选修4_5 不等式选讲
课 题: 第07课时 不等式的证明方法之一:比较法
目的要求:
重点难点:
教学过程:
一、引入:
要比较两个实数的大小,只要考察它们的差的符号即可,即利用不等式的性质:
二、典型例题:
例1、设,求证:。
例2、若实数,求证:
证明:采用差值比较法:
=
=
=
=
∴
∴
讨论:若题设中去掉这一限制条件,要求证的结论如何变换?
例3、已知求证
本题可以尝试使用差值比较和商值比较两种方法进行。
证明:1) 差值比较法:注意到要证的不等式关于对称,不妨设
,从而原不等式得证。
2)商值比较法:设
故原不等式得证。
注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。
例4、甲、乙两人同时同地沿同一路线走到同一地点。甲有一半时间以速度行走,另一半时间以速度行走;乙有一半路程以速度行走,另一半路程以速度行走。如果,问甲、乙两人谁先到达指定地点。
分析:设从出发地点至指定地点的路程是,甲、乙两人走完这段路程所用的时间分别为。要回答题目中的问题,只要比较的大小就可以了。
解:设从出发地点至指定地点的路程是,甲、乙两人走完这段路程所用的时间分别为,根据题意有,,可得,,
从而,
其中都是正数,且。于是,即。
从而知甲比乙首先到达指定地点。
讨论:如果,甲、乙两人谁先到达指定地点?
例5、设求证;对任意实数,恒有
(1)
证明 考虑(1)式两边的差。
=
= (2)
即(1)成立。
三、小结:
四、练习:
五、作业:
1.比较下面各题中两个代数式值的大小:
(1)与;(2)与.
2.已知 求证:(1) (2)
3.若,求证
4.比较a4-b4与4a3(a-b)的大小.
解: a4-b4 - 4a3(a-b)=(a-b)(a+b)(a2+b2) -4a3(a-b)= (a-b)(a3+ a2b+ab2+b3-4a3)
= (a-b)[(a2b-a3)+(ab3-a3)+(b3-a3)]= - (a-b)2(3a3+2ab+b2)
= - (a-b)2 (当且仅当d=b时取等号)
∴a4-b44a3(a-b)。
5.比较(a+3)(a-5)与(a+2)(a-4)的大小.
6.已知x≠0,比较(x2+1)2与x4+x2+1的大小.
7.如果x>0,比较与的大小.
8.已知a≠0,比较与的大小.
9.设x1,比较x3与x2-x+1的大小.
说明:“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。
阅读材料:琴生不等式
例5中的不等式有着重要的数学背景,它与高等数学中的一类凸函数有着密切的关系,也是琴生(Jensen)不等式的特例。
琴生在1905年给出了一个定义:
设函数的定义域为[a,b],如果对于[a,b]内任意两数,都有
(1)
则称为[a,b]上的凸函数。
若把(1)式的不等号反向,则称这样的为[a,b]上的凹函数。
凸函数的几何意义是:过曲线上任意两点作弦,则弦的中点必在该曲线的上方或在曲线上。
其推广形式是:若函数的是[a,b]上的凸函数,则对[a,b]内的任意数,都有
(2)
当且仅当时等号成立。一般称(2)式为琴生不等式。
更为一般的情况是:设是定义在区间[a,b]上的函数,如果对于[a,b]上的任意两点,有
其中,则称是区间[a,b]上的凸函数。如果不等式反向,即有则称是[a,b]上的凹函数。
其推广形式 ,设,是[a,b]上的凸函数,则对任意有,
当且仅当时等号成立。
若是凹函数,则上述不等式反向。该不等式称为琴生(Jensen)不等式。把琴生不等式应用于一些具体的函数,可以推出许多著名不等式。
第二讲 证明不等式的基本方法
2.1 比较法
A级 基础巩固
一、选择题
1.若a<0,b<0,则p=+与q=a+b的大小关系为( )
A.p<q B.p≤q C.p>q D.p≥q
解析:因为p-q=+-a-b=≤0,所以p≤q.
答案:B
2.已知a,b都是正数,P=, Q=,则P,Q的大小关系是( )
A.P>Q B.P<Q
C.P≥Q D.P≤Q
解析:因为a,b都是正数,
所以P>0,Q>0.
所以P2-Q2=-()2=≤0.
所以P2-Q2≤0.所以P≤Q.
答案:D
3.已知a,b,c均大于1,且logac·logbc=4,则下列一定正确的是( )
A.ac≥b B.ab≥c
C.bc≥a D.ab≤c
解析:因为logac·logbc==4,
所以lg2c=4lg a·lg b≤(lg a+lg b)2=(lg ab)2.
又c>1,a>1,b>1,
所以lg c≤lg ab,即c≤ab.
答案:B
4.在等比数列{an}和等差数列{bn}中,a1=b1>0,a3=b3>0,a1≠a3,则a5与b5的大小关系为( )
A.a5>b5 B.a5<b5
C.a5=b5 D.不确定
解析:由等比数列的性质知a5=,由等差数列的性质知b5=2b3-b1.又a1≠a3,
故a5-b5=-2b3+b1==>0.
因此,a5>b5.
答案:A
5.已知a>0且a≠1,P=loga(a3+1),Q=loga(a2+1),则P,Q的大小关系是( )
A.P>Q B.P<Q
C.P=Q D.大小不确定
解析:P-Q=loga(a3+1)-loga(a2+1)=loga.当0<a<1时,0<a3+1<a2+1,0<<1,
所以loga>0,即P-Q>0,所以P>Q.当a>1时,a3+1>a2+1>0,>1,所以loga>0,即P-Q>0,所以P>Q.故应选A.
答案:A
二、填空题
6.若-1<a<b<0,则,, a2,b2中最小的是________.
解析:依题意,有>,a2>b2,故只需比较与b2的大小.
因为b2>0,<0,
所以<b2.所以,,a2,b2中最小的是.
答案:
7.设x=a2b2+5, y=2ab-a2-4a,若x>y,则实数a,b应满足的条件是________.
解析:由x>y得a2b2+5-2ab+a2+4a=(ab-1)2+(a+2)2>0,故a=-2,b=-不同时成立.
答案:a=-2,b=-不同时成立
8.若0<a<b<1,P=log,Q=(loga+logb),M=log (a+b),则P,Q,M的大小关系是________.
解析:因为0<a<b<1,所以>,
所以log<log=log (ab)=
(loga+logb),即P<Q,又<a+b,
所以log>log (a+b),即P>M,所以Q>P>M.
答案:Q>P>M
三、解答题
9.已知a∈R,求证:3(1+a2+a4)≥(1+a+a2)2.
证明:3(1+a2+a4)-(1+a+a2)2=3(1+a2+a4)-(1+a2+a4+2a+2a3+2a2)=2-2a-2a3+2a4=2(1-a)2(1+a+a2)≥0,即3(1+a2+a4)≥(1+a+a2)2.
10.已知a,b,c∈R+,求证:aabbcc≥(abc).
证明:因为a,b,c是正数,不妨设a≥b≥c>0,
则≥1,≥1,≥1.
因为=abc=·≥1,
所以aabbcc≥(abc).
B级 能力提升
1.已知a>b>0, c>d>0,m=-,n=,则m与n的大小关系是( )
A.m<n B.m>n
C.m≥n D.m≤n
解析:因为a>b>0,c>d>0,
所以ac>bd>0,>,
所以m>0,n>0.
又因为m2=ac+bd-2,n2=ac+bd-(ad+bc),
又由ad+bc>2,
所以-2>-ad-bc,
所以m2>n2,所以m>n.
答案:B
2.已知a>0,对于大于1的自然数n,总有<,则a的取值范围是________.
解析:因为0<a<a,且>,所以0<a<1.
答案:(0,1)
3.(1)设x≥1,y≥1,证明x+y+≤++xy;
(2)设1<a≤b≤c,证明logab+logbc+logca≤logba+logcb+logac.
证明:(1)由于x≥1,y≥1,
所以x+y+≤++xy?xy(x+y)+1≤y+x+(xy) 2.
将上式中的右式减左式,得y+x+(xy)2]-xy(x+y)+1]=(xy)2-1]-xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)·(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).
既然x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0.
从而所要证明的不等式成立.
(2)设logab=x,logbc=y,
由换底公式得logca=,logba=,logab=,logac=xy.
于是,所要证明的不等式即为x+y+≤++xy,其中x=logab≥1,y=logbc≥1.
故由(1)成立知所要证明的不等式成立.
课件33张PPT。第二讲 证明不等式的基本方法
一 比 较 法【自主预习】
比较法的定义
比较法证明不等式可分为作差比较法和作商比较法两种.(1)作差比较法:要证明a>b,只要证明______;要证明
a
差比较法.
(2)作商比较法:若a>0,b>0,要证明a>b,只要证明
>1;要证明b>a,只要证明_____.这种证明不等式的方
法,叫做作商比较法.a-b>0a-b<0【即时小测】
1.已知a+b>0,b<0,那么a,b,-a,-b的大小关系是
( )
A.a>b>-b>-a B.a>-b>-a>b
C.a>-b>b>-a D.a>b>-a>-b
【解析】选C.由a+b>0,b<0,得a>-b>0,于是a>-b>b>-a.2.设a,b∈R且a+|b|<0,则下列结论中正确的是( )
A.a-b>0 B.a2+b2<0
C.a2-b2<0 D.a+b<0
【解析】选D.由a+|b|<0,知a<-|b|≤0,
所以a+b【解析】因为a∈R且a≠1,所以a2+1-2a=(a-1)2>0,
即a2+1>2a.
答案:a2+1>2a【知识探究】
探究点 比较法证明不等式
1.作差比较法的主要适用类型是什么?实质是什么?
提示:作差比较法适用于具有多项式结构特征的不等式的证明.实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.作商比较法主要适用类型是什么?
提示:作商比较法主要用于积(商)、幂(根式)、指数形式的不等式证明.其证明的一般步骤:作商→变形(化简)→判断商值与1的大小关系→结论.【归纳总结】
1.作差法的依据
若a,b∈R,则a-b>0?a>b;a-b=0?a=b;a-b<0?a2.作差法的步骤
作差→变形→判断符号(与0比较大小)→结论.3.作商法的依据
若a>0,b>0,则 >1?a>b; =1?a=b; <1?a4.作商比较法适用证明的不等式的特点
适合欲证的不等式两端是乘积形式、幂指数的不等
式或某些不同底数对数值的大小比较.类型一 作差比较法
【典例】已知a,b∈R,求证:a2+b2+1≥ab+a+b.
【解题探究】典例中作差后,如何与0比较大小?
提示:化为几个完全平方式的和,然后与0比较大小.【证明】因为a2+b2-ab-a-b+1= [(a-b)2+(a-1)2+
(b-1)2]≥0,当且仅当a=b=1时取等号,所以
a2+b2+1≥ab+a+b.【方法技巧】作差比较法证明不等式的技巧
(1)作差比较法中,变形具有承上启下的作用,变形的目的在于判断差的符号,而不用考虑差能否化简或值是多少.(2)变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.
(3)因式分解是常用的变形手段,为了便于判断差式的符号,常将差式变形为一个常数,或几个因式积的形式,当所得的差式是某字母的二次三项式时,常用判别式法判断符号.【变式训练】1.(2015·浙江高考)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且xC.ay+bz+cx D.ay+bx+cz【解析】选B.由x0,故ax+by+cz>az+by+cx;ay+bz+cx-(ay+bx+cz)=b(z-x) +c(x-z)=(x-z)(c-b)<0,故ay+bz+cxb>c,证明:a2b+b2c+c2a>ab2+bc2+ca2.
【证明】因为a2b+b2c+c2a-ab2-bc2-ca2=(a2b-bc2) +(b2c-ab2)+(c2a-ca2)=b(a2-c2)+b2(c-a)+ac(c-a)=(a-c)(ba+bc-b2-ac)=(a-c)(a-b)(b-c).
因为a>b>c,所以a-c>0,a-b>0,b-c>0,所以(a-c)(a-b)(b-c)>0,即a2b+b2c+c2a>ab2+bc2+ca2.类型二 作商比较法
【典例】设a>0,b>0,求证:aabb≥
【解题探究】由指数函数的性质可知a,b满足什么条
件时ab>1?
提示:若01;若a>1,则b>0时,ab>1.【证明】因为aabb>0, >0,
所以
所以当a=b时,显然有 =1;
当a>b>0时,
当b>a>0时, 由指数函数的单调性,有
综上可知,对任意a>0,b>0,都有aabb≥ 【延伸探究】
1.典例中的条件不变,试证明:abba≤
【证明】因为abba>0, >0,
所以
所以当a=b时,显然有 =1;当a>b>0时,
当b>a>0时,
由指数函数的单调性,有
综上可知,对任意a>0,b>0,都有abba≤ 2.将典例中的条件改为“a>b>c>0”,求证:
a2ab2bc2c>ab+cbc+aca+b.
【证明】由a>b>c>0,得ab+cbc+aca+b>0,a2ab2bc2c>0.
所证不等式左边除以右边,得
=aa-baa-cbb-cbb-acc-acc-b= 因为a>b>0,所以 >1,a-b>0,所以 >1.
同理 >1, >1.
所以 >1,所以a2ab2bc2c>ab+cbc+aca+b.【方法技巧】作商比较法证明不等式的一般步骤
(1)作商:将不等式左右两边的式子进行作商.
(2)变形:化简商式到最简形式.
(3)判断:判断商与1的大小关系,也就是判断商大于1或小于1或等于1.
(4)得出结论.【变式训练】已知a>2,求证:loga(a-1)【证明】因为a>2,则a-1>1,所以loga(a-1)>0,
log(a+1)a>0,
由于 =loga(a-1)·loga(a+1)因为a>2,所以0因为log(a+1)a>0,所以loga(a-1)【典例】设实数a,b,c满足等式①b+c=6-4a+3a2;
②c-b=4-4a+a2;试比较a,b,c的大小关系.【失误案例】分析解题过程,找出错误之处,并写出正确答案.
提示:错误的根本原因是应用不等式的性质,或对差式的变形不彻底而引起的.【解析】由②c-b=(a-2)2≥0,知c≥b.
又①-②,得b=a2+1,所以b-a=a2-a+1=
所以b>a,故c≥b>a.课件30张PPT。第二讲 证明不等式的基本方法学业分层测评(六)
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知a>2,b>2,则( )
A.ab≥a+b B.ab≤a+b
C.ab>a+b D.ab<a+b
【解析】 ∵a>2,b>2,∴-1>0,-1>0,
则ab-(a+b)=a+b>0,
∴ab>a+b.
【答案】 C
2.已知a>b>-1,则与的大小关系为( )
A.> B.<
C.≥ D.≤
【解析】 ∵a>b>-1,∴a+1>0,b+1>0,a-b>0,则-=<0,∴<.
【答案】 B
3.a,b都是正数,P=,Q=,则P,Q的大小关系是( )
A.P>Q B.P<Q
C.P≥Q D.P≤Q
【解析】 ∵a,b都是正数,
∴P>0,Q>0,
∴P2-Q2=-()2
=≤0(当且仅当a=b时取等号),
∴P2-Q2≤0.
∴P≤Q.
【答案】 D
4.下列四个数中最大的是( )
A.lg 2 B.lg
C.(lg 2)2 D.lg(lg 2)
【解析】 ∵0<lg 2<1<<2,
∴lg(lg 2)<0<lg <lg 2,
且(lg 2)2<lg 2,故选A.
【答案】 A
5.在等比数列{an}和等差数列{bn}中,a1=b1>0,a3=b3>0,a1≠a3,则a5与b5的大小关系是( )
A.a5b5
C.a5=b5 D.不确定
【解析】 设{an}的公比为q,{bn}的公差为d,
则a5-b5=a1q4-(b1+4d)=a1q4-(a1+4d).
∵a3=b3,∴a1q2=b1+2d,即a1q2=a1+2d,
∴aq4=(a1+2d)2=a+4a1d+4d2,
∴a5-b5=
==.
∵a1>0,d≠0,∴a5-b5>0,
∴a5>b5.
【答案】 B
二、填空题
6.设P=a2b2+5,Q=2ab-a2-4a,若P>Q,则实数a,b满足的条件为________.
【解析】 P-Q=a2b2+5-(2ab-a2-4a)
=a2b2+5-2ab+a2+4a
=a2b2-2ab+1+4+a2+4a
=(ab-1)2+(a+2)2.
∵P>Q,∴P-Q>0,
即(ab-1)2+(a+2)2>0,
∴ab≠1或a≠-2.
【答案】 ab≠1或a≠-2
7.若x<y<0,M=(x2+y2)(x-y),N=(x2-y2)(x+y),则M,N的大小关系为________.
【解析】 M-N=(x2+y2)(x-y)-(x2-y2)(x+y)
=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).
∵x<y<0,∴xy>0,x-y<0,
∴-2xy(x-y)>0,∴M-N>0,即M>N.
【答案】 M>N
8.已知a>0,1>b>0,a-b>ab,则与的大小关系是________.
【解析】 ∵a>0,1>b>0,a-b>ab,
∴(1+a)(1-b)=1+a-b-ab>1.
从而=>1,
∴>.
【答案】 >
三、解答题
9.已知a>2,求证:loga(a-1)<log(a+1)a.
【证明】 ∵a>2,
则a-1>1,
∴loga(a-1)>0,log(a+1)a>0,
由于=loga(a-1)·loga(a+1)
<
=.
∵a>2,∴0<loga(a2-1)<logaa2=2,
∴<=1,
因此<1.
∵log(a+1)a>0,∴loga(a-1)<log(a+1)a.
10.已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列.
(1)求q的值;
(2)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
【解】 (1)由题设知2a3=a1+a2,
即2a1q2=a1+a1q.
又a1≠0,∴2q2-q-1=0,∴q=1或-.
(2)若q=1,则Sn=2n+==.
当n≥2时,Sn-bn=Sn-1=>0,
故Sn>bn.
若q=-,则Sn=2n+·==.
当n≥2时,Sn-bn=Sn-1=-,
故对于n∈N+,当2≤n≤9时,Sn>bn;
当n=10时,Sn=bn;
当n≥11时,Sn<bn.
[能力提升]
1.已知a>0,b>0,m=+,=+,p=,则m,n,p的大小顺序是( )
A.m≥n>p B.m>n≥p
C.n>m>p D.n≥m>p
【解析】 由已知m=+,n=+,得a=b>0时m=n,可否定B,C.比较A,D项,不必论证与p的关系.取特值a=4,b=1,则m=4+=,n=2+1=3,∴m>n,可排除D.
【答案】 A
2.设m>n,n∈N*,a=(lg x)m+(lg x)-m,b=(lg x)n+(lg x)-n,x>1,则a与b的大小关系为( )
A.a≥b B.a≤b
C.与x值有关,大小不定 D.以上都不正确
【解析】 要比较a与b的大小,通常采用比较法,根据a与b均为对数表达式,只有作差,a与b两个对数表达式才能运算、整理化简,才有可能判断出a与b的大小.
a-b=lgmx+lg-mx-lgnx-lg-nx
=(lgmx-lgnx)-
=(lgmx-lgnx)-
=(lgmx-lgnx)
=(lgmx-lgnx).
∵x>1,∴lg x>0.
当0<lg x<1时,a>b;
当lg x=1时,a=b;
当lg x>1时,a>b.
∴应选A.
【答案】 A
3.一个个体户有一种商品,其成本低于元.如果月初售出可获利100元,再将本利存入银行,已知银行月息为2.5%,如果月末售出可获利120元,但要付成本的2%的保管费,这种商品应________出售(填“月初”或“月末”).
【解析】 设这种商品的成本费为a元.
月初售出的利润为L1=100+(a+100)×2.5%,
月末售出的利润为L2=120-2%a,
则L1-L2=100+0.025a+2.5-120+0.02a
=0.045,
∵a<,∴L1<L2,月末出售好.
【答案】 月末
4.若实数x,y,m满足|x-m|<|y-m|,则称x比y接近m.对任意两个不相等的正数a,b,证明:a2b+ab2比a3+b3接近2ab.
【证明】 ∵a>0,b>0,且a≠b,
∴a2b+ab2>2ab,a3+b3>2ab.
∴a2b+ab2-2ab>0,
a3+b3-2ab>0.
∴|a2b+ab2-2ab|-|a3+b3-2ab|
=a2b+ab2-2ab-a3-b3+2ab
=a2b+ab2-a3-b3=a2(b-a)+b2(a-b)
=(a-b)(b2-a2)=-(a-b)2(a+b)<0,
∴|a2b+ab2-2ab|<|a3+b3-2ab|,
∴a2b+ab2比a3+b3接近2ab.
课 题: 第08课时 不等式的证明方法之一:比较法
目的要求:
重点难点:
教学过程:
一、引入:
要比较两个实数的大小,只要考察它们的差的符号即可,即利用不等式的性质:
二、典型例题:
例1、设,求证:。
例2、若实数,求证:
证明:采用差值比较法:
=
=
=
=
∴
∴
讨论:若题设中去掉这一限制条件,要求证的结论如何变换?
例3、已知求证
本题可以尝试使用差值比较和商值比较两种方法进行。
证明:1) 差值比较法:注意到要证的不等式关于对称,不妨设
,从而原不等式得证。
2)商值比较法:设
故原不等式得证。
注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。
例4、甲、乙两人同时同地沿同一路线走到同一地点。甲有一半时间以速度行走,另一半时间以速度行走;乙有一半路程以速度行走,另一半路程以速度行走。如果,问甲、乙两人谁先到达指定地点。
分析:设从出发地点至指定地点的路程是,甲、乙两人走完这段路程所用的时间分别为。要回答题目中的问题,只要比较的大小就可以了。
解:设从出发地点至指定地点的路程是,甲、乙两人走完这段路程所用的时间分别为,根据题意有,,可得,,
从而,
其中都是正数,且。于是,即。
从而知甲比乙首先到达指定地点。
讨论:如果,甲、乙两人谁先到达指定地点?
例5、设求证;对任意实数,恒有
(1)
证明 考虑(1)式两边的差。
=
= (2)
即(1)成立。
三、小结:
四、练习:
五、作业:
1.比较下面各题中两个代数式值的大小:
(1)与;(2)与.
2.已知 求证:(1) (2)
3.若,求证
4.比较a4-b4与4a3(a-b)的大小.
解: a4-b4 - 4a3(a-b)=(a-b)(a+b)(a2+b2) -4a3(a-b)= (a-b)(a3+ a2b+ab2+b3-4a3)
= (a-b)[(a2b-a3)+(ab3-a3)+(b3-a3)]= - (a-b)2(3a3+2ab+b2)
= - (a-b)2 (当且仅当d=b时取等号)
∴a4-b44a3(a-b)。
5.比较(a+3)(a-5)与(a+2)(a-4)的大小.
6.已知x≠0,比较(x2+1)2与x4+x2+1的大小.
7.如果x>0,比较与的大小.
8.已知a≠0,比较与的大小.
9.设x1,比较x3与x2-x+1的大小.
说明:“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。
阅读材料:琴生不等式
例5中的不等式有着重要的数学背景,它与高等数学中的一类凸函数有着密切的关系,也是琴生(Jensen)不等式的特例。
琴生在1905年给出了一个定义:
设函数的定义域为[a,b],如果对于[a,b]内任意两数,都有
当且仅当时等号成立。一般称(2)式为琴生不等式。
更为一般的情况是:设是定义在区间[a,b]上的函数,如果对于[a,b]上的任意两点,有
其中,则称是区间[a,b]上的凸函数。如果不等式反向,即有则称是[a,b]上的凹函数。
其推广形式 ,设,是[a,b]上的凸函数,则对任意有,
当且仅当时等号成立。
若是凹函数,则上述不等式反向。该不等式称为琴生(Jensen)不等式。把琴生不等式应用于一些具体的函数,可以推出许多著名不等式。