课件35张PPT。第二章2.3
2.3.2
离散型随机变量的方差2 突破常考题型题型一1 理解教材新知题型二3 跨越高分障碍4 应用落实体验随堂即时演练课时达标检测题型三 [提出问题] A机床B机床[导入新知] 越小 越小求离散型随机变量的方差 求两点分布、二项分布的方差、标准差 离散型随机变量的均值、方差的实际应用 乙保护区:试评定这两个保护区的管理水平.答案:A答案:D第二章 随机变量及其分布
2.3 离散型随机变量的均值与方差
2.3.2 离散型随机变量的方差
A级 基础巩固
一、选择题
1.已知随机变量ξ满足P(ξ=1)=0.3,P(ξ=2)=0.7,则E(ξ)和D(ξ)的值分别为( )
A.0.6和0.7 B.1.7和0.09
C.0.3和0.7 D.1.7和0.21
解析:E(ξ)=1×0.3+2×0.7=1.7,D(ξ)=(1.7-1)2×0.3+(1.7-2)2×0.7=0.21.
答案:D
2.已知X的分布列为:
X
-1
0
1
P
0.5
0. 3
0.2
则D(X)等于( )
A.0.7 B.0.61
C.-0.3 D.0
解析:E(X)=-1×0.5+0×0.3+1×0.2=-0.3,D(X)=(-1+0.3)2×0.5+(0+0.3)2×0.3+(1+0.3)2×0.2=0.61.
答案:B
3.甲、乙两个运动员射击命中环数ξ、η的分布列如下表.其中射击比较稳定的运动员是( )
环数k
8
9
10
P(ξ=k)
0.3
0.2
0.5
P(η=k)
0.2
0.4
0.4
A.甲 B.乙
C.一样 D.无法比较
解析:E(ξ)=9.2,E(η)=9.2,所以E(η)=E(ξ),D(ξ)=0.76,D(η)=0.56<D(ξ),所以乙稳定.
答案:B
4.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B(10,0.6),则E(η)和D(η)的值分别是( )
A.6和2.4 B.2和2.4
C.2和5.6 D.6和5.6
解析:由已知E(ξ)=10×0.6=6,D(ξ)=10×0.6×0.4=2.4.因为ξ+η=8,所以η=8-ξ.
所以E(η)=-E(ξ)+8=2,D(η)=(-1)2D(ξ)=2.4.
答案:B
5.随机变量ξ的分布列如下表,且E(ξ)=1.1,则D(ξ)=( )
ξ
0
1
x
P
p
A.0.36 B.0.52
C.0.49 D.0.68
解析:先由随机变量分布列的性质求得p=.
由E(ξ)=0×+1×+x=1.1,得x=2,
所以D(ξ)=(0-1.1)2×+(1-1.1)2×+(2-1.1)2×=0.49.
答案:C
二、填空题
6.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________.
解析:在一次试验中发生次数记为ξ,则ξ服从两点分布,则D(ξ)=p(1-p),所以p(1-p)=0.25,解得p=0.5.
答案:0.5
7.已知X的分布列为:
X
-1
0
1
P
若η=2X+2,则D(η)的值为________.
解析:E(X)=-1×+0×+1×=-,D(X)=,D(η)=D(2X+2)=4D(X)=.
答案:
8.随机变量X的分布列如下表:
X
0
1
2
P
x
y
z
其中x,y,z成等差数列,若E(X)=,则D(X)的值是________.
解析:E(X)=0×x+1×y+2×z=y+2z=,
又x+y+z=1,且2y=x+z,解得x=,y=,z=0,所以D(X)=×+×+×0=.
答案:
三、解答题
9.已知随机变量X的分布列为:
X
0
1
x
P
p
若E(X)=.
(1)求D(X)的值;
(2)若Y=3X-2,求的值.
解:由++p=1,得p=.
又E(X)=0×+1×+x=,
所以x=2.
(1)D(X)=×+×+×==.
(2)因为Y=3X-2,所以D(Y)=D(3X-2)=9D(X).
所以==3=.
10.每人在一轮投篮练习中最多可投篮4次,现规定一旦命中即停止该轮练习,否则一直试投到4次为止.已知一选手的投篮命中率为0.7,求一轮练习中该选手的实际投篮次数ξ的分布列,并求出ξ的期望E(ξ)与方差E(ξ)(保留3位有效数字).
解:ξ的取值为1,2,3,4.若ξ=1,表示第一次即投中,故P(ξ=1)=0.7;若ξ=2,表示第一次未投中,第二次投中,故P(ξ=2)=(1-0.7)×0.7=0.21;若ξ=3,表示第一、二次未投中,第三次投中,故P(ξ=3)=(1-0.7)2×0.7=0.063;若ξ=4,表示前三次未投中,故P(ξ=4)=(1-0.7)3=0.027.
因此ξ的分布列为:
ξ
1
2
3
4
P
0.7
0.21
0.063
0.027
E(ξ)=1×0.7+2×0.21+3×0.063+4×0.027=1.417.
D(ξ)=(1-1.417)2×0.7+(2-1.417)2×0.21+(3-1.417)2×0.063+(4-1.417)2×0.027=0.513.
B级 能力提升
1.若ξ是离散型随机变量,P(ξ=X1)=,P(ξ=X2)=,且X1<X2,又已知E(ξ)=,D(ξ)=,则X1+X2的值为( )
A. B.
C.3 D.
解析:X1,X2满足
解得或
因为X1<X2,所以X1=1,X2=2,所以X1+X2=3.
答案:C
2.抛掷一枚均匀硬币n(3≤n≤8)次,正面向上的次数ξ服从二项分布B,若P(ξ=1)=,则方差D(ξ)=________.
解析:因为3≤n≤8,ξ服从二项分布B,且P(ξ=1)=,所以C··=,即n=,解得n=6,所以方差D(ξ)=np(1-p)=6××=.
答案:
3.有三张形状、大小、质地完全一致的卡片,在每张卡片上写上0,1,2,现从中任意抽取一张,将其上数字记作x,然后放回,再抽取一张,其上数字记作y,令ξ=x·y.求:
(1)ξ所取各值的分布列;
(2)随机变量ξ的数学期望与方差.
解:(1)随机变量ξ的可能取值有0,1,2,4,“ξ=0”是指两次取的卡片上至少有一次为0,其概率为P(ξ=0)=1-×=;
“ξ=1”是指两次取的卡片上都标着1,其概率为P(ξ=1)=×=;
“ξ=2”是指两次取的卡片上一个标着1,另一个标着2,其概率为P(ξ=2)=2××=;
“ξ=4”是指两次取的卡片上都标着2,其概率为P(ξ=4)=×=.
则ξ的分布列为:
ξ
0
1
2
4
P
(2)E(ξ)=0×+1×+2×+4×=1,
D(ξ)=(0-1)2×+(1-1)2×+(2-1)2×+(4-1)2×=.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计( )
A.甲种水稻比乙种水稻分蘖整齐
B.乙种水稻比甲种水稻分蘖整齐
C.甲、乙两种水稻分蘖整齐程度相同
D.甲、乙两种水稻分蘖整齐不能比较
【解析】 ∵D(X甲)>D(X乙),
∴乙种水稻比甲种水稻整齐.
【答案】 B
2.设二项分布B(n,p)的随机变量X的均值与方差分别是2.4和1.44,则二项分布的参数n,p的值为( )
A.n=4,p=0.6 B.n=6,p=0.4
C.n=8,p=0.3 D.n=24,p=0.1
【解析】 由题意得,np=2.4,np(1-p)=1.44,
∴1-p=0.6,∴p=0.4,n=6.
【答案】 B
3.已知随机变量X的分布列为P(X=k)=,k=3,6,9.则D(X)等于( )
A.6 B.9 C.3 D.4
【解析】 E(X)=3×+6×+9×=6.
D(X)=(3-6)2×+(6-6)2×+(9-6)2×=6.
【答案】 A
4.同时抛掷两枚均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则D(ξ)=( )
A. B.
C. D.5
【解析】 两枚硬币同时出现反面的概率为×=,故ξ~B,
因此D(ξ)=10××=.故选A.
【答案】 A
5.已知X的分布列为( )
X
-1
0
1
P
则①E(X)=-,②D(X)=,③P(X=0)=.
其中正确的个数为( )
A.0 B.1 C.2 D.3
【解析】 E(X)=(-1)×+0×+1×=-,故①正确;
D(X)=2×+2×+2×=,故②不正确;③P(X=0)=显然正确.
【答案】 C
二、填空题
6.(2018·浙江高考)随机变量ξ的取值为0,1,2.若P(ξ=0)=,E(ξ)=1,则D(ξ)=________.
【解析】 设P(ξ=1)=a,P(ξ=2)=b,
则解得
所以D(ξ)=+×0+×1=.
【答案】
7.(2018·扬州高二检测)设一次试验成功的概率为p,进行100次独立重复试验,当p=________时,成功次数的标准差的值最大,其最大值为________.
【解析】 由独立重复试验的方差公式可以得到
D(ξ)=np(1-p)≤n2=,等号在p=1-p=时成立,所以D(ξ)max=100××=25,==5.
【答案】 5
8.一次数学测验由25道选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确的,每个答案选择正确得4分,不作出选择或选错不得分,满分100分,某学生选对任一题的概率为0.6,则此学生在这一次测验中的成绩的均值与方差分别为________.
【解析】 设该学生在这次数学测验中选对答案的题目的个数为X,所得的分数(成绩)为Y,则Y=4X.
由题知X~B(25,0.6),
所以E(X)=25×0.6=15,D(X)=25×0.6×0.4=6,
E(Y)=E(4X)=4E(X)=60,D(Y)=D(4X)=42×
D(X)=16×6=96,
所以该学生在这次测验中的成绩的均值与方差分别是60与96.
【答案】 60,96
三、解答题
9.海关大楼顶端镶有A、B两面大钟,它们的日走时误差分别为X1,X2(单位:s),其分布列如下:
X1
-2
-1
0
1
2
P
0.05
0.05
0.8
0.05
0.05
X2
-2
-1
0
1
2
P
0.1
0.2
0.4
0.2
0.1
根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量.
【解】 ∵E(X1)=0,E(X2)=0,∴E(X1)=E(X2).
∵D(X1)=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5;
D(X2)=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2.
∴D(X1)由上可知,A面大钟的质量较好.
10.袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,X表示所取球的标号.
(1)求X的分布列、期望和方差;
(2)若Y=aX+b,E(Y)=1,D(Y)=11,试求a,b的值.
【解】 (1)X的分布列为:
X
0
1
2
3
4
P
∴E(X)=0×+1×+2×+3×+4×=1.5.
D(X)=(0-1.5)2×+(1-1.5)2×+(2-1.5)2×+(3-1.5)2×+(4-1.5)2×=2.75.
(2)由D(Y)=a2D(X),得a2×2.75=11,得a=±2.
又∵E(Y)=aE(X)+b,所以当a=2时,由1=2×1.5+b,得b=-2;
当a=-2时,由1=-2×1.5+b,得b=4.
∴或即为所求.
[能力提升]
1.若X是离散型随机变量,P(X=x1)=,P(X=x2)=,且x1<x2,又已知E(X)=,D(X)=,则x1+x2的值为( )
A. B.
C.3 D.
【解析】 ∵E(X)=x1+x2=.
∴x2=4-2x1,D(X)=2×+2×=.
∵x1<x2,∴∴x1+x2=3.
【答案】 C
2.设随机变量ξ的分布列为P(ξ=k)=Ck·n-k,k=0,1,2,…,n,且E(ξ)=24,则D(ξ)的值为( )
A.8 B.12 C. D.16
【解析】 由题意可知ξ~B,
∴n=E(ξ)=24,∴n=36.
又D(ξ)=n××=×36=8.
【答案】 A
3.变量ξ的分布列如下:
ξ
-1
0
1
P
a
b
c
其中a,b,c成等差数列,若E(ξ)=,则D(ξ)的值是________.
【解析】 由a,b,c成等差数列可知2b=a+c,
又a+b+c=3b=1,∴b=,a+c=.
又E(ξ)=-a+c=,∴a=,c=,
故分布列为
ξ
-1
0
1
P
∴D(ξ)=2×+2×+2×=.
【答案】
4.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图2-3-3所示.
图2-3-3
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
【解】 (1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个.”因此
P(A1)=(0.006+0.004+0.002)×50=0.6,
P(A2)=0.003×50=0.15,
P(B)=0.6×0.6×0.15×2=0.108.
(2)X可能取的值为0,1,2,3,相应的概率为
P(X=0)=C(1-0.6)3=0.064,
P(X=1)=C·0.6(1-0.6)2=0.288,
P(X=2)=C·0.62(1-0.6)=0.432,
P(X=3)=C·0.63=0.216,
则X的分布列为
X
0
1
2
3
P
0.064
0.288
0.432
0.216
因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,
方差D(X)=3×0.6×(1-0.6)=0.72.
2.3.2离散型随机变量的方差
教学目标:
知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。
过程与方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差 。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的方差、标准差
教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题
教具准备:多媒体、实物投影仪 。
教学设想:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差 。
授课类型:新授课
课时安排:2课时
教 具:多媒体、实物投影仪
内容分析:
数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.
回顾一组数据的方差的概念:设在一组数据,,…,中,各数据与它们的平均值得差的平方分别是,,…,,那么++…+
叫做这组数据的方差
教学过程:
一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示
2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
5. 分布列:
ξ
x1
x2
…
xi
…
P
P1
P2
…
Pi
…
6. 分布列的两个性质: ⑴Pi≥0,i=1,2,…; ⑵P1+P2+…=1.
7.二项分布:ξ~B(n,p),并记=b(k;n,p).
ξ
0
1
…
k
…
n
P
…
…
8.几何分布: g(k,p)= ,其中k=0,1,2,…, .
ξ
1
2
3
…
k
…
P
…
…
9.数学期望: 一般地,若离散型随机变量ξ的概率分布为
ξ
x1
x2
…
xn
…
P
p1
p2
…
pn
…
则称 …… 为ξ的数学期望,简称期望.
10. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平
11 平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值
12. 期望的一个性质:
13.若ξB(n,p),则Eξ=np
二、讲解新课:
1. 方差: 对于离散型随机变量ξ,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,…,那么,
=++…++…
称为随机变量ξ的均方差,简称为方差,式中的是随机变量ξ的期望.
2. 标准差:的算术平方根叫做随机变量ξ的标准差,记作.
3.方差的性质:(1);(2);
(3)若ξ~B(n,p),则np(1-p)
4.其它:
⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;
⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;
⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛
三、讲解范例:
例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.
解:抛掷散子所得点数X 的分布列为
ξ
1
2
3
4
5
6
P
从而
;
.
例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息:
甲单位不同职位月工资X1/元
1200
1400
1600
1800
获得相应职位的概率P1
0.4
0.3
0.2
0.1
乙单位不同职位月工资X2/元
1000
1400
1800
2000
获得相应职位的概率P2
0.4
0.3
0.2
0.1
根据工资待遇的差异情况,你愿意选择哪家单位?
解:根据月工资的分布列,利用计算器可算得
EX1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1 [来源:www.shulihua.netwww.shulihua.net]
= 1400 ,
DX1 = (1200-1400) 2 ×0. 4 + (1400-1400 ) 2×0.3
+ (1600 -1400 )2×0.2+(1800-1400) 2×0. 1
= 40 000 ;
EX2=1 000×0.4 +1 400×0.3 + 1 800×0.2 + 2200×0.1 = 1400 ,
DX2 = (1000-1400)2×0. 4+(1 400-1400)×0.3 + (1800-1400)2×0.2 + (2200-1400 )2×0.l
= 160000 .
因为EX1 =EX2, DX1例3.设随机变量ξ的分布列为
ξ
1
2
…
n
P
…
求Dξ
解:(略),
例4.已知离散型随机变量的概率分布为
1
2
3
4
5
6
7
P
离散型随机变量的概率分布为
3.7
3.8
3.9
4
4.1
4.2
4.3
P
求这两个随机变量期望、均方差与标准差
解:;
;
;
=0.04, .
点评:本题中的和都以相等的概率取各个不同的值,但的取值较为分散,的取值较为集中.,,,方差比较清楚地指出了比取值更集中.
=2,=0.02,可以看出这两个随机变量取值与其期望值的偏差
例5.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平
解:
+(10-9);
同理有
由上可知,,所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.
点评:本题中,和所有可能取的值是一致的,只是概率的分布情况不同.=9,这时就通过=0.4和=0.8来比较和的离散程度,即两名射手成绩的稳定情况
例6.A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:
A机床 B机床
次品数ξ1
0
1
2
3
次品数ξ1
0
1
2
3
概率P
0.7
0.2
0.06
0.04
概率P
0.8
0.06
0.04
0.10
问哪一台机床加工质量较好
解: Eξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,
Eξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.
它们的期望相同,再比较它们的方差
Dξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2
×0.06+(3-0.44)2×0.04=0.6064,
Dξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2[来源:www.shulihua.netwww.shulihua.net]
×0.04+(3-0.44)2×0.10=0.9264.
∴Dξ1< Dξ2 故A机床加工较稳定、质量较好.
四、课堂练习:
1 .已知,则的值分别是( )
A.; B.; C.; D.
答案:1.D
2. 一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.
分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.
解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3
当ξ=0时,即第一次取得正品,试验停止,则
P(ξ=0)=
当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则
P(ξ=1)=
当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则
P(ξ=2)=
当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P(ξ=3)=
所以,Eξ=
3. 有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求Eξ,Dξ
分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξB(200,1%),从而可用公式:Eξ=np,Dξ=npq(这里q=1-p)直接进行计算
解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξB(200,1%)因为Eξ=np,Dξ=npq,这里n=200,p=1%,q=99%,所以,Eξ=200×1%=2,Dξ=200×1%×99%=1.98
4. 设事件A发生的概率为p,证明事件A在一次试验中发生次数ξ的方差不超过1/4
分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差Dξ=P(1-P)后,我们知道Dξ是关于P(P≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论
证明:因为ξ所有可能取的值为0,1且P(ξ=0)=1-p,P(ξ=1)=p,
所以,Eξ=0×(1-p)+1×p=p
则 Dξ=(0-p)2×(1-p)+(1-p) 2×p=p(1-p)
5. 有A、B两种钢筋,从中取等量样品检查它们的抗拉强度,指标如下:
ξA
110
120
125
130
135
ξB
100
115
125
130
145
P
0.1
0.2
0.4
0.1
0.2
P
0.1
0.2
0.4
0.1
0.2
其中ξA、ξB分别表示A、B两种钢筋的抗拉强度.在使用时要求钢筋的抗拉强度不低于120,试比较A、B两种钢筋哪一种质量较好
分析: 两个随机变量ξA和ξB&都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA取较为集中的数值110,120,125,130,135;ξB取较为分散的数值100,115,125,130,145.直观上看,猜想A种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性
解:先比较ξA与ξB的期望值,因为
EξA=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125,
EξB=100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125.
所以,它们的期望相同.再比较它们的方差.因为
DξA=(110-125)2×0.1+(120-125) 2 ×0.2+(130-125) 2×0.1+(135-125) 2×0.2=50,
DξB=(100-125)2×0.1+(110-125) 2 ×0.2+(130-125) 2×0.1+(145-125) 2×0.2=165.
所以,DξA < DξB.因此,A种钢筋质量较好
6. 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?
分析:这是同学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用
解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题
意,可得ξ的分布列为
ξ
0
5
25
100
P
答:一张彩票的合理价格是0.2元.
五、小结 :⑴求离散型随机变量ξ的方差、标准差的步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ;④根据方差、标准差的定义求出、.若ξ~B(n,p),则不必写出分布列,直接用公式计算即可.
⑵对于两个随机变量和,在和相等或很接近时,比较和
,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要
六、课后作业: P69练习1,2,3 P69 A组4 B组1,2
1.设~B(n、p)且E=12 D=4,求n、p
解:由二次分布的期望与方差性质可知E=np D= np(1-p)
∴ ∴
2.已知随机变量服从二项分布即~B(6、)求b (2;6,)
解:p(=2)=c62()2()4
3.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量和,已知和 的分布列如下:(注得分越大,水平越高)
1
2
3
p
a
0.1
0.6
1
2
3
p
0.3
b
0.3
试分析甲、乙技术状况
解:由0.1+0.6+a+1a=0.3
0.3+0.3+b=1a=0.4
∴E=2.3 , E=2.0
D=0.81 , D=0.6
七、板书设计(略) [来源:www.shulihua.net数理化网]
八、教学反思:
⑴求离散型随机变量ξ的方差、标准差的步骤:
①理解ξ的意义,写出ξ可能取的全部值;
②求ξ取各个值的概率,写出分布列;
③根据分布列,由期望的定义求出Eξ;[来源:www.shulihua.netwww.shulihua.net]
④根据方差、标准差的定义求出、.若ξ~B(n,p),则不必写出分布列,直接用公式计算即可.
⑵对于两个随机变量和,在和相等或很接近时,比较和,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要
www.shulihua.net
w。w-w*k&s%5¥u
www.shulihua.net
w。w-w*k&s%5¥u
课件50张PPT。2.3.2 离散型随机变量的方差自主学习 新知突破1.理解取有限个值的离散型随机变量的方差和标准差的概念和意义.
2.能计算简单的离散型随机变量的方差和标准差,并能解决实际问题.
3.掌握方差的性质以及两点分布、二项分布的方差的求法.A,B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表:[问题1] 试求E(X1),E(X2).
[提示1] E(X1)=0×0.7+1×0.2+2×0.06+3×0.04=0.44.
E(X2)=0×0.8+1×0.06+2×0.04+3×0.10=0.44.
[问题2] 由E(X1)和E(X2)的值说明了什么?
[提示2] E(X1)=E(X2).
[问题3] 试想利用什么指标可以比较加工质量?
[提示3] 样本方差.1.方差的定义:设离散型随机变量X的分布列为:离散型随机变量的方差与标准差的概念 则(xi-E(x))2描述了xi(i=1,2,…,n)相对于均值E(X)的偏
离程度,而D(X)=____________________为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度.称D(X)为随机变量X的__________.方差标准差 1.当a,b为常数时,随机变量Y=aX+b,则D(Y)=D(aX+b)=a2D(X).
(1)当a=0时,D(Y)=D(b)=0;
(2)当a=1时,D(Y)=D(X+b)=D(X);
(3)当b=0时,D(Y)=D(aX)=a2D(X).
2.D(X)=E(X2)-(E(X))2.离散型随机变量方差的性质1.两点分布的方差:若离散型随机变量X服从两点分布,则D(X)=_________________.
2.二项分布的方差:若离散型随机变量X服从参数为n,p的二项分布,即________________,则D(X)=________________.两点分布和二项分布的方差p(1-p)X~B(n,p)np(1-p)对随机变量X的方差、标准差的理解
(1)随机变量X的方差的定义与一组数据的方差的定义式是相同的;
(2)随机变量X的方差和标准差都反映了随机变量X取值的稳定性和波动、集中与离散程度;
(3)D(X)越小,稳定性越高,波动越小;
(4)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.1.已知X~B(n,p),E(X)=2,D(X)=1.6,则n,p的值分别为( )
A.100,0.8 B.20,0.4
C.10,0.2 D.10,0.8
解析: E(X)=np=2,D(X)=np(1-p)=1.6,
∴p=0.2,n=10.
答案: C3.已知随机变量ξ的分布列为
则D(ξ)=________.
解析: E(ξ)=0.1×0+0.15×1+0.25×2+0.25×3+0.15×4+0.1×5=2.5,
所以D(ξ)=(0-2.5)2×0.1+(1-2.5)2×0.15+(2-2.5)2×0.25+(3-2.5)2×0.25+(4-2.5)2×0.15+(5-2.5)2×0.1=2.05.
答案: 2.054.编号为1,2,3的三位同学随意入座编号为1,2,3的三个座位,每位同学一个座位,设与座位编号相同的学生的个数为ξ,求D(ξ).合作探究 课堂互动方差和标准差的计算
[思路点拨] (1)利用方差公式求解,首先求出均值E(η),然后利用D(η)定义求方差;(2)由于E(η)是一个常数,所以D(Y)=D(2η-E(η))=22D(η).[规律方法] 1.离散型随机变量的方差的求法:
(1)明确随机变量的取值及每个值的试验结果;
(2)求出随机变量各取值对应的概率;
(3)写出随机变量的分布列;
(4)利用离散型随机变量的均值公式E(X)=x1p1+x2p2+…+xnpn求出X的数学期望;
(5)代入公式D(X)=(x1-E(X))2·p1+(x2-E(X))2·p2+…+(xn-E(X))2·pn,求出X的方差.
2.注意随机变量aX+b的方差可用D(aX+b)=a2D(X)求解.两点分布和二项分布的方差 某人投弹击中目标的概率为p=0.8.
(1)求投弹一次,命中次数X的均值和方差;
(2)求重复10次投弹时,击中次数Y的均值和方差.
[思路点拨] 投弹一次的命中次数X服从两点分布,而重复10次投弹可以认为是10次独立重复试验,击中次数Y服从二项分布. [规律方法] 正确认识二项分布及在解题中的应用
(1)在解决有关均值和方差问题时,同学们要认真审题,如果题目中离散型随机变量符合二项分布,就应直接利用二项分布求期望和方差,以简化问题的解答过程;
(2)对于二项分布公式E(X)=np和D(X)=np(1-p)要熟练掌握.
特别提醒: 求随机变量的期望、方差时,首先要分析随机变量是否符合特殊分布,符合的要用相应的公式求解.方差的应用 甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:
甲保护区:乙保护区:
试评定这两个保护区的管理水平.
[思路点拨] 从均值和方差角度去评定,并根据实际情况去分析. [规律方法] 关于均值与方差的说明
均值仅体现了随机变量取值的平均水平,但有时仅知道均值大小还是不够的,比如:两个随机变量的均值相等了,还需要知道随机变量的取值如何在均值周围变化,即计算其方差(或是标准差).方差大说明随机变量取值分散性大;方差小说明随机变量取值分散性小或者说取值比较集中、稳定.3.甲、乙两射手在同一条件下进行射击,射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.4.用击中环数的数学期望与方差比较两名射手的射击水平.解析: 设甲、乙两射手击中环数分别为ξ1,ξ2,E(ξ1)=8×0.2+9×0.6+10×0.2=9,
D(ξ1)=(8-9)2×0.2+(9-9)2×0.6+(10-9)2×0.2=0.4;
同理有E(ξ2)=9,D(ξ2)=0.8.
由上可知E(ξ1)=E(ξ2),D(ξ1)所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,而乙得环数较分散.求实际问题的期望和方差 设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取一个,并且取出不再放回,若以ξ表示取出次品的个数,求ξ的分布列、期望值及方差.
[思路点拨] 要求ξ的分布列,必须先确定随机变量ξ的可能取的所有值,进而求出ξ取每一个值时的概率,然后借助均值和方差的定义求出均值和方差.
[规律方法] 解答此类问题要注意以下几个问题:
1.准确表达出有关随机变量的分布列,完成此环节的难点是弄清随机变量各取值的含义,用参数表示有关量.
2.熟练应用均值、方差的计算公式和性质:(1)应用公式关键是先明确公式中有关量的含义,再从题目条件中寻找它的取值;
(2)对于两点分布,二项分布等特殊分布列要注意求均值、方差特定结论的应用.4.袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.求ξ的分布列、期望和方差.◎设ξ是一个离散型随机变量,其分布列如下:谢谢观看!