人教版选修1-1 1.1.3 四种命题间的相互关系课件(26张)

文档属性

名称 人教版选修1-1 1.1.3 四种命题间的相互关系课件(26张)
格式 zip
文件大小 99.3KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-08-19 13:20:15

图片预览

文档简介

课件26张PPT。命题及其关系1.1.2 四种命题下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?若f(x)是正弦函数,则f(x)是周期函数;
若f(x)是周期函数,则f(x)是正弦函数;
若f(x)不是正弦函数,则f(x)不是周期函数;
若f(x)不是周期函数,则f(x)不是正弦函数。观察命题(1)与命题(2)的条件和结论之间分别有什么关系?若f(x)是正弦函数,则f(x)是周期函数;
若f(x)是周期函数,则f(x)是正弦函数;互逆命题:一个命题的条件和结论分别是另
一个命题的结论和条件,这两个
命题叫做互逆命题。
原 命 题:其中一个命题叫做原命题。
逆 命 题:另一个命题叫做原命题的逆命题。即 原命题:若p,则q逆命题:若q,则p观察命题(1)与命题(3)的条件和结论之间分别有什么关系?若f(x)是正弦函数,则f(x)是周期函数;
3. 若f(x)不是正弦函数,则f(x)不是周期函数. 原命题:若p,则q 为书写简便,常把条件p的否定和结论q的否定分别记作 “┐p” “┐q”否命题:若┐p,则┐q互否命题 原命题 (原命题的)否命题观察命题(1)与命题(4)的条件和结论之间分别有什么关系?若f(x)是正弦函数,则f(x)是周期函数;
4. 若f(x)不是周期函数,则f(x)不是正弦函数. 原命题: 若p, 则q逆否命题: 若┐q, 则┐p 互为逆否命题 原命题 (原命题的)逆否命题原命题,逆命题,否命题,逆否命题四种命题形式:
原命题:
逆命题:
否命题:
逆否命题:若 p, 则 q
若 q, 则 p
若┐p, 则┐q
若┐q, 则┐p
判断正误,并说明理由:(1)若原命题是“对顶角相等”,
它的否命题是“对顶角不相等”。
(2)若原命题是“对顶角相等”,
它的否命题是“不成对顶关系的
两个角不相等”。
否命题与命题的否定否命题是用否定条件也否定结论的方式构成新命题。
命题的否定是逻辑联结词“非”作用于判断,只否定结论不否定条件。
对于原命题: 若 p , 则 q 有
否命题: 若┐p , 则┐q 。
命题的否定: 若 p ,则┐q 。例 设原命题是“当c >0 时,若a >b ,则ac >bc ”,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假:解:
逆命题:当c >0 时,若ac >bc ,则a >b.
逆命题为真.否命题:当c >0 时,若a ≤b ,则ac ≤ bc .
否命题为真.逆否命题:当c >0 时,若ac ≤ bc ,则a ≤b .
逆否命题为真.准确地作出反设(即否定结论)是非常重要的,下面是一些常见的结论的否定形式. ?不是不都是不大于大于或等于一个也没有至少有两个至多有(n-1)个至少有(n+1)个存在某x,
不成立存在某x,
成立命题及其关系小结 这节课主要是学习了一个命题的逆命题、否命题、逆否命题。并且进行一个命题的改写成其它三种命题。在改写过程中,一定要注意命题的条件和结论是什么。回顾交换原命题的条件和结论,所得的命题是________
同时否定原命题的条件和结论,所得的命题是________
交换原命题的条件和结论,并且同时否定,所得的命题是__________
逆命题。否命题。逆否命题。原命题,逆命题,否命题,逆否命题四种命题形式:
原命题:
逆命题:
否命题:
逆否命题:若 p, 则 q
若 q, 则 p
若┐p, 则┐q
若┐q, 则┐p
互 逆互 逆互 否互 否互为 逆否互为 逆否四种命题之间的相互关系思考原命题的真假与其它三种命题的真假有什么关系?
逆命题:角的平分线上的点,到这个角的
两边距离相等. 否命题:到一个角的两边距离不相等的点,
都不在这个角的平分线上. 逆否命题:不在这个角的平分线上的点,到这
个角的两边距离不相等.(1)到一个角的两边距离相等的点,都在
这个角的平分线上.原命题 (真) 逆命题 (真) 否命题 (真) 逆否命题 (真). 逆命题:两个三角形的面积相等,则它们全等.
否命题:两个三角形不全等,则它们的面积不 相等.
逆否命题:两个三角形的面积不相等,则它们
不全等.(2)两个三角形全等,则它们的面积相等.原命题 (真) 逆命题 (假)
否命题 (假) 逆否命题 (真) 逆命题: 对顶角相等. 否命题: 不相等的角不是对顶角. 逆否命题: 不是对顶角就不相等.(3)相等的角是对顶角原命题 (假) 逆命题 (真) 否命题 (真) 逆否命题 (假) 逆命题: 凡奇数都是质数. 否命题: 不是质数就不是奇数. 逆否命题: 不是奇数就不是质数.(4)凡质数都是奇数.原命题 (假) 逆命题 (假) 否命题 (假) 逆否命题 (假) 原命题与逆命题未必同真假.
原命题与否命题未必同真假.
原命题与逆否命题一定同真假.
原命题的逆命题与原命题的否命题一定同真假. 几条结论:例 证明:若p2+q2=2,则p+q≤2.分析:将“若p2+q2=2,则p+q≤2”看成原命题。由于原命题和它的逆否命题具有相同的真假性,要证原命题为真命题,可以证明它的逆否命题为真命题。反证法:
要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的。
即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法。
反证法的步骤:假设命题的结论不成立,即假设结论的反面成立。
从这个假设出发,通过推理论证,得出矛盾。
由矛盾判定假设不正确,从而肯定命题的结论正确。
可能出现矛盾四种情况:
与题设矛盾;
与反设矛盾;
与公理、定理矛盾;
在证明过程中,推出自相矛盾的结论。
反证法的步骤:
(1)假设命题的结论不成立,即假设结论的反面成立
(2)从这个假设出发,通过推理论证,得出矛盾
(3)由矛盾判定假设不正确,从而肯定命题的结论正确
反证法的步骤:例 用反证法证明:
如果a>b>0,那么 . 练 用反证法证明:圆的两条不是直径的相交弦不能互相平分。 已知:如图,在⊙O中,弦AB、CD交于P,且AB、CD不是直径.
求证:弦AB、CD不被P平分.反证法的步骤:
(1)假设命题的结论不成立,即假设结论的反面成立
(2)从这个假设出发,通过推理论证,得出矛盾
(3)由矛盾判定假设不正确,从而肯定命题的结论正确