高中数学(选修4-4)配套课件2份、教案、同步练习题,补习复习资料:1-1-1平面直角坐标系

文档属性

名称 高中数学(选修4-4)配套课件2份、教案、同步练习题,补习复习资料:1-1-1平面直角坐标系
格式 zip
文件大小 1.1MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-08-16 11:05:36

文档简介

课件23张PPT。坐标系第一讲教材单元导学1.1 平面直角坐标系1.平面直角坐标系的作用:通过建立直角坐标系,平面上的点与坐标(有序数对)、曲线与方程建立了联系,从而实现了数与形的结合.
2.坐标法:根据_______对象的特征,选择适当的坐标系,建立它的方程,通过方程研究它的性质及与其他几何图形的关系,这就是研究几何问题的坐标法.要点一 平面直角坐标系几何
3.坐标法解决几何问题的“三部曲”:
第一步:建立适当的_____________________,用坐标和方程表示问题中涉及的几何元素,将几何问题转化成代数问题;
第二步:通过_______运算,解决_______问题;
第三步:把代数运算结果“翻译”成_______结论.平面直角坐标系 代数 几何 几何 的作用下,点P(x,y)对应到点P′(x′,y′),就称φ为平面直角坐标系中的________________,简称______________.要点二 平面直角坐标系中的伸缩变换坐标伸缩变换 伸缩变换 考点一 求轨迹方程
求轨迹方程的步骤
求轨迹方程需要结合几何图形的结构特点,先建立适当的平面直角坐标系,然后设出所求动点的坐标,寻找满足几何关系的等式,化简后即可得到所求的轨迹方程.【例题1】 已知Rt△ABC,|AB|=2a(a>0),求直角顶点C的轨迹方程.
思维导引:建立适当的直角坐标系,写出A,B两点的坐标,设出点C的坐标,代入直角三角形满足的条件中化简即得,注意A,B,C三点不共线.
解析:以AB所在直线为x轴,AB的中点为坐标原点,建立如图所示的直角坐标系,则有A(-a,0),B(a,0),设顶点C(x,y).方法一 由△ABC是直角三角形可知|AB|2=|AC|2+|BC|2,即(2a)2=(x+a)2+y2+(x-a)2+y2,化简得x2+y2=a2.依题意可知,x≠±a.
故所求直角顶点C的轨迹方程为x2+y2=a2(x≠±a).【变式1】 已知线段AB与CD互相垂直平分于点O,|AB|=8,|CD|=4,动点M满足|MA|·|MB|=|MC|·|MD|,求动点M的轨迹方程.考点二 用坐标法解决几何问题
用坐标法解决几何问题的技巧
(1)建立适当的直角坐标系,将平面几何问题转化为解析几何问题,即化形为数,再回到形中.
(2)建立坐标系时,要充分利用图形的几何特征.
【例题2】 有一大型商品,A,B两地都有出售,且价格相同,某地居民从两地之一购得商品后回运的运费是:每单位距离A地的运费是B地运费的3倍,已知A,B两地相距10 km,居民选择A地或B地购买这种商品的标准是包括运费和价格的总费用较低.求A,B两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.
思维导引:本题涉及两点间的距离及曲线,故要想到坐标法解决问题.【变式2】 已知△ABC中,AB=AC,BD,CE分别为两腰上的高.求证:BD=CE.考点三 平面直角坐标系中的伸缩变换
(1)利用伸缩变换求解析式,其主旨是相关点法求解析式,用未知点的坐标表示已知点的坐标,代入已知轨迹的解析式中.
(2)求满足变换图象的伸缩变换,实际上就是求其变换公式,将新旧坐标分别代入对应的曲线方程,然后比较系数即可.思维导引:利用伸缩变换公式求解.高中数学选修4-4全套教案
第一讲 坐标系
一 平面直角坐标系
课题:1、平面直角坐标系
教学目的:
知识与技能:回顾在平面直角坐标系中刻画点的位置的方法
能力与与方法:体会坐标系的作用
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
教学重点:体会直角坐标系的作用
教学难点:能够建立适当的直角坐标系,解决数学问题
授课类型:新授课
教学模式:启发、诱导发现教学.
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动
学生回顾
刻画一个几何图形的位置,需要设定一个参照系
1、数轴 它使直线上任一点P都可以由惟一的实数x确定
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定
3、空间直角坐标系
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定
三、讲解新课:
建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置
确定点的位置就是求出这个点在设定的坐标系中的坐标
四、数学运用
例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
*变式训练
如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置?[来源:学*科*网Z*X*X*K]
例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区.试问:埋设地下管线m的计划需要修改吗?
*变式训练
1.一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程
2.在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程
例3 已知Q(a,b),分别按下列条件求出P 的坐标[来源:学+科+网Z+X+X+K]
(1)P是点Q 关于点M(m,n)的对称点
(2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)
*变式训练
用两种以上的方法证明:三角形的三条高线交于一点。
思考
通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?
四、巩固与练习
五、小 结:本节课学习了以下内容:1.如何建立直角坐标系;
2.建标法的基本步骤;
3.什么时候需要建标。[来源:Z§xx§k.Com]
五、课后作业:课本P14页 1,2,3,4
六、课后反思:
建标法,学生学习有印象,但没有主动建标的意识,说明学生数学学习缺乏系统性,需要加强训练。
[来源:Zxxk.Com]
[来源:学_科_网Z_X_X_K]
课题:2、平面直角坐标系中的伸缩变换
教学目标:
知识与技能:平面直角坐标系中的坐标变换
过程与方法:体会坐标变换的作用
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识[来源:学科网]
教学重点:理解平面直角坐标系中的坐标变换、伸缩变换
教学难点:会用坐标变换、伸缩变换解决实际问题
授课类型:新授课
教学措施与方法:启发、诱导发现教学.
教学过程:[来源:学.科.网]
一、阅读教材P4—P8
问题探究1:怎样由正弦曲线得到曲线?
思考:“保持纵坐标不变横坐标缩为原来的一半”的实质是什么?
问题探究2:怎样由正弦曲线得到曲线?
思考:“保持横坐标不变纵坐标缩为原来的3倍”的实质是什么?
问题探究3:怎样由正弦曲线得到曲线?
二、新课讲解:
定义:设P(x,y)是平面直角坐标系中任意一点,在变换
的作用下,点P(x,y)对应P’(x’,y’).称为平面直角坐标系中的伸缩变换
注 (1)
(2)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;
(3)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。
例1、在直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。
(1)2x+3y=0; (2)
例2、在同一平面坐标系中,经过伸缩变换后,曲线C变为曲线,求曲线C的方程并画出图象。
三、知识应用:
1、已知(的图象可以看作把的图象在其所在的坐标系中的横坐标压缩到原来的倍(纵坐标不变)而得到的,则为( )
A. B .2 C.3 D.[来源:学科网ZXXK]
2、在同一直角坐标系中,经过伸缩变换后,曲线C变为曲线则曲线C的方程为(  )
A. B.C. D.
3、在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。
(1)
(2)。
四、知识归纳:设点P(x,y)是平面直角坐标系中的任意一点,在变换[来源:学科网ZXXK]
的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换
[来源:学科网]
五、作业布置:
1、抛物线经过伸缩变换后得到
2、把圆变成椭圆的伸缩变换为
3、在同一坐标系中将直线变成直线的伸缩变换为
4、把曲线的图象经过伸缩变换得到的图象所对应的方程为
5、在同一平面直角坐标系中,经过伸缩变换后,曲线C变为,则曲线C的方程
六、反思:
课件43张PPT。第一讲 坐标系课时跟踪检测(一) 平面直角坐标系
                            
一、选择题
1.将一个圆作伸缩变换后所得到的图形不可能是(  )
A.椭圆 B.比原来大的圆
C.比原来小的圆 D.双曲线
解析:选D 由伸缩变换的意义可得.
2.已知线段BC长为8,点A到B,C两点距离之和为10,则动点A的轨迹为(  )
A.直线 B.圆
C.椭圆 D.双曲线
解析:选C 由椭圆的定义可知,动点A的轨迹为一椭圆.
3.已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足||·| |+·=0,则动点P(x,y)的轨迹方程为(  )
A.y2=8x B.y2=-8x
C.y2=4x D.y2=-4x
解析:选B 由题意,得=(4,0),=(x+2,y),=(x-2,y),由||·||+·=0,
得4+4(x-2)=0,整理,得y2=-8x.
4.在同一坐标系中,将曲线y=3sin 2x变为曲线y′=sin x′的伸缩变换是(  )
A. B.
C. D.
解析:选B 设则μy=sin λx,
即y=sin λx.
比较y=3sin 2x与y=sin λx,则有=3,λ=2.
∴μ=,λ=2.∴
二、填空题
5.y=cos x经过伸缩变换后,曲线方程变为________.
解析:由得代入y=cos x,
得y′=cosx′,即y′=3cosx′.
答案:y=3cos
6.把圆X2+Y2=16沿x轴方向均匀压缩为椭圆x2+=1,则坐标变换公式是________.
解析:设
则代入X2+Y2=16得 +=1.
∴16λ2=1,16μ2=16.
∴故
答案:
7.△ABC中,B(-2,0),C(2,0),△ABC的周长为10,则点A的轨迹方程为________.
解析:∵△ABC的周长为10,
∴|AB|+|AC|+|BC|=10.其中|BC|=4,
即有|AB|+|AC|=6>4.
∴点A轨迹为椭圆除去B,C两点,且2a=6,2c=4.
∴a=3,c=2,b2=5.
∴点A的轨迹方程为+=1(y≠0).
答案:+=1(y≠0)
三、解答题
8. 在同一平面直角坐标系中,将曲线x2-36y2-8x+12=0变成曲线x′2-y′2-4x′+3=0,求满足条件的伸缩变换.
解:x2-36y2-8x+12=0可化为2-9y2=1.①
x′2-y′2-4x′+3=0可化为(x′-2)2-y′2=1.②
比较①②,可得即
所以将曲线x2-36y2-8x+12=0上所有点的横坐标变为原来的,纵坐标变为原来的3倍,就可得到曲线x′2-y′2-4x′+3=0的图象.
9.已知△ABC是直角三角形,斜边BC的中点为M,建立适当的平面直角坐标系,证明:|AM|=|BC|.
证明:以Rt△ABC的直角边AB,AC所在直线为坐标轴,建立如图所示的平面直角坐标系.
设B,C两点的坐标分别为(b,0),(0,c).
则M点的坐标为.
由于|BC|=,
|AM|= =,
故|AM|=|BC|.
10.如图,椭圆C0:+=1(a>b>0,a,b为常数),动圆C1:x2+y2=t,b解:设 A(x1,y1),B(x1,-y1),又知A1(-a,0),A2(a,0),
则直线A1A的方程为y=(x+a),①
直线A2B的方程为y=(x-a).②
由①②,得y2=(x2-a2).③
由点A(x1,y1)在椭圆C0上,故+=1.
从而y=b2,代入③,得
-=1(x<-a,y<0),此方程即为点M的轨迹方程.
第一部分 坐标系
第1节:平面直角坐标系
教学目标:
1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。
2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。
教学重点:体会直角坐标系的作用。
教学难点:能够建立适当的直角坐标系,解决数学问题。
授课类型:新授课
教学模式:启发、诱导发现教学.
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动
学生回顾
刻画一个几何图形的位置,需要设定一个参照系
1、数轴 它使直线上任一点P都可以由惟一的实数x确定
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。
3、空间直角坐标系
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:
建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置
确定点的位置就是求出这个点在设定的坐标系中的坐标
四、数学运用
例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练
如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置
例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区.试问:埋设地下管线m的计划需要修改吗?
变式训练
1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程
2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程
例3 已知Q(a,b),分别按下列条件求出P 的坐标
(1)P是点Q 关于点M(m,n)的对称点
(2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)
变式训练
用两种以上的方法证明:三角形的三条高线交于一点。
思考
通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小 结:本节课学习了以下内容:
1.平面直角坐标系的意义。
2. 利用平面直角坐标系解决相应的数学问题。
六、课后作业:
第2节:平面直角坐标系的伸缩变换
教学目标:
1理解平面直角坐标系中的伸缩变换;
2.了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;
3.会用坐标变换、伸缩变换解决实际问题,体验用数学知识解释生活问题的乐趣。
教学重点:理解平面直角坐标系中的伸缩变换。
教学难点:会用坐标变换、伸缩变换解决实际问题。
授课类型:新授课
教学过程:
一.复习引入
在三角函数图象的学习中,我们研究过下面一些问题:
怎样由正弦曲线y=sinx得到曲线y=sin2x和y=sin?
怎样由正弦曲线y=sinx得到曲线y=2sinx和y=sinx?
作图:
二.新课讲解
引导, 观察启发 与y=sinx的图象作比较,结论:
1.函数y=sinωx, x(R (ω>0且ω(1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的倍(纵坐标不变)。
2.y=Asinx,x(R(A>0且A(1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0设P(x,y)是平面直角坐标系中的任意一点,保持纵坐标y不变,将横坐标x缩为原来的倍,得到P’(x’,y’),那么 ①
我们把①式叫做平面直角坐标系中的一个坐标压缩变换。
设P(x,y)是平面直角坐标系中的任意一点,保持横坐标x不变,将纵坐标y伸长为原来的2倍,得到P’(x’,y’),那么 ②
我们把②式叫做平面直角坐标系中的一个坐标伸长变换。
提出问题:怎样由正弦曲线得到曲线y=2sin2x?(它是由①②两种变换合成的)
平面直角坐标系中的任意一点P(x,y),经过上述变换后变为点P’(x’,y’),那么 ③
我们把③式叫做平面直角坐标系中的坐标伸缩变换。
定义:设P(x,y)是平面直角坐标系中的任意一点,在变换 ④的作用下,点P(x,y)对应到点P’(x’,y’),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
三.例题讲解
例1 在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。
(1)2x+3y=0; (2)x2+y2=1
四.课堂练习
课本P8第4题
五.课堂小结
设P(x,y)是平面直角坐标系中的任意一点,在变换 ④的作用下,点P(x,y)对应到点P’(x’,y’),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
六.作业布置