=80时,h(x)取到极小值h(80)=11.25.
∵h(x)在(0,120]上只有一个极值,
∴它是最小值.
答:当汽车以80千米/时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升. 1.用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际做答.
2.利用导数的方法解决实际问题.当在定义区间内只有一个点使f′(x)=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值. 利润最大问题 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出利润L的最大值Q(a). 1.利润最大问题是生活中常见的一类问题,一般根据“利润=收入-成本”建立函数关系式,再利用导数求最大值.求解时要注意:①价格要大于成本,否则就会亏本;②销量要大于0,否则不会获利.
2.用导数解最值应用题,一般应分为五个步骤:
(1)建立函数关系式y=f(x);(2)求导函数y′;(3)令y′=0,求出相应的x0;(4)指出x=x0处是最值点的理由;(5)对题目所问作出回答,求实际问题中的最值问题时,可以根据实际意义确定取得最值时变量的取值.3.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x(单位:元,0≤x≤21)的平方成正比.已知商品单价降低2元时,每星期多卖出24件.
(1)将一个星期的商品销售利润表示成x的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
解析: (1)设商品降价x元,则多卖的商品数为kx2,若记商品在一个星期的获利为f(x),
则有f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2).
又由已知条件,24=k×22,于是有k=6,
所以f(x)=-6x3+126x2-432x+9 072,x∈[0,21]. (2)根据(1),f′(x)=-18x2+252x-432
=-18(x-2)(x-12).
当x变化时,f′(x),f(x)的变化情况如下表:
故当x=12时,f(x)取得极大值.
因为f(0)=9 072,f(12)=11 664,
所以定价为30-12=18元能使一个星期的商品销售利润最大.◎甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数b(b>0);固定部分为a元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?谢谢观看!