高中数学(人教版A版选修2-3)配套课件(2份)、教案、学案、同步练习题,补习复习资料:1.2.1 第二课时 排列习题课

文档属性

名称 高中数学(人教版A版选修2-3)配套课件(2份)、教案、学案、同步练习题,补习复习资料:1.2.1 第二课时 排列习题课
格式 zip
文件大小 1.8MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-08-13 15:45:38

文档简介

课件32张PPT。第一章1.2
1.2.1
第二课时
排列习题课2 突破常考题型题型一题型二题型三3 跨越高分障碍4 应用落实体验随堂即时演练课时达标检测1 回顾相关知识无限制条件的排列问题 元素的“在”与“不在”问题 元素的“相邻”或“不相邻”问题 答案:C第一章 计数原理
1.2 排列与组合
1.2.1 排列
第2课时 排列的综合应用
A级 基础巩固
一、选择题
1.A,B,C,D,E五人并排站成一行,如果A,B必须相邻且B在A的右边,那么不同的排法种数是(  )
A.6    B.24    C.48    D.120
解析:把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,排法共有A=24(种).
答案:B
2.用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有(  )
A.48个 B.36个 C.24个 D.18个
解析:个位数字是2的有3A=18(个),个位数字是4的有3A=18(个),所以共有36个.
答案:B
3.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有(  )
A.6种 B.12种
C.24种 D.30种
解析:首先甲、乙两人从4门课程中同选1门,有4种方法;其次从剩余3门中任选2门进行排列,排列方法有A=6(种).于是,甲、乙所选的课程中恰有1门相同的选法共有4×6=24(种).
答案:C
4.3张卡片正反面分别标有数字1和2,3和4,5和7,若将3张卡片并列组成一个三位数,可以得到不同的三位数的个数为(  )
A.30 B.48 C.60 D.96
解析:“组成三位数”这件事,分2步完成:第1步,确定排在百位、十位、个位上的卡片,即为3个元素的一个全排列A;第2步,分别确定百位、十位、个位上的数字,各有2种方法.根据分步乘法计数原理,可以得到不同的三位数有A×2×2×2=48(个).
答案:B
5.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有(  )
A.20种 B.30种 C.40种 D.60种
解析:分三类:甲在周一,共有A种排法;甲在周二,共有A种排法;甲在周三,共有A种排法.所以排法共有A+A+A=20(种).
答案:A
二、填空题
6.从班委会的5名成员中选出3名分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有______种(用数字作答).
解析:先选出文娱委员,有3种选法,再选出学习委员、体育委员,有A种选法.由分步乘法计数原理知,选法共有3A=36(种).
答案:36
7.把5件不同产品摆成一排,若产品A与产品B相邻, 且产品A与产品C不相邻,则不同的摆法有________种.
解析:先考虑产品A与B相邻,把A、B作为一个元素有A种方法,而A、B可交换位置,所以摆法有2A=48(种).
又当A、B相邻又满足A、C相邻,摆法有2A=12(种).
故满足条件的摆法有48-12=36(种).
答案:36
8.在所有无重复数字的四位数中,千位上的数字比个位上的数字大2的数共有________个.
解析:千位数字比个位数字大2,有8种可能,即(2,0),(3,1),…,(9,7),前一个数为千位数字,后一个数为个位数字,其余两位无任何限制.所以共有8A=448(个).
答案:448
三、解答题
9.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.
(1)3个舞蹈节目不排在开始和结尾,有多少种排法?
(2)前4个节目要有舞蹈节目,有多少种排法?
解:(1)先从5个演唱节目中选两个排在首尾两个位置有A种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A种排法,故共有不同排法AA=1 440(种).
(2)先不考虑排列要求,有A种排列,其中前4个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有AA种排法,所以前四个节目要有舞蹈节目的排法有A-AA=37 440(种).
10.3名男生、4名女生,按照不同的要求站成一排,求不同的排队方案有多少种.
(1)甲不站中间,也不站两端;
(2)甲、乙两人必须相邻;
(3)甲、乙两人不得相邻.
解:(1)分两步,首先考虑两端及中间位置,从除甲外的6人中选3人排列,有A种站法,然后再排其余位置,有A种站法,所以不同站法共有AA=2 880(种).
(2)把甲、乙两人看成一个元素,首先与其余5人相当于6个元素进行全排列,然后甲、乙两人再进行排列,所以站法共有AA=1 440(种).
(3)法一 先让其余的5人全排列,再让甲、乙两人在每两人之间(含两端)的6个位置插入排列,所以不同站法共有A·A=3 600(种).
法二 不考虑限制条件,共有A种站法,除去甲、乙相邻的站法A·A,所以不同站法共有A-A·A=3 600(种).
B级 能力提升
1.由1,2,3,4,5组成没有重复数字的四位数,按从小到大的顺序排成一个数列{an},则a72等于(  )
A.1 543 B.2 543
C.3 542 D.4 532
解析:千位数为1时组成的四位数有A个,同理,千位数是2,3,4,5时均有A个数,而千位数字为1,2,3时,从小到大排成数列的个数为3A=72,即3 542是第72个.
答案:C
2.三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为________.
解析:“每人两边都有空位”是说三个人不相邻,且不能坐两头,可视作5个空位和3个人满足上述两要求的一个排列,只要将3个人插入5个空位形成的4个空当中即可.所以不同坐法共有A=24(种).
答案:24
§1.2.2组合
教学目标:
知识与技能:理解组合的意义,能写出一些简单问题的所有组合。明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。
过程与方法:了解组合数的意义,理解排列数与组合数 之间的联系,掌握组合数公式,能运用组合数公式进行计算。
情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。
教学重点:组合的概念和组合数公式
教学难点:组合的概念和组合数公式
授课类型:新授课
课时安排:2课时
内容分析:
排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.
指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通. 能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别. 学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题. ?排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.
教学过程:
一、复习引入:
1、分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有 种不同的方法
2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有 种不同的方法
3.排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列
4.排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示
5.排列数公式:()
6阶乘:表示正整数1到的连乘积,叫做的阶乘规定.
7.排列数的另一个计算公式:=
8.提出问题:
示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?
示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?
引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合.
二、讲解新课:
1组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合
说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同
例1.判断下列问题是组合还是排列
(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?
(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?
(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?
(4)10个人互相通信一次,共写了多少封信?
(5)10个人互通电话一次,共多少个电话?
问题:(1)1、2、3和3、1、2是相同的组合吗?
(2)什么样的两个组合就叫相同的组合
2.组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从 个不同元素中取出个元素的组合数.用符号表示.
3.组合数公式的推导:
(1)从4个不同元素中取出3个元素的组合数是多少呢?
启发:由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数可以求得,故我们可以考察一下和的关系,如下:
组 合 排列

由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有个;② 对每一个组合的3个不同元素进行全排列,各有种方法.由分步计数原理得:=,所以,.
(2)推广:一般地,求从n个不同元素中取出m个元素的排列数,可以分如下两步:
① 先求从n个不同元素中取出m个元素的组合数;
② 求每一个组合中m个元素全排列数,根据分步计数原理得:=.
(3)组合数的公式:

规定: .
三、讲解范例:
例2.用计算器计算.
解:由计算器可得

例3.计算:(1); (2);
(1)解: =35;
(2)解法1:=120.
解法2:=120.
例4.求证:.
证明:∵



例5.设 求的值
解:由题意可得: ,解得,
∵, ∴或或,
当时原式值为7;当时原式值为7;当时原式值为11.
∴所求值为4或7或11.
例6. 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:
(l)这位教练从这 17 名学员中可以形成多少种学员上场方案?
(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?
分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于( 2 ) ,守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.
解: (1)由于上场学员没有角色差异,所以可以形成的学员上场方案有 C }手= 12 376 (种) .
(2)教练员可以分两步完成这件事情:
第1步,从17名学员中选出 n 人组成上场小组,共有种选法;
第2步,从选出的 n 人中选出 1 名守门员,共有种选法.
所以教练员做这件事情的方法数有
=136136(种).
例7.(1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?
(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?
解:(1)以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有
(条).
(2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有
(条).
例8.在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .
(1)有多少种不同的抽法?
(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种?
(3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?
解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有
= 161700 (种).
(2)从2 件次品中抽出 1 件次品的抽法有种,从 98 件合格品中抽出 2 件合格品的抽法有种,因此抽出的 3 件中恰好有 1 件次品的抽法有
=9506(种).
(3)解法 1 从 100 件产品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2 件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有种,因此根据分类加法计数原理,抽出的3 件中至少有一件是次品的抽法有
+=9 604 (种) .
解法2 抽出的3 件产品中至少有 1 件是次品的抽法的种数,也就是从100件中抽出3 件的抽法种数减去3 件中都是合格品的抽法的种数,即
=161 700-152 096 = 9 604 (种).
说明:“至少”“至多”的问题,通常用分类法或间接法求解。
变式:按下列条件,从12人中选出5人,有多少种不同选法?
(1)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选; (6)甲、乙、丙三人至少1人当选;
例9.(1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?
解:.
(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?
解:问题可以分成2类:
第一类 2名男生和2名女生参加,有中选法;
第二类 3名男生和1名女生参加,有中选法
依据分类计数原理,共有100种选法
错解:种选法引导学生用直接法检验,可知重复的很多
例10.4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?
解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有,,,
所以,一共有++=100种方法.
解法二:(间接法)
四、组合数的两个性质
组合数的性质1:.
一般地,从n个不同元素中取出个元素后,剩下个元素.因为从n个不同元素中取出m个元素的每一个组合,与剩下的n ( m个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出n ( m个元素的组合数,即:.在这里,主要体现:“取法”与“剩法”是“一一对应”的思想
证明:∵
又 ,∴
说明:①规定:;
②等式特点:等式两边下标同,上标之和等于下标;
③此性质作用:当时,计算可变为计算,能够使运算简化.
例如===2002;
④或.
2.组合数的性质2:=+.
一般地,从这n+1个不同元素中取出m个元素的组合数是,这些组合可以分为两类:一类含有元素,一类不含有.含有的组合是从这n个元素中取出m (1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.
证明:

∴=+.
说明:①公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数;
②此性质的作用:恒等变形,简化运算
例11.一个口袋内装有大小不同的7个白球和1个黑球,
(1)从口袋内取出3个球,共有多少种取法?
(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?
(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?
解:(1),或,;(2);(3).
例12.(1)计算:;
(2)求证:=++.
解:(1)原式;
证明:(2)右边左边
例13.解方程:(1);(2)解方程:.
解:(1)由原方程得或,∴或,
又由得且,∴原方程的解为或
上述求解过程中的不等式组可以不解,直接把和代入检验,这样运算量小得多.
(2)原方程可化为,即,∴,
∴,
∴,解得或,
经检验:是原方程的解
例14.证明:。
证明:原式左端可看成一个班有个同学,从中选出个同学组成兴趣小组,在选出的个同学中,个同学参加数学兴趣小组,余下的个同学参加物理兴趣小组的选法数。原式右端可看成直接在个同学中选出个同学参加数学兴趣小组,在余下的个同学中选出个同学参加物理兴趣小组的选法数。显然,两种选法是一致的,故左边=右边,等式成立。
例15.证明:…(其中)。
证明:设某班有个男同学、个女同学,从中选出个同学组成兴趣小组,可分为类:男同学0个,1个,…,个,则女同学分别为个,个,…,0个,共有选法数为…。又由组合定义知选法数为,故等式成立。
例16.证明:…。
证明:左边=…=…,
其中可表示先在个元素里选个,再从个元素里选一个的组合数。设某班有个同学,选出若干人(至少1人)组成兴趣小组,并指定一人为组长。把这种选法按取到的人数分类(…),则选法总数即为原式左边。现换一种选法,先选组长,有种选法,再决定剩下的人是否参加,每人都有两种可能,所以组员的选法有种,所以选法总数为种。显然,两种选法是一致的,故左边=右边,等式成立。
例17.证明:…。
证明:由于可表示先在个元素里选个,再从个元素里选两个(可重复)的组合数,所以原式左端可看成在例3指定一人为组长基础上,再指定一人为副组长(可兼职)的组合数。对原式右端我们可分为组长和副组长是否是同一个人两种情况。若组长和副组长是同一个人,则有种选法;若组长和副组长不是同一个人,则有种选法。∴共有+种选法。显然,两种选法是一致的,故左边=右边,等式成立。
例18.第17届世界杯足球赛于2002年夏季在韩国、日本举办、五大洲共有32支球队有幸参加,他们先分成8个小组循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这支球队按确定的程序进行淘汰赛,最后决出冠亚军,此外还要决出第三、四名,问这次世界杯总共将进行多少场比赛?
答案是:,这题如果作为习题课应如何分析
解:可分为如下几类比赛:
⑴小组循环赛:每组有6场,8个小组共有48场;
⑵八分之一淘汰赛:8个小组的第一、二名组成16强,根据抽签规则,每两个队比赛一场,可以决出8强,共有8场;
⑶四分之一淘汰赛:根据抽签规则,8强中每两个队比赛一场,可以决出4强,共有4场;
⑷半决赛:根据抽签规则,4强中每两个队比赛一场,可以决出2强,共有2场;
⑸决赛:2强比赛1场确定冠亚军,4强中的另两队比赛1场决出第三、四名 共有2场.
综上,共有场
五、课堂练习:
1.判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
2.名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( )
. . . .
3.如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( )
.对 .对 .对 .对
4.设全集,集合、是的子集,若有个元素,有个元素,且,求集合、,则本题的解的个数为 ( )
. . . .
5.从位候选人中选出人分别担任班长和团支部书记,有 种不同的选法
6.从位同学中选出人去参加座谈会,有 种不同的选法
7.圆上有10个点:
(1)过每2个点画一条弦,一共可画 条弦;
(2)过每3个点画一个圆内接三角形,一共可画 个圆内接三角形
8.(1)凸五边形有 条对角线;(2)凸五边形有 条对角线
9.计算:(1);(2).
10.个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可能情况共有多少种?
11.空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?
12.壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值?
13.写出从这个元素中每次取出个的所有不同的组合
答案:1. (1)组合, (2)排列 2. B 3. A 4. D 5. 30 6. 15
7. (1)45 (2) 120 8. (1)5(2)
9. ⑴455; ⑵ 10. ⑴10; ⑵20
11. ⑴; ⑵
12.
13. ; ; ; ;
六、小结 :组合的意义与组合数公式;解决实际问题时首先要看是否与顺序有关,从而确定是排列问题还是组合问题,必要时要利用分类和分步计数原理
学生探究过程:(完成如下表格)
名称内容
分类原理
分步原理
定 义
?
相同点
?
不同点
?
名 称
排 列
组 合
定义
?
种数
?
符号
?
?
计算
公式
?
关系
?
性质
?

七、课后作业:
八、板书设计(略)
九、教学反思:
排列组合问题联系实际生动有趣,题型多样新颖且贴近生活,解法灵活独到但不易掌握,许多学生面对较难问题时一筹莫展、无计可施,尤其当从正面入手情况复杂、不易解决时,可考虑换位思考将其等价转化,使问题变得简单、明朗。
教科书在研究组合数的两个性质①,②时,给出了组合数定义的解释证明,即构造一个组合问题的模型,把等式两边看成同一个组合问题的两种计算方法,由组合个数相等证出要证明的组合等式。这种构造法证明构思精巧,把枯燥的公式还原为有趣的实例,能极大地激发学习兴趣。本文试给几例以说明。
教学反思:
1注意区别“恰好”与“至少”
从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有多少种
2特殊元素(或位置)优先安排
将5列车停在5条不同的轨道上,其中a列车不停在第一轨道上,b列车不停在第二轨道上,那么不同的停放方法有种
3“相邻”用“捆绑”,“不邻”就“插空”
七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有多少种
4、混合问题,先“组”后“排”
对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?
5、分清排列、组合、等分的算法区别
(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法?
(2) 今有10件不同奖品, 从中选6件分给三人,其中1人一件1人二件1人三件, 有多少种分法?
(3) 今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法?
6、分类组合,隔板处理
从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.某电影要在5所大学里轮流放映,则不同的轮映方法有(  )
A.25种        B.55种
C.A种 D.53种
【解析】 其不同的轮映方法相当于将5所大学的全排列,即A.
【答案】 C
2.某天上午要排语文,数学,体育,计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有(  )
A.6种 B.9种
C.18种 D.24种
【解析】 先排体育有A种,再排其他的三科有A种,共有3×6=18(种).
【答案】 C
3.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有(  )
A.34种 B.48种
C.96种 D.144种
【解析】 先排除A,B,C外的三个程序,有A种不同排法,再排程序A,有A种排法,最后插空排入B,C,有A·A种排法,所以共有A·A·A·A=96种不同的编排方法.
【答案】 C
4.生产过程有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两名工人中安排1人,第四道工序只能从甲、丙两名工人中安排1人,则不同的安排方案共有(  )
A.24种   B.36种 C.48种   D.72种
【解析】 分类完成:第1类,若甲在第一道工序,则丙必在第四道工序,其余两道工序无限制,有A种排法;
第2类,若甲不在第一道工序(此时乙一定在第一道工序),则第四道工序有2种排法,其余两道工序有A种排法,有2A种排法.
由分类加法计数原理,共有A+2A=36种不同的安排方案.
【答案】 B
5.(2018·韶关检测)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有(  )
A.288个 B.240个
C.144个 D.126个
【解析】 第1类,个位数字是2,首位可排3,4,5之一,有A种排法,排其余数字有A种排法,所以有AA个数;
第2类,个位数字是4,有AA个数;
第3类,个位数字是0,首位可排2,3,4,5之一,有A种排法,排其余数字有A种排法,所以有AA个数.
由分类加法计数原理,可得共有2AA+AA=240个数.
【答案】 B
二、填空题
6.从0,1,2,3这四个数中选三个不同的数作为函数f(x)=ax2+bx+c中的参数a,b,c,可组成不同的二次函数共有________个.
【解析】 若得到二次函数,则a≠0,a有A种选择,故二次函数有AA=3×3×2=18(个).
【答案】 18
7.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.
【解析】 先分组后用分配法求解,5张参观券分为4组,其中2个连号的有4种分法,每一种分法中的排列方法有A种,因此共有不同的分法4A=4×24=96(种).
【答案】 96
8.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1,2相邻,这样的六位数的个数是________.
【解析】 可分为三步来完成这件事:
第一步:先将3,5进行排列,共有A种排法;
第二步:再将4,6插空排列,共有2A种排法;
第三步:将1,2放入3,5,4,6形成的空中,共有A种排法.
由分步乘法计数原理得,共有A2AA=40种不同的排法.
【答案】 40
三、解答题
9.喜羊羊家族的四位成员与灰太狼、红太狼进行谈判,通过谈判他们握手言和,准备一起照合影像(排成一排).
(1)要求喜羊羊家族的四位成员必须相邻,有多少种排法?
(2)要求灰太狼、红太狼不相邻,有多少种排法?
【解】 (1)把喜羊羊家族的四位成员看成一个元素,排法为A.又因为四位成员交换顺序产生不同排列,所以共有A·A=144种排法.
(2)第一步,将喜羊羊家族的四位成员排好,有A种排法;第二步,让灰太狼、红太狼插入四人形成的空(包括两端),有A种排法,共有A·A=480种排法.
10.(2018·上饶二模)有红、蓝、黄、绿四种颜色的球各6个,每种颜色的6个球分别标有数字1,2,3,4,5,6,从中任取3个标号不同的球,颜色互不相同且所标数字互不相邻的取法种数.
【解】 所标数字互不相邻的方法有135,136,146,246,共4种方法.3个颜色互不相同有4A=4×3×2×1=24种,所以这3个颜色互不相同且所标数字互不相邻的取法种数有4×24=96种.
[能力提升]
1.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(  )
A.10种 B.12种
C.9种 D.8种
【解析】 先排第一列,因为每列的字母互不相同,因此共有A种不同的排法.
再排第二列,其中第二列第一行的字母共有A种不同的排法,第二列第二、三行的字母只有1种排法.
因此共有A·A·1=12(种)不同的排列方法.
【答案】 B
2.(2018·武汉调研)安排6名歌手演出的顺序时,要求歌手乙、丙均排在歌手甲的前面或者后面,则不同排法的种数是(  )
A.180 B.240
C.360 D.480
【解析】 不同的排法种数先全排列有A,甲、乙、丙的顺序有A,乙、丙都排在歌手甲的前面或者后面的顺序有甲乙丙,甲丙乙,乙丙甲,丙乙甲,4种顺序,所以不同排法的种数共有4×=480种.
【答案】 D
3.安排7位工作人员在10月1日到10月7日值班,每人值班一天,其中甲、乙两人都不能安排在10月1日和2日,不同的安排方法共有________种(用数字作答).
【解析】 法一:(直接法)先安排甲、乙两人在后5天值班,有A=20种排法,其余5天再进行排列,有A=120种排法,所以共有20×120=2 400种安排方法.
法二:(间接法)不考虑甲、乙两人的特殊情况,其安排方法有A=7×6×5×4×3×2×1=5 040种方法,其中不符合要求的有AA+AAAA=2 640种方法,所以共有5 040-2 640=2 400种方法.
【答案】 2 400
4.(2018·山东临沂月考)有4名男生、5名女生,全体排成一行,下列情形各有多少种不同的排法?
(1)甲不在中间也不在两端;
(2)甲、乙两人必须排在两端;
(3)女生互不相邻.
【解】 (1)法一:元素分析法.先排甲有6种,再排其余人有A种,故共有6·A=241 920(种)排法.
法二:位置分析法.中间和两端有A种排法,包括甲在内的其余6人有A种排法,故共有A·A=336×730=241 920(种)排法.
法三:等机会法.9个人全排列有A种,甲排在每一个位置的机会都是均等的,依题意得,甲不在中间及两端的排法总数是A×=241 920(种).
法四:间接法.A-3·A=6A=241 920(种).
(2)先排甲、乙,再排其余7人.
共有A·A=10 080(种)排法.(3)插空法.先排4名男生有A种方法,再将5名女生插空,有A种方法,故共有A·A=2 880(种)排法.
《排列与组合》教学设计
教学内容背景材料:
义务教育课程标准实验教科书(人教版)二年级上册第八单元的排列与组合
教学目标:[来源:www.shulihua.net]
1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、经历探索简单事物排列与组合规律的过程。
3、培养学生有顺序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,激发学生学好数学的信心。
教学重点:经历探索简单事物排列与组合规律的过程
教学难点:初步理解简单事物排列与组合的不同
教具准备:教学课件
学具准备:每生准备3张数字卡片,学具袋
教学过程:
步骤
师生活动
修改意见
设计意图

(一)
创设问题情境:
师:森林学校的数学课上,猴博士出了这样一道题(课件出示)用数字1、2能写出几个两位数?问题刚说完小动物们都纷纷举手说能写成两个数:12、21。接着猴博士又加上了一个数字3,问:“用数字1、2、3能写出几个两位数呢?”小猪站起来说能写成3个,小熊说5个,小狗说7个,到底能写出几个呢?
?
用学生感兴趣的童话故事引入,易于激发起学生探究的兴趣,同时也向学生渗透助人为乐的品德教育。
(二)
1.
自主合作探索新知
试一试
师:请同学们也试着写一写,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。
学生活动教师巡视。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)
?
引导学生根据自己的实际情况选择不同的方法探究新知,体现了不同的孩子用不同的方式学习数学这一新的教学理念,易于吸引不同层次的学生积极主动的参与到活动中来。
2.[来源:www.shulihua.net]
发现问题
学生汇报所写个数,教师根据巡视的情况重点展示几份,引导学生发现问题:有的重复写了,有的漏写了。
?
?
引导学生发现写数过程中出现的问题,并就此展开讨论、交流,遵循了学生的认知特点。学生在交流的过程中体验到解决问题方法的多样性,并根据自己的实际选择不同的方法,尊重了学生的主体地位。在此过程中学生收获的不仅是知识本身,更多的是能力、情感。
3.[来源:www.shulihua.net数理化网][来源:www.shulihua.net]
小组讨论
师:每个同学写出的个数不同,怎样才能很快写出所有的用数字1、2、3组成的两位数,并做到不重复不遗漏呢?
学生以小组为单位交流讨论。
?
4.
小组汇报
汇报时可能会出现下面几种情况:
1、无序的。
2、先写出1在十位上的有12、13;再写出2在十位上的有21、23;再写出3在十位上的有31、32。
3、用数字1、2能写出12、21;用数字2、3能写出23、32;用数字1、3能写出13、31。
引导学生及时评价每一种方法的优缺点,使其把适合自己的方法掌握起来。
?
5.
小结
教师简单小结学生所想方法引出练习内容。
?
?
(三)
拓展应用
1、??? 数字2、3、4、5、出个两位数?写完交流。(或者也可用这样一道题:用△○□能摆成6种排法,例如:□○△
?
请你试着摆出其他几种排法。
?
学习的目的是为了应用,让学生自主的选择方法进行练习,有利于培养学生的自主学习的能力。
二、
(一)
组合
故事引入
师:下课了小狗、小熊、小猪做“找朋友”的游戏,好朋友见面之后要握握手,每两只小动物握一次手,小狗、小熊、小猪一共握几次手?怎样握?
?
用同一条故事主线贯穿整节课的始终,以问题串的形式展开全课,能让学生始终保持浓厚的学习兴趣,充分体验到数学与生活的联系。
(二)
探索新知
学生在充分独立思考的基础上展开小组交流,并3人一组亲身实践一下。
汇报思考的过程。
?
?

比较
师:刚才我们帮森林学校的小动物们解决了用数字1、2、3能写几个两位数;3只小动物每两个握一次手共握几次手的问题,森林学校的小动物们直夸同学们聪明呢!通过解决这两个问题你发现了什么?
生可能说用3个数字能写出6个两位数,3只小动物每两人握一次手共握3次。
引导学生明确排列与顺序有关而组合与顺序无关。两只小动物握一次手个?
?
通过比较明确两种问题的同与不同,便于建立起清晰的知识结构,进一步深化学生的认识。

1.
拓展应用
小狗要参加学校的时装表演,妈妈为它准备了4件衣服(课件出示2件上衣、2件裤子的图片),请你帮小狗设计一下共有多少种穿法。如果需要的话可以用学具摆一摆。
交流想法。
?
在儿童的生活经验里积累了一些搭配衣服,购物花钱的知识经验,所以学生乐于参与。
2.
完成课本99页的第2题
?
?

课堂总结
?
?
www.shulihua.net
w。w-w*k&s%5¥u
www.shulihua.net
w。w-w*k&s%5¥u
排列组合应用题的教学设计
解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。
引例1 现有四个小组,第一组7人,第二组8人,第三组9人,第四组10人,他们参加旅游活动:
(1)选其中一人为负责人,共有多少种不同的选法。
  (2)每组选一名组长,共有多少种不同的选法4
评述:本例指出正确应用两个计数原理。
引例2
(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?
(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?
评述:本例指出排列和组合的区别。
求解排列组合应用题的困难主要有三个因素的影响:
限制条件。2、背景变化。 3、数学认知结构
排列组合应用题可以归结为四种类型:
第一个专题 排队问题
重点解决:
1、如何确定元素和位置的关系
元素及其所占的位置,这是排列组合问题中的两个基本要素。以元素为主,分析各种可能性,称为“元素分析法”;以位置为主,分析各种可能性,称为“位置分析法”。
例:3封不同的信,有4个信箱可供投递,共有多少种投信的方法?
分析:这可以说是一道较简单的排列组合的题目了,但为什么有的同学能做出正确的答案 (种),而有的同学则做出容易错误的答案 (种),而他们又错在哪里呢?应该是错在“元素”与“位置”上了!
法一:元素分析法(以信为主)
第一步:投第一封信,有4种不同的投法;
第二步:接着投第二封信,亦有4种不同的投法;
第三步:最后投第三封信,仍然有4种不同的投法。
因此,投信的方法共有:(种)。
法二:位置分析法(以信箱为主)
第一类:四个信箱中的某一个信箱有3封信,有投信方法 (种);
第二类:四个信箱中的某一个信箱有2封信,另外的某一个信箱有1封信,有投信方法 种 。
第三类:四个信箱中的某三个信箱各有1封信,有投信方法 (种)。
因此,投信的方法共有:64 (种)
小结:以上两种方法的本质还是“信”与“信箱”的对应问题。[来源:www.shulihua.net]
2、如何处理特殊条件——特殊条件优先考虑。
例:7位同学站成一排,按下列要求各有多少种不同的排法;
甲站某一固定位置;②甲站在中间,乙与甲相邻;③甲、乙相邻; ④甲、乙两人不能相邻; ⑤甲、乙、丙三人相邻;⑥甲、乙两人不站在排头和排尾;⑦甲、乙、丙三人中任何两人都不相邻;⑧甲、乙两人必须相邻,且丙不站在排头和排尾。
第二个专题 排列、组合交叉问题
重点解决:[来源:www.shulihua.net]
1、先选元素,后排序。
例:3个大人和2个小孩要过河,现有3条船,分别能载3个、2个和1个人,但这5个人要一次过去,且小孩要有大人陪着,问有多少种过河的方法?
分析:设1号船载3人,2号船载2人,3号船载2人,小孩显然不能进第3号船,也不能二个同时进第2号船。
法一:从“小孩”入手。
第一类:2个小孩同时进第1号船,此时必须要有大人陪着另外
2个大人同时进第2号船或分别进第2、3号船,先选3个大人之一进1号船,
有 (种)过河方法
第二类:2个小孩分别进第1、2号船,此时第2号船上的小孩必须要有大人陪着,另外
2个大人同时进第1号船或分别进第1、3号船,有过河方法
(种)。
因此,过河的方法共有: (种)。
法二:从“船”入手
第一类:第1号船空一个位,此时3条船的载人数分别为2、2、1,故2个小孩只能分
别进第1、2号船,有过河方法 (种);
第二类:第2号船空一个位,此时3条船的载人数分别为3、1、1,故2个小孩只能同时进第1号船,有过河方法 (种);
第三类:第3号船空一个位,此时3条船的载人数分别为3、2、0,故2个小孩同时进第1号船或分别进第1、2号船,有过河方法 (种)。因此,过河的方法共有: (种)。
怎样界定是排列还是组合[来源:数理化网]
例:①身高不等的7名同学排成一排,要求中间的高,从中间看两边,一个比一个矮,这样的排法有多少种?
②身高不等的7名同学排成一排,要求中间的高,两边次高,再两边次高,如此下去,这样的排法共有有多少种?
答:① 种 ② =8 种
本来①是组合题,与顺序无关,但有些学生不加分析,看到排队就联想排列,这是一个误区。至于②也不全是排列问题,只是人自然有高低,按人的高低顺次放两边就是了。
又例: 7名同学排成一排,甲、乙、丙这三人的顺序定,则不同排法有多少种?
分析,三人的顺序定,实质是从7个位置中选出三个位置,然后按规定的顺序放置这三人,其余4人在4个位置上全排列。故有排法 =840种。
3、枚举法
三人互相传球,由甲开始传球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有
(A)6 种 (B)8 种 (C)0 种 (D)12 种
解:(枚举法)该题新颖,要在考试短时间内迅速获得答案,考虑互传次数不多,所得选择的答案数字也不大,只要按题意一一列举即可。
[来源:www.shulihua.net]
第三个专题 分堆问题
重点解决:
1、均匀分堆和非均匀分堆
关于这个问题,课本P146练习10如此出现:8个篮球队有2个强队,先任意将这8各队分成两个组,(每组4个队)进行比赛,这两个强队被分成在一个小组的概率是多少?
由于课本后面出现这样的练习题,所以前面应对这些问题有所分析,尤其为什么均匀分堆有出现重复?应举例说明。
例:有六编号不同的小球,
①??? 分成3堆,每堆两个
②??? 分成3堆,一堆一个,一堆两个,一堆三个
③??? 分成3堆,一堆一个,一堆一个,一堆四个
在①、②、③的条件下,再分别给三个小朋友玩,每人一堆,有多少种分法?
分析:①、②、③都是分堆,其中①是三个均匀分堆,有3!重复,③是两个均匀分堆,有2!重复,如此类推。②是非均匀分堆,不可能出现重复。在教学中应用数字表示球,通过列举法说明重复的可能,以及避免重复。
例:有六编号不同的小球,
①??? 分成3堆,每堆两个
②??? 分成3堆,一堆一个,一堆两个,一堆三个
③??? 分成3堆,一堆一个,一堆一个,一堆四个
在①、②、③的条件下,再分别给三个小朋友玩,每人一堆,有多少种分法?
分析:①、②、③都是分堆,其中①是三个均匀分堆,有3!重复,③是两个均匀分堆,有2!重复,如此类推。②是非均匀分堆,不可能出现重复。在教学中应用数字表示球,通
过列举法说明重复的可能,以及避免重复。
答案:① ② ③ ④再乘以
2、为什么有重复,怎样避免重复
例:从4名男生、5名女生中任选3人参加学代会,至少男生、女生各一名的不同选法有多少种?
有些学生这样想:先从4人中选一人,再从5人中选一人,最后在剩下的7人中选一人, 结果是 结果是错误的。因为后面的7人与前面已选的人可能出现重
复,正确的答案是 。
又例:有4个唱歌节目,4个舞蹈节目,2个小品排成一个节目单,但舞蹈和小品要相隔,不同的编排有多少种方法?
有些学生这样想,先定位4个唱歌,有5个位插入小品两个位,此时有7个位再插入4个舞蹈,故的表达式是 。[来源:www.shulihua.net]
其实,这里又出现了重复,正确的列式是

第四个专题 直接法和间接法的区别及运用
重点解决:
1、选择集合的元素有交集问题;
例:七人并坐一排,要求甲不坐首位,乙不坐末位,共有几种不同的坐法?
法一:直接法
第一类:甲在第2-6号位中选一而坐,接着乙在第1-6位中余下的5个位中择一而坐,剩下的任意安排 (种);
第二类:甲在第7号坐,剩下的任意安排,有坐法数 (种)。
因此,不同的坐法数共有 (种)。
法二:间接法
七人并坐,共有坐法数 (种)。甲坐首位,有 种方法;乙坐末位,亦有 种方法。甲坐首位、乙坐末位都不符合题目要求,所以应该从扣除,但在扣除的过程中,甲坐首位且乙坐末位的情况被扣除了2次,因此还须补回一个 。因此,不同的坐法数有 (种)
2、选择元素中有至少、至多等问题。
在100件产品中,有98件合格品,2件次品,从100见产品中任意抽取3件,(1)至少有一件是次品的抽法有多少种?(2)至多有一件次品的抽法有多少种?
答:(1)解法1:
解法2 :
(2)
以上的处理,主要有如下几个好处:
①教学比较自然、流畅,容易对近似概念进行比较,找到其相同点和不同点,更深刻的从外延到内涵掌握概念及其数学意义。
②把相关概念弄清楚后,能给学生有足够的工具,使学生解决应用题时不在被工具而困扰,形成良好知识结构,解决问题的思路容易畅通
③重点突出,学生就比较容易把每一个难点和重点给予突破,减轻学生的负担又能实现学生的学习落到实处。
④在提高教学质量的前提下,又能提高效率。
www.shulihua.net
w。w-w*k&s%5¥u
www.shulihua.net
w。w-w*k&s%5¥u
课件42张PPT。第2课时 排列的应用自主学习 新知突破1.掌握常见的几种有限制条件的排列问题.
2.能应用排列与排列数公式解决简单的实际应用问题.甲、乙、丙三人排成一排,你能写出甲必须站在乙左侧的全部排法吗?(1)特殊元素优先法:对于有特殊元素的排列问题,一般应先考虑_________元素,再考虑其他元素.
(2)特殊位置优先法:对于有特殊位置的排列问题,一般先考虑_________位置,再考虑其他位置.
(3)相邻问题捆绑法:对于要求某几个元素相邻的排列问题,可将相邻的元素“捆绑”起来,看作一个“大”元素,与其他元素一起排列,然后再对_______元素内部进行排列.解决排列问题常用的方法特殊特殊捆绑
(4)不相邻问题插空法:对于要求有几个元素不相邻的排列问题,可先将其他元素排好,然后将________的元素插入在已排好的元素之间及两端空隙处.不相邻1.6名学生排成两排,每排3人,则不同的排法种数为(  )
A.36      B.120
C.720 D.240
答案: C2.要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有(  )
A.1 440种 B.960种
C.720种 D.480种3.若把英语单词“good”的字母顺序写错了,则可能出现的错误共有________种.
4.喜羊羊家族的四位成员与灰太狼,红太狼进行谈判,通过谈判他们握手言和,准备一起照合影像(排成一排).
(1)要求喜羊羊家族的四位成员必须相邻,有多少种排法?
(2)要求灰太狼、红太狼不相邻,有多少种排法?合作探究 课堂互动无限制条件的排列问题 (1)有5个不同的科研小课题,从中选3个由高二(2)班的3个学习兴趣小组进行研究,每组一个课题,共有多少种不同的安排方法?
(2)有5个不同的科研小课题,高二(6)班的3个学习兴趣小组报名参加,每组限报一个课题,共有多少种不同的报名方法?
[思路点拨] (1)选出3个课题进行排列;
(2)每个学习小组都选一个课题.  (1)从5个不同的课题中选出3个,由兴趣小组进行研究,对应于从5个不同元素中取出3个元素的一个排列.
因此不同的安排方法有A=5×4×3=60种.
(2)由题意知,3个兴趣小组可能报同一科研课题,因此元素可以重复,不是排列问题.
由于每个兴趣小组都有5种不同的选择,且3个小组都选择完才算完成这件事.由分步乘法计数原理得,共有5×5×5=125种报名方法.
[规律方法] 没有限制条件的排列问题,即对所排列的元素或所排列的位置没有特别的限制,这一类题相对简单,分清元素和位置即可.1.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示________种不同的信号.答案: 15 “在”与“不在”的问题 6个人按下列要求站一横排,分别有多少种不同的站法?
(1)甲不站右端,也不站左端;
(2)甲、乙站在两端;
(3)甲不站左端,乙不站右端.[思路点拨] 
[规律方法] 排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子.2.(1)某天课程表要排入政治、语文、数学、物理、化学、体育共6门课程,如果第一节不排体育,最后一节不排数学,一共有多少种不同的排法?
(2)用0,1,2,…,9十个数字可组成多少个满足以下条件的且没有重复数字的数:
①五位奇数;
②大于30 000的五位偶数. “相邻”与“不相邻”问题 7人站成一排,
(1)甲、乙两人相邻的排法有多少种?
(2)甲、乙两人不相邻的排法有多少种?
(3)甲、乙、丙三人必相邻的排法有多少种?
(4)甲、乙、丙三人两两不相邻的排法有多少种?
[思路点拨] 元素相邻,可以视为一个元素,即将甲、乙或甲、乙、丙“捆绑”在一起,视为一个元素,与其他元素一起排列.至于不相邻问题,可以用“总”的排法减去“相邻”的排法,也可以用插空法解决. [规律方法] 元素相邻和不相邻问题的解题策略3.4个男同学和3个女同学站成一排.
(1)3个女同学必须排在一起,有多少种不同的排法?
(2)任何两个女同学彼此不相邻,有多少种不同的排法?
(3)其中甲、乙两同学之间必须恰有3人,有多少种不同的排法?
(4)男生与女生相间排列的方法有多少种?◎从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项工作,若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有多少种?
[提示]  上述解答是首先考虑甲、乙两个特殊元素,但考虑不周全,甲、乙二人还可能选不上呢,或者只选甲、乙二人中的一人呢,所以应分三类情况.谢谢观看!