人教版必修三1.1.3算法案例课件(23张)

文档属性

名称 人教版必修三1.1.3算法案例课件(23张)
格式 zip
文件大小 212.3KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-08-17 08:34:26

图片预览

文档简介

课件23张PPT。 1.3 算法案例 -----辗转相除法与更相减损术 1.两种条件语句的一般格式分别是什么?复 习DO
循环体
LOOP UNTIL 条件2.两种循环语句的一般格式分别是什么?WHILE 条件
循环体
WEND 复 习 思考:用什么方法求两个数的最大公约数? 用两个数公有的因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.1、求两个正整数的最大公约数求25和35的最大公约数所以,25和35的最大公约数为5思考:怎样计算8256和6105的最大公约数? 辗转相除法与
更相减损术辗转相除法(欧几里得算法)观察用辗转相除法求8251和6105的最大公约数的过程 第一步 用两数中较大的数除以较小的数,求得商和余数 8251=6105×1+2146结论: 8251和6105的公约数就是6105和2146的公约数,求8251和6105的最大公约数,只要求出6105和2146的公约数就可以了。第二步 对6105和2146重复第一步的做法 6105=2146×2+1813 同理6105和2146的最大公约数也是2146和1813的最大公约数。 为什么呢?思考:从上述的过程你体会到了什么?完整的过程8251=6105×1+2146 6105=2146×2+1813 2146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0例2 用辗转相除法求225和135的最大公约数225=135×1+90135=90×1+4590=45×2显然37是148和37的最大公约数,也就是8251和6105的最大公约数 显然45是90和45的最大公约数,也就是225和135的最大公约数 思考:从上面的两个例子可以看出计算的规律是什么? 一、辗转相除法(欧几里得算法)算理:所谓辗转相除法,就是对于给定的两个数,用较大的数除以较小的数。若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除法,直到大数被小数整除,则这时较小的数就是原来两个数的最大公约数。用辗转相除法求两个正整数m,n的最大公约数,可以用什么逻辑结构来构造算法?其算法步骤如何设计? 第一步,给定两个正整数m,n(m>n).第二步,计算m除以n所得的余数r. 第三步, m用n值代替,n用r值代替.第四步,若r=0,则m,n的最大公约数等 于n;否则,返回第二步. 该算法的程序框图如何表示?该程序框图对应的程序如何表述?INPUT m,nDOr=m MODnm=nn=rLOOP UNTIL r=0PRINT mEND更相减损术 设两个正整数m>n,若m-n=k,则m与n的最大公约数和n与k的最大公约数相等.反复利用这个原理,可求得98与63的最大公约数为多少?98-63=35,14-7=7.21-7=14,28-7=21,35-28=7,63-35=28, 上述求两个正整数的最大公约数的方法称为更相减损术.一般地,用更相减损术求两个正整数m,n的最大公约数,可以用什么逻辑结构来构造算法?其算法步骤如何设计?第一步,给定两个正整数m,n(m>n). 第二步,计算m-n所得的差k. 第三步,比较n与k的大小,其中大者用m表 示,小者用n表示. 第四步,若m=n,则m,n的最大公约数等于 m;否则,返回第二步. 该算法的程序框图如何表示?该程序框图对应的程序如何表述?INPUT m,nWHILE m<>nk=m-nIF n>k THENm=nn=kELSEm=kEND IFWENDPRINT mEND“更相减损术”在中国古代数学专著《九章算术》中记述为: 可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.翻译为现代语言意思如下:
第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步.
第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数. 更相减损术与辗转相除法的比较:
尽管两种算法分别来源于东、西方古代数学名著,但是二者的算理却是相似的,有异曲同工之妙.主要区别在于辗转相除法进行的是除法运算,即辗转相除;而更相减损术进行的是减法运算,即辗转相减,但是实质都是一个不断的递归过程. 理论迁移 练习: 分别用辗转相除法和更相减损术求168与93的最大公约数. 辗转相除法:168=93×1+75, 93=75×1+18, 75=18×4+3, 18=3×6.更相减损术:168-93=75,
93-75=18,
75-18=57,
57-18=39,
39-18=21,
21-18=3,
18-3=15,
15-3=12,
12-3=9,
9-3=6,
6-3=3. 1.辗转相除法,就是对于给定的两个正整数,用较大的数除以较小的数,若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除法,直到大数被小数除尽为止,这时的较小的数即为原来两个数的最大公约数. 小结 2. 更相减损术,就是对于给定的两个正整数,用较大的数减去较小的数,然后将差和较小的数构成新的一对数,继续上面的减法,直到差和较小的数相等,此时相等的两数即为原来两个数的最大公约数.3.数学思想方法:递归思想.作业:
1、分别用辗转相除法和更相减损术求261,319的最大公约数.
2、用当型循环结构写出辗转相除法求两个正整数m,n的最大公约数的程序。
再见!