高中数学(人教版A版选修2-3)配套课件2份、教案、学案、同步练习题,补习复习资料:第二章 章末复习

文档属性

名称 高中数学(人教版A版选修2-3)配套课件2份、教案、学案、同步练习题,补习复习资料:第二章 章末复习
格式 zip
文件大小 3.3MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2020-08-29 15:49:57

文档简介

课件48张PPT。第2部分二、高频考点聚焦考点一一、知识体系全览考点二考点三三、模块综合检测考点四一、知识体系全览
——理清知识脉略 
主干知识一网尽览二、高频考点聚焦——锁定备考范围 高考题型全盘突破排列与组合[答案] (1)480 (2)590答案:B 答案:C 二项式定理及应用 [答案] (1)B (2)10答案:C 答案:D离散型随机变量的分布列及其均值统 计 案 例[答案] C章末复习课
整合·网络构建]
警示·易错提醒]
1.“互斥事件”与“相互独立事件”的区别.
“互斥事件”是说两个事件不能同时发生,“相互独立事件”是说一个事件发生与否对另一个事件发生的概率没有影响.
2.对独立重复试验要准确理解.
(1)独立重复试验的条件:第一,每次试验是在同样条件下进行;第二,任何一次试验中某事件发生的概率相等;第三,每次试验都只有两种结果,即事件要么发生,要么不发生.
(2)独立重复试验概率公式的特点:关于P(X=k)=Cpk(1-p)n-k,它是n次独立重复试验中某事件A恰好发生k次的概率.其中n是重复试验次数,p是一次试验中某事件A发生的概率,k是在n次独立试验中事件A恰好发生的次数,弄清公式中n,p,k的意义,才能正确运用公式.
3.(1)准确理解事件和随机变量取值的意义,对实际问题中事件之间的关系要清楚.
(2)认真审题,找准关键字句,提高解题能力.如“至少有一个发生”“至多有一个发生”“恰有一个发生”等.
(3)常见事件的表示.已知两个事件A、B,则A,B中至少有一个发生为A∪B;都发生为A·B;都不发生为·;恰有一个发生为(·B)∪(A·);至多有一个发生为(·)∪(·B)∪(A·).
4.对于条件概率,一定要区分P(AB)与P(B|A).
5.(1)离散型随机变量的期望与方差若存在则必唯一,期望E(ξ)的值可正也可负,而方差的值则一定是一个非负值.它们都由ξ的分布列唯一确定.
(2)D(ξ)表示随机变量ξ对E(ξ)的平均偏离程度.D(ξ) 越大表明平均偏离程度越大,说明ξ的取值越分散;反之D(ξ)越小,ξ的取值越集中.
(3)D(aξ+b)=a2D(ξ),在记忆和使用此结论时,请注意D(aξ+b)≠aD(ξ)+b,D(aξ+b)≠aD(ξ).
6.对于正态分布,要特别注意N(μ,σ2)由μ和σ唯一确定,解决正态分布问题要牢记其概率密度曲线的对称轴为x=μ.
专题一 条件概率的求法
条件概率是高考的一个热点,常以选择题或填空题的形式出现,也可能是大题中的一个部分,难度中等.
例1] 坛子里放着7个大小、形状相同的鸭蛋,其中有4个是绿皮的,3个是白皮的.如果不放回地依次拿出2个鸭蛋,求:
(1)第1次拿出绿皮鸭蛋的概率;
(2)第1次和第2次都拿出绿皮鸭蛋的概率;
(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.
解:设“第1次拿出绿皮鸭蛋”为事件A,“第2次拿出绿皮鸭蛋”为事件B,则“第1次和第2次都拿出绿皮鸭蛋”为事件AB.
(1)从7个鸭蛋中不放回地依次拿出2个的事件数为n(Ω)=A=42,
根据分步乘法计数原理,n(A)=A×A=24.
于是P(A)===.
(2)因为n(AB)=A=12,
所以P(AB)===.
(3)法一 由(1)(2)可得,在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率为P(B|A)==
÷=.
法二 因为n(AB)=12,n(A)=24,
所以P(B|A)===.
归纳升华
解决概率问题的步骤.
第一步,确定事件的性质:古典概型、互斥事件、独立事件、独立重复试验、条件概率,然后把所给问题归结为某一种.
第二步,判断事件的运算(和事件、积事件),确定事件至少有一个发生还是同时发生,分别运用相加或相乘事件公式.
第三步,利用条件概率公式求解:(1)条件概率定义:
P(B|A)=.(2)针对古典概型,缩减基本事件总数P(B|A)=.
变式训练] 把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为是多少?
解:“第一次抛出偶数点”记为事件A,“第二次抛出偶数点”记为事件B,则P(A)==,P(AB)==.
所以P(B|A)==÷=.
专题二 互斥事件、独立事件的概率
要正确区分互斥事件与相互独立事件,准确应用相关公式解题,互斥事件是不可能同时发生的事件,相互独立事件是指一个事件的发生与否对另一个事件没有影响.
例2] 如图所示,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.
(1)求p;
(2)求电流能在M与N之间通过的概率.
解:记Ai表示事件:电流能通过Ti,i=1,2,3,4,
A表示事件:T1,T2,T3中至少有一个能通过电流,
B表示事件:电流能在M与N之间通过.
(1) ,A1,A2,A3相互独立,
P()=P=(1-p)3.
又P()=1-P(A)=1-0.999=0.001,
P(A3)=0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9=0.989 1.
归纳升华
求解相互独立事件同时发生的概率时,要注意以下几个问题:
(1)若事件A与B相互独立,则事件与B,A与,与分别相互独立,且有P(B)=P()P(B),P(A)=P(A)P(),P( )=P()P().
(2)若事件A1,A2,…,An相互独立,则有P(A1A2A3…An)=P(A1)P(A2)…P(An).
变式训练] 一个电路如图所示,A,B,C,D,E,F为6个开关,其闭合的概率都是,且是相互独立的,则灯亮的概率是多少?
解:由题意知,四条线路是否闭合相互独立,开关A,B与E,F闭合的概率相等,都是P(AB)=P(A)·P(B)=×=,所以四条线路都不闭合的概率为P1=·=,所以灯亮的概率为P=1-=.
专题三 独立重复试验与二项分布
二项分布是高考考查的重点,要准确理解、熟练运用其概率公式Pn(k)=C·pk(1-p)n-k,k=0,1,2,…,n,高考以解答题为主,有时也用选择题、填空题形式考查.
例3] 现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(1)求张同学所取的3道题至少有1道乙类题的概率;
(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X为1和3的概率.
解:(1)设事件A=“ 张同学所取的3道题至少有1道乙类题”,则有A=“张同学所取的3道题都是甲类题”.
因为P()==,所以P(A)=1-P()=.
(2)P(X=1)=C··+C··=;
P(X=3)=C··=.
归纳升华
解决二项分布问题必须注意:
(1)对于公式Pn(k)=C·pk(1-p)n-k,k=0,1,2,…,n必须在满足“独立重复试验”时才能运用,否则不能应用该公式.
(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n次.
变式训练] 一位病人服用某种新药后被治愈的概率为0.9,服用这种新药的有甲、乙、丙3位病人,且各人之间互不影响,有下列结论:
①3位病人都被治愈的概率为0.93;
②3人中的甲被治愈的概率为0.9;
③3人中恰好有2人被治愈的概率是2×0.92×0.1;
④3人中恰好有2人未被治愈的概率是3×0.9×0.12.
其中正确结论的序号是________(把正确结论的序号都填上).
解析: ①中事件为3次独立重复试验恰有3次发生的概率,其概率为0.93,故①正确;由独立重复试验中,事件A发生的概率相同,知②正确;③中恰有2人被治愈的概率为P(X=2)=Cp2(1-p)=3×0.92×0.1,从而③错误;④中恰好有2人未被治愈相当于恰好1人被治愈,故概率为C×0.9×0.12=3×0.9×0.12,从而④正确.
答案:①②④
专题四 离散型随机变量的期望与方差
离散型随机变量的均值和方差在实际问题中具有重要意义,也是高考的热点内容.
例4] 一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件做检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件做检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.
解:(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=×+×=.
(2)X可能的取值为400,500,800,并且P(X=400)=1--=,
P(X=500)=,P(X=800)=.
所以X的分布列为:
X
400
500
800
P



E(X)=400×+500×+800×=506.25.
归纳升华
(1)求离散型随机变量的分布列有以下三个步骤:①明确随机变量X取哪些值;②计算随机变量X取每一个值时的概率;③将结果用表格形式列出.计算概率时要注意结合排列组合知识.
(2)均值和方差的求解方法是:在分布列的基础上利用
E(X)=x1p1+x2p2+…+xipi+…+xnpn求出均值,然后利用D(X)=xi-E(X)]2pi求出方差.
变式训练] 甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ,η,已知甲、乙两名射手在每次射击中射中的环数大于6环,且甲射中10,9,8,7环的概率分别为0.5,3a,a,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.
(1)求ξ,η的分布列;
(2)求ξ,η的数学期望与方差,并以此比较甲、乙的射击技术.
解:(1)由题意得:0.5+3a+a+0.1=1,解得a=0.1.
因为乙射中10,9,8环的概率分别为0.3,0.3,0.2,所以乙射中7环的概率为1-(0.3+0.3+0.2)=0.2.
所以ξ,η的分布列分别为:
ξ
10
9
8
7
P
0.5
0.3
0.1
0.1
 
η
10
9
8
7
P
0.3
0.3
0.2
0.2
(2)由(1)得:
E(ξ)=10×0.5+9×0.3+8×0.1+7×0.1=9.2;
E(η)=10×0.3+9×0.3+8×0.2+7×0.2=8.7;
D(ξ)=(10-9.2)2×0.5+(9-9.2)2×0.3+(8-9.2)2×0.1+(7-9.2)2×0.1=0.96;
D(η)=(10-8.7)2×0.3+(9-8.7)2×0.3+(8-8.7)2×0.2+(7-8.7)2×0.2=1.21.
由于E(ξ)>E(η),D(ξ)<D(η),说明甲射击的环数的均值比乙高,且成绩比较稳定,所以甲比乙的射击技术好.
专题五 正态分布及简单应用
高考主要以选择题、填空题形式考查正态曲线的形状特征与性质,抓住其对称轴是关键.
例5] 为了解一种植物的生长情况,抽取一批该植物样本测量高度(单位:cm),其频率分布直方图如图所示.
(1)求该植物样本高度的平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);
(2)假设该植物的高度Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2,利用该正态分布求P(64.5<Z<96).
(附:=10.5.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4)
解:(1)x=55×0.1+65×0.2+75×0.35+85×0.3+95×0.05=75,
s2=(55-75)2×0.1+(65-75)2×0.2+(75-75)2×0.35+(85-75)2×0.3+(95-75)2×0.05=110.
(2)由(1)知,Z~N(75,110),
从而P(64.5<Z<75)=×P(75-10.5<Z<75+10.5)=×0.682 6=0.341 3,
P(75<Z<96)=×P(75-2×10.5<Z<75+2×10.5)=×0.954 4=0.477 2,
所以P(64.5<Z<96)=P(64.5<Z<75)+P(75<Z<96)=0.341 3+0.477 2=0.818 5.
归纳升华
求解正态分布的问题,要根据正态曲线的对称性,还要结合3σ原则以及正态曲线与x轴之间的面积为1.
变式训练] 某镇农民年收入服从μ=5 000元,σ=200元的正态分布.则该镇农民平均收入在5 000~5 200元的人数的百分比是________.
解析:设X表示此镇农民的平均收入,则X~N(5 000,2002).
由P(5 000-200<X≤5 000+200)=0.682 6.
得P(5 000<X≤5 200)==0.341 3.
故此镇农民平均收入在5 000~5 200元的人数的百分比为34.13%.
答案:34.13%
专题六 方程思想
方程思想是解决概率问题中的重要思想,在求离散型随机变量的分布列,求两个或三个事件的概率时常会用到方程思想.即根据题设条件列出相关未知数的方程(或方程组)求得结果.
例6] 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.
(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;
(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.
解:记A,B,C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.
由题设条件有
即
由①③得P(B)=1-P(C),代入②得
27P(C)]2-51P(C)+22=0.
解得P(C)=或P(C)=(舍去).
将P(C)=分别代入②③可得P(A)=,P(B)=.
故甲、乙、丙三台机床各自加工的零件是一等品的概率分别是,,.
(2)记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件.
则P(D)=1-P()=1-1-P(A)]1-P(B)]1-P(C)]=1-××=.
故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为.
归纳升华
(1)在求离散型随机变量的分布列时,常利用分布列的性质:①p1≥0,i=1,2,3,…,n;②i=1,列出方程或不等式求出未知数.
(2)在求两个或多个概率时,常根据不同类型的概率公式列出方程或方程组求出未知数.
变式训练] 若离散型随机变量ξ的分布列为:
ξ
0
1
P
9a2-a
3-8a
求常数a及相应的分布列.
解:由离散型随机变量的性质得
解得a=(舍去)或a=.
所以,随机变量的分布列为:
ξ
0
1
P


高中新课标选修(2-3)第二章随机变量及其分布测试题
一、选择题
1.将一枚均匀骰子掷两次,下列选项可作为此次试验的随机变量的是(  )
A.第一次出现的点数
B.第二次出现的点数
C.两次出现点数之和
D.两次出现相同点的种数
答案:C
2.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么为(  )
A.恰有1只坏的概率
B.恰有2只好的概率
C.4只全是好的概率
D.至多2只坏的概率
答案:B
3. 某人射击一次击中目标的概率为0.6,经过3次射击,设X表示击中目标的次数,则等于(  )
A. B. C. D.
答案:A
4.采用简单随机抽样从个体为6的总体中抽取一个容量为3的样本,则对于总体中指定的个体a,前两次没被抽到,第三次恰好被抽到的概率为(  )
A. B. C. D.
答案:D
5.设,则等于(  )
A.1.6 B.3.2 C.6.4 D.12.8
答案:C
6.在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为(  )
A.0.998 B.0.046 C.0.002 D.0.954
答案:D
7.设,则落在内的概率是(  )
A. B. C. D.
答案:D
8.设随机变量X的分布列如下表,且,则(  )
0
1
2
3
0.1
0.1
A.0.2 B.0.1 C. D.

答案:C
9.任意确定四个日期,设X表示取到四个日期中星期天的个数,则DX等于(  )
A. B. C. D.
答案:B
10.有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以X表示取出竹签的最大号码,则EX的值为(  )
A.4 B.4.5 C.4.75 D.5
答案:B
11.袋子里装有大小相同的黑白两色的手套,黑色手套15支,白色手套10只,现从中随机地取出2只手套,如果2只是同色手套则甲获胜,2只手套颜色不同则乙获胜.试问:甲、乙获胜的机会是(  )
A.甲多 B.乙多 C.一样多 D.不确定
答案:C
12.节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X服从如下表所示的分布:
200
300
400
500
0.20
0.35
0.30
0.15
若进这种鲜花500束,则利润的均值为(  )
A.706元 B.690元 C.754元 D.720元
答案:A
二、填空题
13.事件相互独立,若,则   .
答案:
14.设随机变量X等可能地取1,2,3,…,n,若,则等于    .
答案:5.5
15.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是    .
答案:
16.某公司有5万元资金用于投资开发项目.如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果.

则该公司一年后估计可获收益的均值是    元.
答案:4760
三、解答题
17.掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值和方差.
解:,,1,3,且;
,;

1
3
.
18.甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为和,求
(1)恰有1人译出密码的概率;
(2)若达到译出密码的概率为,至少需要多少乙这样的人.
解:设“甲译出密码”为事件A;“乙译出密码”为事件B,
则.
(1).
(2)个乙这样的人都译不出密码的概率为.
.解得.
达到译出密码的概率为,至少需要17人.
19.生产工艺工程中产品的尺寸偏差,如果产品的尺寸与现实的尺寸偏差的绝对值不超过4mm的为合格品,求生产5件产品的合格率不小于的概率.
(精确到0.001).
解:由题意,求得.
设表示5件产品中合格品个数,
则.

故生产的5件产品的合格率不小于80%的概率为0.981.
20.甲、乙、丙三名射击选手,各射击一次,击中目标的概率如下表所示:
选手



概率
若三人各射击一次,恰有k名选手击中目标的概率记为.
求X的分布列;(2)若击中目标人数的均值是2,求P的值.
解:(1);,


的分布列为
0
1
2
3
(2),
,.
21.张华同学上学途中必须经过四个交通岗,其中在岗遇到红灯的概率均为,在岗遇到红灯的概率均为.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.
(1)若,就会迟到,求张华不迟到的概率;(2)求EX.
解:(1);

故张华不迟到的概率为.
(2)的分布列为
0
1
2
3
4
.
22.某种项目的射击比赛,开始时在距目标100m处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150m处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200m处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分.已知射手甲在100m处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.
(1)求这位射手在三次射击中命中目标的概率;
(2)求这位射手在这次射击比赛中得分的均值.
解:记第一、二、三次射击命中目标分别为事件,三次都未击中目标为事件D,依题意,设在m处击中目标的概率为,则,且,
,即,
,,.
由于各次射击都是相互独立的,
∴该射手在三次射击中击中目标的概率

(2)依题意,设射手甲得分为X,则,
,,,

高中新课标选修(2-3)第二章随机变量及其分布测试题
一、选择题
1.给出下列四个命题:
①15秒内,通过某十字路口的汽车的数量是随机变量;
②在一段时间内,某侯车室内侯车的旅客人数是随机变量;
③一条河流每年的最大流量是随机变量;
④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.
其中正确的个数是(  )
A.1 B.2 C.3 D.4
答案:D
2.设离散型随机变量X的分布列为:
1
2
3
4
答案:C
3.袋中有3个红球、2个白球,从中任取2个,用X表示取到白球的个数,则X的分布列为(  )

答案:D
4.某人忘记了一个电话号码的最后一个数字,只好任意去试拔,他第一次失败,第二次成功的概率是(  )
A. B. C. D.
答案:A
5.甲、乙两人各进行一次射击,甲击中目标的概率是0.8,乙击中目标的概率是0.6,则两人都击中目标的概率是(  )
A.1.4 B.0.9 C.0.6 D.0.48
答案:D
6.某厂大量生产一种小零件,经抽样检验知道其次品率是,现把这种零件中6件装成一盒,那么该盒中恰好含一件次品的概率是(  )
A. B.
C. D.
答案:C
7.设随机变量,则等于(  )
A. B. C. D.
答案:A
8.两台相互独立工作的电脑,产生故障的概率分别为a,b,则产生故障的电脑台数的均值为(  )
A. B. C. D.
答案:B
9.设随机变量,则等于(  )
A. B. C. D.
答案:B
10.正态分布在下面几个区间内的取值概率依次为(  )
① ② ③
A.① ② ③
B.① ② ③
C.① ② ③
D.① ② ③
答案:B
11.设火箭发射失败的概率为0.01,若发射10次,其中失败的次数为X,则下列结论正确的是(  )
A. B.
C. D.
答案:D
12.某市期末教学质量检测,甲、乙、丙三科考试成绩近似服从正态分布,则由如图曲线可得下列说法中正确的是(  )
A.甲学科总体的方差最小
B.丙学科总体的均值最小
C.乙学科总体的方差及均值都居中
D.甲、乙、丙的总体的均值不相同
答案:A
二、填空题
13.若,,则     .
答案:
14.两台独立在两地工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,则恰有1台雷达发现飞行目标的概率为    .
答案:0.22
15.某灯泡厂生产大批灯泡,其次品率为1.5%,从中任意地陆续取出100个,则其中正品数X的均值为    个,方差为    .
答案:98.5,1.4775
16.设,当在内取值的概率与在内取值的概率相等时,  .
答案:4
三、解答题
17.一批产品分一、二、三级,其中一级品的数量是二级品的两倍,三级品的数量是二级品的一半,从这批产品中随机抽取一个检查其品级,用随机变量描述检验的可能结果,写出它的分布列.
解:设二级品有个,则一级品有个,三级品有个.一级品占总数的,
二级品占总数的,三级品占总数的.
又设表示取到的是级品,
则,,,
的分布列为:
1
2
3
18.如图,电路由电池并联组成.电池损坏的概率分别是0.3,0.2,0.2,求电路断电的概率.
解:设“电池损坏”,“电池损坏”,
“电池损坏”,则“电路断电”,


故电路断电的概率为0.012.
19.在口袋中有不同编号的3个白球和2个黑球.如果不放回地依次取两个球,求在第1次取到白球的条件下,第2次也取到白球的概率.
解:设“第1次取到白球”为事件A,“第2次取到白球”为事件B,
则,,

即在第1次取到白球的条件下,第2次也取到白球的概率为.
20.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所出次品数分别为,,且和的分布列为:
0
1
2
0
1
2
试比较两名工人谁的技术水平更高.
解:,.
,说明两人出的次品数相同,可以认为他们技术水平相当.
又,

,工人乙的技术比较稳定.
∴可以认为工人乙的技术水平更高.
21.在函数,的图象中,试指出曲线的位置,对称轴、渐近线以及函数的奇偶性、单调性和最大值分别是什么;指出参数与曲线形状的关系,并运用指数函数的有关性质加以说明.
解:由已知,,且.
由指数函数的性质知,说明曲线在x轴的上方;又由知,函数为偶函数,其图象的对称轴为 y轴;当趋向于无穷大时,趋向于0,即趋向于0,说明其渐近线为轴;其中,时,(即在对称轴的右侧),随的增大而减小,此时单调递减;同理在时单调递增;由偶函数的对称性知,时,有最大值;决定了曲线的“高矮”:越大,曲线越“矮胖”,反之则越“瘦高”.
22.某公司“咨询热线”电话共有8路外线,经长期统计发现,在8点到10点这段时间内,外线电话同时打入情况如下表所示:
电话同时
打入个数
0
1
2
3
4
5
6
7
8
概率
0.13
0.35
0.27
0.14
0.08
0.02
0.01
0
0
(1)若这段时间内,公司只安排了2位接线员(一个接线员一次只能接一个电话)
①求至少一路电话不能一次接通的概率;
②在一周五个工作日中,如果有三个工作日的这段时间(8点至10点)内至少一路电话不能一次接通,那么公司的形象将受到损害,现用至少一路电话不能一次接通的概率表示公司形象的“损害度”,求上述情况下公司形象的“损害度”.
(2)求一周五个工作日的这段时间(8点至10点)内,电话同时打入数X的均值.
解:(1)①;
②.
(2),

章末综合测评(二) 随机变量及其分布
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列说法不正确的是(  )
A.某辆汽车一年中发生事故的次数是一个离散型随机变量
B.正态分布随机变量等于一个特定实数的概率为0
C.公式E(X)=np可以用来计算离散型随机变量的均值
D.从一副扑克牌中随机抽取5张,其中梅花的张数服从超几何分布
【解析】 公式E(X)=np并不适用于所有的离散型随机变量的均值的计算,适用于二项分布的均值的计算.故选C.
【答案】 C
2.(2018·吉安高二检测)若在甲袋内装有8个白球、4个红球,在乙袋内装有6个白球、5个红球,现从两袋内各任意取出1个球,设取出的白球个数为X,则下列概率中等于的是(  )
A.P(X=0)     B.P(X≤2)
C.P(X=1) D.P(X=2)
【解析】 由已知易知P(X=1)=.
【答案】 C
3.(2018·长沙高二检测)若X的分布列为
X
0
1
P

a
则E(X)=(  )
A. B.
C. D.
【解析】 由+a=1,得a=,所以E(X)=0×+1×=.
【答案】 A
4.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是(  )
A.0.16 B.0.24
C.0.96 D.0.04
【解析】 三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04,故三人中至少有一人达标的概率为1-0.04=0.96.
【答案】 C
5.如果随机变量X~N(4,1),则P(X≤2)等于(  )
(注:P(μ-2σA.0.210 B.0.022 8
C.0.045 6 D.0.021 5
【解析】 P(X≤2)=(1-P(2【答案】 B
6.某同学通过计算机测试的概率为,他连续测试3次,其中恰有1次通过的概率为(  )
A. B.
C. D.
【解析】 连续测试3次,其中恰有1次通过的概率为P=C××2=.
【答案】 A
7.校园内移栽4棵桂花树,已知每棵树成活的概率为,那么成活棵数X的方差是(  )
A. B.
C. D.
【解析】 由题意知成活棵数X~B,所以成活棵数X的方差为4××=.故选C.
【答案】 C
8.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸到正品的条件下,第二次也摸到正品的概率是(  )
A. B.
C. D.
【解析】 记“第一次摸到正品”为事件A,“第二次摸到正品”为事件B,则P(A)==,P(AB)==.
故P(B|A)==.
【答案】 D
9.(2018·长沙高二检测)某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为f(x)=e-,则下列命题中不正确的是(  )
A.该市在这次考试的数学平均成绩为80分
B.分数在120分以上的人数与分数在60分以下的人数相同
C.分数在110分以上的人数与分数在50分以下的人数相同
D.该市这次考试的数学成绩标准差为10
【解析】 利用正态密度函数的表达式知μ=80,σ=10.故A,D正确,利用正态曲线关于直线x=80对称,知P(ξ>110)=P(ξ<50),即分数在110分以上的人数与分数在50分以下的人数相同,故C正确,故选 B.
【答案】 B
10.设随机变量ξ等可能地取1,2,3,4,…,10,又设随机变量η=2ξ-1,则P(η<6)=(  )
A.0.3 B.0.5
C.0.1 D.0.2
【解析】 因为P(ξ=k)=,k=1,2,…,10,又由η=2ξ-1<6,得ξ<,即ξ=1,2,3,所以P(η<6)=P(ξ=1)+P(ξ=2)+P(ξ=3)==0.3.
【答案】 A
11.甲、乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所示,则有结论(  )
工人


废品数
0
1
2
3
0
1
2
3
概率
0.4
0.3
0.2
0.1
0.3
0.5
0.2
0
A.甲的产品质量比乙的产品质量好一些
B.乙的产品质量比甲的产品质量好一些
C.两人的产品质量一样好
D.无法判断谁的产品质量好一些
【解析】 ∵E(X甲)=0×0.4+1×0.3+2×0.2+3×0.1=1,
E(X乙)=0×0.3+1×0.5+2×0.2+3×0=0.9.
∵E(X甲)>E(X乙),
∴乙的产品质量比甲的产品质量好一些.
【答案】 B
12.(2018·深圳高二检测)某计算机程序每运行一次都随机出现一个五位的二进制数A=a1a2a3a4a5,其中A的各位数中a1=1,ak(k=2,3,4,5)出现0的概率为,出现1的概率为,记ξ=a1+a2+a3+a4+a5,当程序运行一次时,ξ的数学期望为(  )
A. B.
C. D.
【解析】 记a2,a3,a4,a5位上出现1的次数为随机变量η,则η~B,
E(η)=4×=.因为ξ=1+η,
E(ξ)=1+E(η)=.故选B.
【答案】 B
二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)
13.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X,则P(X≤6)=________.
【解析】 P(X≤6)=P(X=4)+P(X=6)==.
【答案】 
14.一只蚂蚁位于数轴x=0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位,设它向右移动的概率为,向左移动的概率为,则3秒后,这只蚂蚁在x=1处的概率为________.
【解析】 由题意知,3秒内蚂蚁向左移动一个单位,向右移动两个单位,所以蚂蚁在x=1处的概率为C21=.
【答案】 
15.(2018·福州检测)一个正方形被平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中).设投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,则P(A|B)=________.
【解析】 
如图,n(Ω)=9,n(A)=3,n(B)=4,所以n(AB)=1,
P(A|B)==.
【答案】 
16.一袋中有大小相同的4个红球和2个白球,给出下列结论:
①从中任取3球,恰有一个白球的概率是;
②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;
③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;
④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.
其中所有正确结论的序号是________.
【解析】 ①恰有一个白球的概率P==,故①正确;②每次任取一球,取到红球次数X~B,其方差为6××=,故②正确;
③设A={第一次取到红球},B={第二次取到红球}.
则P(A)=,P(AB)==,
∴P(B|A)==,故③错;
④每次取到红球的概率P=,
所以至少有一次取到红球的概率为
1-3=,
故④正确.
【答案】 ①②④
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:
(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?
(2)从2号箱取出红球的概率是多少?
【解】 记事件A:最后从2号箱中取出的是红球;
事件B:从1号箱中取出的是红球.
P(B)==.
P()=1-P(B)=.
(1)P(A|B)==.
(2)∵P(A|)==,
∴P(A)=P(A∩B)+P(A∩)
=P(A|B)P(B)+P(A|)P()
=×+×=.
18.(本小题满分12分)在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).
(1)试求考试成绩ξ位于区间(70,110)上的概率是多少?
(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)的考生大约有多少人?
【解】 因为ξ~N(90,100),所以μ=90,σ==10.
(1)由于正态变量在区间(μ-2σ,μ+2σ)内取值的概率是0.954 4,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩ξ位于区间(70,110)内的概率就是0.954 4.
(2)由μ=90,σ=10,得μ-σ=80,μ+σ=100.
由于正态变量在区间(μ-σ,μ+σ)内取值的概率是0.682 6,所以考试成绩ξ位于区间(80,100)内的概率是0.682 6.一共有2 000名学生,所以考试成绩在(80,100)的考生大约有2 000×0.682 6≈1 365(人).
19.(本小题满分12分)甲,乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X,Y,X和Y的分布列如下表.试对这两名工人的技术水平进行比较.
X
0
1
2
P



Y
0
1
2
P



【解】 工人甲生产出次品数X的数学期望和方差分别为
E(X)=0×+1×+2×=0.7,
D(X)=(0-0.7)2×+(1-0.7)2×+(2-0.7)2×=0.81.
工人乙生产出次品数Y的数学期望和方差分别为
E(Y)=0×+1×+2×=0.7,
D(Y)=(0-0.7)2×+(1-0.7)2×+(2-0.7)2×=0.61.
由E(X)=E(Y)知,两人生产出次品的平均数相同,技术水平相当,但D(X)>D(Y),可见乙的技术比较稳定.
20.(本小题满分12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.
(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数)
【解】 (1)由古典概型的概率计算公式知所求概率为
p==.
(2)X的所有可能值为1,2,3,且
P(X=1)==,
P(X=2)==,
P(X=3)==.
故X的分布列为
X
1
2
3
P



从而E(X)=1×+2×+3×=.
21.(本小题满分12分)某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为,,;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).
(1)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金-投资资金),求ξ的分布列及E(ξ);
(2)要使10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.
【解】 (1)依题意,ξ可能的取值为1,0,-1.ξ的分布列为
ξ
1
0
-1
P



E(ξ)=-=.
(2)设η表示10万元投资乙项目的收益,则η的分布列为
η
2
-2
P
α
β
E(η)=2α-2β=4α-2.
依题意得4α-2≥,
故≤α≤1.
22.(本小题满分12分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比.分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
【解】 (1)X可能的取值为10,20,100,-200.
根据题意,有
P(X=10)=C×1×2=,
P(X=20)=C×2×1=,
P(X=100)=C×3×0=,
P(X=-200)=C×0×3=.
所以X的分布列为
X
10
20
100
-200
P




(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则
P(A1)=P(A2)=P(A3)=P(X=-200)=.
所以“三盘游戏中至少有一次出现音乐”的概率为
1-P(A1A2A3)=1-3=1-=.
因此,玩三盘游戏至少有一盘出现音乐的概率是.
(3)X的数学期望为
EX=10×+20×+100×-200×=-.
这表明,获得的分数X的均值为负,
因此,多次游戏之后分数减少的可能性更大.
课件77张PPT。第 二 章 随机变量及其分布章 末 高 效 整 合知能整合提升1.离散型随机变量的分布列
(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,即
上表称为X的分布列.有时为了简单起见,也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
(2)求随机变量的分布列的步骤可以归纳为:①明确随机变量X的取值;②准确求出X取每一个值时的概率;③列成表格的形式.
[说明]已知随机变量的分布列,则它在某范围内取值的概率等于它取这个范围内各个值时的概率之和. [说明]分布列的两个性质是求解有关参数问题的依据.
[说明]识别条件概率的关键是看已知事件的发生与否会不会影响所求事件的概率.
(2)条件概率的性质:
①0≤P(B|A)≤1;
②必然事件的条件概率为1,不可能事件的条件概率为0;
③如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).
[注意]解决超几何分布的有关问题时,注意识别模型,即将试验中涉及的事物或人转化为相应的产品、次品,得到超几何分布的参数n,M,N.
[说明]若随机变量X~B(n,p),则需明确在n次独立重复试验中,每次试验的两种结果中哪一个结果出现k次.
(4)二项分布的均值与方差:
①两点分布:若随机变量X服从参数为p的两点分布,则E(X)=p,D(X)=p(1-p).
②二项分布:若随机变量X~B(n,p),则E(X)=np,D(X)=np(1-p).
(2)正态分布的3σ原则:若随机变量X~N(μ,σ2),则
P(μ-σ<X≤μ+σ)=0.682 6,
P(μ-2σ<X≤μ+2σ)=0.954 4,
P(μ-3σ<X≤μ+3σ)=0.997 4.
在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取(μ-3σ,μ+3σ)之间的值,并简称之为3σ原则.热点考点例析求离散型随机变量的分布列点拨: 求离散型随机变量的分布列时,要解决以下两个问题:
(1)求出X的所有取值,并明确其含义;
(2)求出X取每一个值时的概率.
求概率是难点,也是关键,一般要联系排列、组合知识,古典概型、互斥事件、相互独立事件的概率等知识进行解决.同时还应注意两点分布、超几何分布、二项分布等特殊分布模型. 口袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,用X表示取出的最大号码,求X的分布列. [思维点击] 
解析: 由分布列的性质知m∈(0,1),2n∈(0,1),且0.1+m+2n+0.1=1,
即m+2n=0.8.
m·n=(0.8-2n)×n=0.8n-2n2=-2(n-0.2)2+0.08,
∴当n=0.2时,m·n的最大值为0.08.
答案: C条件概率2.解决概率问题要注意“三个步骤,一个结合”
(1)求概率的步骤是:
第一步,确定事件性质;
第二步,判断事件的运算;
第三步,运用公式.
(2)概率问题常常与排列组合问题相结合.
特别提醒: 求事件概率的关键是将事件分解为若干个小事件,然后利用概率的加法(互斥事件的求和)、乘法(独立事件同时发生)或除法公式(条件概率)来求解. 一个盒子装有4个产品,其中有3个一等品、1个二等品,从中取产品两次,每次任取一个,作不放回抽样,设事件A为“第一次取到的是一等品”,事件B为“第二次取到的是一等品”,试求条件概率P(B|A).
[思维点击] 解答本题可先写出事件A发生的条件下所有的基本事件,再在此条件下求事件AB发生的概率.2.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.相互独立事件同时发生的概率(1)分别求出甲、乙、丙三台机床各自独立加工的零件是一等品的概率;
(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.
[思维点击] (1)将甲、乙、丙三台机床各自独立加工同一种零件设为三个事件,由于相互之间各自独立,利用相互独立事件的概率列出方程组求解.(2)是“至少”问题,采用其对立事件求概率.3.实力相当的甲、乙两队参加乒乓球团体比赛,规定5局3胜制.(即5局内谁先赢3局就算胜出并停止比赛)
(1)试分别求甲打完3局、4局、5局才能取胜的概率;
(2)按比赛规则甲获胜的概率是多少.离散型随机变量的分布列、期望与方差点拨: 求离散型随机变量的期望、方差,首先要明确概率分布,最好确定随机变量概率分布的模型,这样就可以直接运用公式进行计算.不难发现,正确求出离散型随机变量的分布列是解题的关键.在求离散型随机变量的分布列之前,要弄清楚随机变量可能取的每一个值,以及取每一个值时所表示的意义.
离散型随机变量的期望与方差试题,主要考查观察问题、分析问题和解决问题的实际综合应用能力以及考生收集、处理信息的能力.主要题型:
(1)离散型随机变量分布列的判断;
(2)求离散型随机变量的分布列、期望与方差;
(3)根据离散型随机变量的分布列、期望与方差的性质求参数.
(1)写出ξ的概率分布列(不要求计算过程),并求出E(ξ),E(η);
(2)求D(ξ),D(η).请你根据得到的数据,建议该单位派哪个选手参加竞赛?
[思维点击] (1)由相互独立事件的概率与二项分布写出E(ξ),E(η).
(2)比较D(ξ),D(η),得到结论.有关正态分布问题的解答点拨: 1.有关正态分布概率的计算应转化为三个特殊区间内取值的概率,因此要熟记三个特殊区间及相应概率值.
2.从正态曲线可以看出,对于固定的μ和σ而言,随机变量取值在(μ-σ,μ+σ)内取值的概率随σ的减小而增大.这说明σ越小,X取值落在区间(μ-σ,μ+σ)的概率越大,即X集中在μ周围的概率越大.
[规律方法] 正态分布是实际生活应用十分广泛的一种概率分布,因此,我们要熟练掌握这种概率模型,并能灵活地运用它分析解决实际问题,其中正态曲线的特点以及3σ原则、几个特殊概率P(μ-σA.取到产品的件数 B.取到正品的概率
C.取到次品的件数 D.取到次品的概率
解析: A中取到产品的件数是一个常量不是变量,B,D也是一个定值,而C中取到次品的件数可能是0,1,2,是随机变量.
答案: C
解析: 根据分布列的性质0≤P≤1以及各概率之和等于1,易知D正确.
答案: D
4.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-σ<X≤μ+σ)=0.682 6,若μ=4,σ=1,则P(5<X<6)等于(  )
A.0.135 8 B.0.135 9
C.0.271 6 D.0.271 8解析: 由题知X~N(4,1),作出相应的正态曲线,如右图,依题意P(2<X≤6)=0.954 4,P(3<X≤5)=0.682 6,即曲边梯形ABCD的面积为0.954 4,曲边梯形EFGH的面积为0.682 6,其中A,E,F,B的横坐标分别是2,3,5,6,由曲线关于直线
5.已知X服从二项分布B(100,0.2),E(-3X-2)=________.
解析: 由于X~B(100,0.2),
则E(X)=np=100×0.2=20,
E(-3X-2)=-3E(X)-2=-62.
答案: -626.位于西部地区的A,B两地,据多年的资料记载:A,B两地一年中下雨天仅占6%和8%,而同时下雨的比例为2%,则A地为雨天时,B地也为雨天的概率为________.7.某校高三年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中的男生人数,求X的分布列.
(1)求这批产品通过检验的概率;
(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.谢谢观看!