课件12张PPT。1.1.3 集合的基本运算(2) 在不同范围研究同一个问题,可能有不同的结果。一、全集与补集 如方程(x-2)(x2-3)=0的解集在有理数范围内只有一个解,即A={x∈Q|(x-2)(x2-3)=0}={2}, 定 义全集常用U表示. 如果一个集合含有我们所要研究的各个集合的全部元素,这个就称这个集合为全集(universe set)定 义即对于一个集合A,由全集U中不属于A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,记作,即 CUA= CUA= UA例1 设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求CUA, CUB例2.设U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形}.求A∩B, CU (A∪B) 例3.已知全集U=R,集合A={x|1≤2x+1<9},求CUA 二、集合中元素的个数 用card来表示有限集A中的元素个数.如:A={a,b,c} 则card(A)=3 学校小卖部进了两次货,第一次进的货是圆珠笔,钢笔,橡皮,笔记本,方便面,汽水共6种,第二次进的货是圆珠笔,铅笔,火腿肠,方便面共4种,两次一共进了几种货物? 问题:card(A∪B)=card(A)+card(B)-card(A∩B)公式: 例4.学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名学生参赛,两次运动会都参赛的有3人,两次运动会中,这个班共有多少名同学参赛? 探索:对有限集A,B,C你能发现card(A∪B∪C), card(A), card(B), card(C), card(A∩B), card(A∩C), card(C∩B), card(A∩B∩C)之间的关系吗?利用Venn图:
card(A∪B∪C)=card(A)+ card(B)+ card(C)
- card(A∩B)- card(A∩C)- card(C∩B)+ card(A∩B∩C)1.教材P12 9,10 B组 4 作业布置2 补.某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,班级中既爱好体育又爱好音乐的有多少人?
1. 1.3集合的基本运算(全集、补集)
【教学目标】
1、了解全集的意义,理解补集的概念.
2、能用韦恩图表达集合的关系及运算,体会直观图示对理解抽象概念的作用
3、进一步体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力。
【教学重难点】
教学重点:会求给定子集的补集。
教学难点:会求给定子集的补集。
【教学过程】
(一)复习集合的概念、子集的概念、集合相等的概念;两集合的交集,并集.
(二)教学过程
一、情景导入
观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?
二、检查预习
1、在给定的问题中,若研究的所有集合都是某一给定集合的子集,那么称这个给定的集合为 .
2、若A是全集U的子集,由U中不属于A的元素构成的集合,叫做 ,记作 。
三、合作交流
,,
,
注:是否给出证明应根据学生的基础而定.
四、精讲精练
例⒈设U={2,4,3-2},P={2,2+2-},CUP={-1},求.
解:∵-1∈CUP∴-1∈U∴3-2=-1得=±2.
当=2时,P={2,4}满足题意.
当=-2时,P={2,8},8U舍去.因此=2.
[点评]由集合、补集、全集三者关系进行分析,特别注意集合元素的互异性,所以解题时不要忘记检验,防止产生增解。
变式训练一:已知A={0,2,4,6},CSA={-1,-3,1,3},CSB={-1,0,2},用列举法写出集合B.
解:∵A={0,2,4,6},CSA={-1,-3,1,3}
∴S={-3,-1,0,1,2,3,4,6}又CSB={-1,0,2}
∴B={-3,1,3,4,6}.
例⒉设全集U=R,A={x|3m-1<x<2m},B={x|-1<x<3},BCUA,求m的取值范围.
解:由条件知,若A=,则3m-1≥2m即m≥1,适合题意;
若A≠,即m<1时,
CUA={x|x≥2m或x≤3m-1},则应有-1≥2m即m≤-;
或3m-1≥3
即m≥与m<1矛盾,舍去.
综上可知:m的取值范围是m≥1或m≤-.
变式训练二:设全集U={1,2,3,4},且A={x|x2-mx+n=0,x∈U},若CUA={2,3},求m,n的值.
解:∵U={1,2,3,4},CUA={2,3}∴A={1,4}.
∴1,4是方程x2-mx+n=0的两根.
∴m=1+4=5,n=1×4=4.
【板书设计】
基础知识
全集与补集
全集与补集的性质
典型例题
例1: 例2:
小结:
【作业布置】本节课学案预习下一节。
1.1.3集合的基本运算(全集、补集)导学案
课前预习学案
一、预习目标:了解全集、补集的概念及其性质,并会计算一些简单集合的补集。
二、预习内容:
⒈如果所要研究的集合________________________________,那么称这个给定的集合为全集,记作_____.
⒉如果A是全集U的一个子集,由_______________________________构成的集合,叫做A在U中的补集,记作________,读作_________.
⒊A∪CUA=_______,A∩CUA=________,CU(CUA)=_______
提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标:
1、了解全集的意义,理解补集的概念.
2、能用韦恩图表达集合的关系及运算,体会直观图示对理解抽象概念的作用
3、进一步体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力。
学习重难点:会求两个集合的交集与并集。
二、自主学习
⒈设全集U={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则(CUA)∪(CUB)=( )
A.{0} B.{0,1} C.{0,1,4} D.{0,1,2,3,4}
⒉已知集合I={0,-1,-2,-3,-4},集合M={0,-1,-2},N={0,-3,-4},则M∩(CIN)=( )
A.{0} B.{-3,-4} C.{-1,-2} D.
⒊已知全集为U,M、N是U的非空子集,若MN,则CUM与CUN的关系是_____________________.
三、合作探究:思考全集与补集的性质有哪些?
四、精讲精练
例⒈设U={2,4,3-2},P={2,2+2-},CUP={-1},求.
解:
变式训练一:已知A={0,2,4,6},CSA={-1,-3,1,3},CSB={-1,0,2},用列举法写出集合B.
解:
例⒉设全集U=R,A={x|3m-1<x<2m},B={x|-1<x<3},BCUA,求m的取值范围.
解:
变式训练二:设全集U={1,2,3,4},且A={x|x2-mx+n=0,x∈U},若CUA={2,3},求m,n的值.
三、课后练习与提高
1、选择题
(1)已知CZA={x∈Z|x>5},CZB={x∈Z|x>2},则有( )
A.AB B.BA C.A=B D.以上都不对
(2)设,,,则=( )
A. B.
C. D.
(3)设全集U={2,3,2+2-3},A={|+1|,2},CUA={5},则的值为( )
A.2或-4 B.2 C.-3或1 D.4
2、填空题
(4)设U=R,A={},CUA={x|x>4或x<3},则=________,=_________.
(5)设U=R,A={x|x2-x-2=0},B={x||x|=y+1,y∈A},则CUB=______________.
3、解答题
(6)已知全集S={不大于20的质数},A、B是S的两个子集,且满足A∩(CSB)={3,5},(CSA)∩B={7,19},(CSA)∩(CSB)={2,17},求集合A和集合B.
第2课时 补集及综合应用
课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算.
1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________.
2.补集
自然语言
对于一个集合A,由全集U中________________的所有元素组成的集合称为集合A相对于全集U的补集,记作________
符号语言
?UA=____________
图形语言
3.补集与全集的性质
(1)?UU=____;(2)?U?=____;(3)?U(?UA)=____;(4)A∪(?UA)=____;(5)A∩(?UA)=____.
一、选择题
1.已知集合U={1,3,5,7,9},A={1,5,7},则?UA等于( )
A.{1,3} B.{3,7,9}
C.{3,5,9} D.{3,9}
2.已知全集U=R,集合M={x|x2-4≤0},则?UM等于( )
A.{x|-2C.{x|x<-2或x>2} D.{x|x≤-2或x≥2}
3.设全集U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(?UB)等于( )
A.{2} B.{2,3}
C.{3} D.{1,3}
4.设全集U和集合A、B、P满足A=?UB,B=?UP,则A与P的关系是( )
A.A=?UP B.A=P
C.AP D.AP
5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是( )
A.(M∩P)∩S B.(M∩P)∪S
C.(M∩P)∩?IS D.(M∩P)∪?IS
6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是( )
A.A∪B B.A∩B
C.?U(A∩B) D.?U(A∪B)
题 号
1
2
3
4
5
6
答 案
二、填空题
7.设U={0,1,2,3},A={x∈U|x2+mx=0},若?UA={1,2},则实数m=________.
8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则?UA=____________________,?UB=________________,?BA=____________.
9.已知全集U,AB,则?UA与?UB的关系是____________________.
三、解答题
10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},?UA={5},求实数a,b的值.
11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(?UB)=A,求?UB.
能力提升
12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(?UB)∩A={9},则A等于( )
A.{1,3} B.{3,7,9}
C.{3,5,9} D.{3,9}
13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?
1.全集与补集的互相依存关系
(1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.
(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.
(3)?UA的数学意义包括两个方面:首先必须具备A?U;其次是定义?UA={x|x∈U,且x?A},补集是集合间的运算关系.
2.补集思想
做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求?UA,再由?U(?UA)=A求A.
第2课时 补集及综合应用
知识梳理
1.全集 U 2.不属于集合A ?UA {x|x∈U,且x?A}
3.(1)? (2)U (3)A (4)U (5)?
作业设计
1.D [在集合U中,去掉1,5,7,剩下的元素构成?UA.]
2.C [∵M={x|-2≤x≤2},
∴?UM={x|x<-2或x>2}.]
3.D [由B={2,5},知?UB={1,3,4}.
A∩(?UB)={1,3,5}∩{1,3,4}={1,3}.]
4.B [由A=?UB,得?UA=B.
又∵B=?UP,∴?UP=?UA.
即P=A,故选B.]
5.C [依题意,由图知,阴影部分对应的元素a具有性质a∈M,a∈P,a∈?IS,所以阴影部分所表示的集合是(M∩P)∩?IS,故选C.]
6.D [由A∪B={1,3,4,5,6},
得?U(A∪B)={2,7},故选D.]
7.-3
解析 ∵?UA={1,2},∴A={0,3},故m=-3.
8.{0,1,3,5,7,8} {7,8} {0,1,3,5}
解析 由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得?UA={0,1,3,5,7,8},?UB={7,8},?BA={0,1,3,5}.
9.?UB?UA
解析 画Venn图,观察可知?UB?UA.
10.解 ∵?UA={5},∴5∈U且5?A.
又b∈A,∴b∈U,由此得
解得或经检验都符合题意.
11.解 因为B∪(?UB)=A,
所以B?A,U=A,因而x2=3或x2=x.
①若x2=3,则x=±.
当x=时,A={1,3,},B={1,3},U=A={1,3,},此时?UB={};
当x=-时,A={1,3,-},B={1,3},U=A={1,3,-},此时?UB={-}.
②若x2=x,则x=0或x=1.
当x=1时,A中元素x与1相同,B中元素x2与1也相同,不符合元素的互异性,故x≠1;
当x=0时,A={1,3,0},B={1,0},
U=A={1,3,0},从而?UB={3}.
综上所述,?UB={}或{-}或{3}.
12.D [借助于Venn图解,因为A∩B={3},所以3∈A,又因为(?UB)∩A={9},所以9∈A,所以选D.]
13.
解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a,b,x.
根据题意有
解得x=5,即两项都参加的有5人.
课件22张PPT。1.1.3集合的
基本运算新课观察下列三个集合:S={高一年级的同学}A={高一年级参加军训的同学}
B={高一年级没有参加军训的同学}问:这三个集合之间有何关系?新课观察下列三个集合:S={高一年级的同学}A={高一年级参加军训的同学}
B={高一年级没有参加军训的同学}问:这三个集合之间有何关系?显然,集合S中除去集合
A(B)之外就是集合B(A).新课可以用韦恩图表示 ASB观察下列三个集合:S={高一年级的同学}A={高一年级参加军训的同学}
B={高一年级没有参加军训的同学} 一般地,设S是一个集合,A是S中
的一个子集, 即A?S ,则由S中所有不
属于A的元素组成的集合,叫做S中集合
A的补集(或余集),记作:补 集 一般地,设S是一个集合,A是S中
的一个子集, 即A?S ,则由S中所有不
属于A的元素组成的集合,叫做S中集合
A的补集(或余集),记作:补 集如:S={1,2,3,4,5,6}
A={1,3,5}
?如:S={1,2,3,4,5,6}
A={1,3,5}
{2,4,6}.如:S={1,2,3,4,5,6}
A={1,3,5}
在这里,S 中含有我们所要研究的
各个集合的全部元素, 我们把它叫做
全集.{2,4,6}.全 集 研究补集必须是在全集的条件下研
究,而全集因研究问题不同而异,全集
常用U来表示.注意: 研究补集必须是在全集的条件下研
究,而全集因研究问题不同而异,全集
常用U来表示.注意:补集可以看成是集合的一种“运算”,它具有以下性质: 研究补集必须是在全集的条件下研
究,而全集因研究问题不同而异,全集
常用U来表示.注意:补集可以看成是集合的一种“运算”,它具有以下性质:若全集为U,A?U,则 研究补集必须是在全集的条件下研
究,而全集因研究问题不同而异,全集
常用U来表示.注意:补集可以看成是集合的一种“运算”,它具有以下性质:若全集为U,A?U,则?UA练习7练习=7练习=?7练习课堂小结1.能熟练求解一个给定集合的补集;2.注意一以后些特殊结论在解题中
的应用.课后作业1. 阅读教材;
2. 教材P.12习题A组第9、10题;
3. 自学教材P13~ P14 .第3课时 集合的并集和交集
(一)教学目标
1.知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.
(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。
(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。
2.过程与方法
通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.
3.情感、态度与价值观
通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.
(二)教学重点与难点
重点:交集、并集运算的含义,识记与运用.
难点:弄清交集、并集的含义,认识符号之间的区别与联系
(三)教学方法
在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.
(四)教学过程
教学环节
教学内容
师生互动
设计意图
提出问题引入新知
思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理数},
B = {x | x是无理数},
C = {x | x是实数}.
师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.
生:集合A与B的元素合并构成C.
师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算.
生疑析疑,
导入新知
形成
概念
思考:并集运算.
集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.
定义:由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:
师:请同学们将上述两组实例的共同规律用数学语言表达出来.
学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义.
在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.
应用举例
例1 设A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 设集合A = {x | –1<x<2},集合B = {x | 1<x<3},求A∪B.
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1<x<2}∪{x|1<x<3} = {x = –1<x<3}.
师:求并集时,两集合的相同元素如何在并集中表示.
生:遵循集合元素的互异性.
师:涉及不等式型集合问题.
注意利用数轴,运用数形结合思想求解.
生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性.
学生尝试求解,老师适时适当指导,评析.
固化概念
提升能力
探究性质
①A∪A = A, ②A∪= A,
③A∪B = B∪A,
④∪B,∪B.
老师要求学生对性质进行合理解释.
培养学生数学思维能力.
形成概念
自学提要:
①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?
②交集运算具有的运算性质呢?
交集的定义.
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.
即A∩B = {x | x∈A且x∈B}
Venn图表示
老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.
生:①A∩A = A;
②A∩=;
③A∩B = B∩A;
④A∩,A∩.
师:适当阐述上述性质.
自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.
应用举例
例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新华中学开运动会,设
A = {x | x是新华中学高一年级参加百米赛跑的同学},
B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.
例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.
学生上台板演,老师点评、总结.
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.
例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.
(1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};
(2)直线l1,l2平行可表示为
L1∩L2 =;
(3)直线l1,l2重合可表示为
L1∩L2 = L1 = L2.
提升学生的动手实践能力.
归纳总结
并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性质:①A∩A = A,A∪A = A,
②A∩=,A∪= A,
③A∩B = B∩A,A∪B = B∪A.
学生合作交流:回顾→反思→总理→小结
老师点评、阐述
归纳知识、构建知识网络
课后作业
1.1第三课时 习案
学生独立完成
巩固知识,提升能力,反思升华
备选例题
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1<x<1},B = {x | x<a},
(1)若A∩B =,求a的取值范围;
(2)若A∪B = {x | x<1},求a的取值范围.
【解析】(1)如下图所示:A = {x | –1<x<1},B = {x | x<a},且A∩B=,
∴数轴上点x = a在x = – 1左侧.
∴a≤–1.
(2)如右图所示:A = {x | –1<x<1},B = {x | x<a}且A∪B = {x | x<1},
∴数轴上点x = a在x = –1和x = 1之间.
∴–1<a≤1.
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C =同时成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C =同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C =相矛盾,故不适合.
当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C =,同时成立,∴满足条件的实数a = –2.
例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.
【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.
当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.
当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.
综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.
1、1、3集合的基本运算 同步练习
一、选择题
1、已知集合满足,则一定有( )
A、 B、 C、 D 、
2、集合A含有10个元素,集合B含有8个元素,集合A∩B含有3个元素,则集合A∪B的元素个数为( )
A、10个 B、8个 C、18个 D、15个
3、设全集U=R,M={x|x.≥1}, N ={x|0≤x<5},则(CM)∪(CN)为( )
A、{x|x.≥0} B、{x|x<1 或x≥5}
C、{x|x≤1或x≥5} D、{x| x〈0或x≥5 }
4、设集合,,且,则满足条件的实数的个数是( )
A、1个 B、2个 C、3个 D、4个
5、已知全集U={非零整数},集合A={x||x+2|>4, xU}, 则CA=( )
A、{-6 , -5 , -4 , -3 , -2 , -1 , 0 , 1 , 2 }
B、{-6 , -5 , -4 , -3 , -2 , -1 , 1 , 2 }
C、{ -5 , -4 , -3 , -2 , 0 , -1 , 1 }
D、{ -5 , -4 , -3 , -2 , -1 , 1 }
6、已知集合,则等于
A、{0,1,2,6} B、{3,7,8,}
C、{1,3,7,8} D、{1,3,6,7,8}
7、定义A-B={x|xA且xB}, 若A={1,2,3,4,5},B={2,3,6},
则A-(A-B)等于( )
A、{2,3,6} B、 C 、 D 、
二、填空题
8、集合P= ,Q= ,则A∩B=
9、不等式|x-1|>-3的解集是
10、已知集合A= 用列举法表示集合A=
11、已知U=
则集合A=
三、解答题
12、已知集合A=
1)若A是空集,求a的取值范围;
2)若A中只有一个元素,求a的值,并把这个元素写出来;
3)若A中至多只有一个元素,求a的取值范围
13、已知全集U=R,集合A=
,试用列举法表示集合A
14、已知全集U={x|x-3x+2≥0},A={x||x-2|>1},B=,求CA,CB,A∩B,A∩(CB),(CA)∩B
15、关于实数x的不等式与x-3(a+1)x+2(3a+1)≤0
(a∈R)的解集依次为A,B求使成立的实数a的取值范围
一、选择题
1.B;2.D;3.B;4.C;5.B ;6.C;7.B;
二、填空题
8. ; 9.R; 10. ; 11。
三、解答题
12、1)a> ; 2)a=0或a=;3)a=0或a≥
13、
14、CUA=
CUB=
A∩B=A
A∩(CUB)=
(CUA)∩B=
15、 a=-1或2≤a≤3.