第三章 函数的应用
§3.1 函数与方程
3.1.1 方程的根与函数的零点
课时目标 1.能够结合二次函数的图象判断一元二次方程根的存在性及根的个数,理解二次函数的图象与x轴的交点和相应的一元二次方程根的关系.2.理解函数零点的概念以及函数零点与方程根的联系.3.掌握函数零点的存在性定理.
1.函数y=ax2+bx+c(a≠0)的图象与x轴的交点和相应的ax2+bx+c=0(a≠0)的根的关系
函数图象
判别式
Δ>0
Δ=0
Δ<0
与x轴交点个数
____个
____个
____个
方程的根
____个
____个
无解
2.函数的零点
对于函数y=f(x),我们把________________叫做函数y=f(x)的零点.
3.方程、函数、图象之间的关系
方程f(x)=0__________?函数y=f(x)的图象______________?函数y=f(x)__________.
4.函数零点的存在性定理
如果函数y=f(x)在区间[a,b]上的图象是________的一条曲线,并且有____________,那么,函数y=f(x)在区间(a,b)内________,即存在c∈(a,b),使得__________,这个c也就是方程f(x)=0的根.
一、选择题
1.二次函数y=ax2+bx+c中,a·c<0,则函数的零点个数是( )
A.0个 B.1个
C.2个 D.无法确定
2.若函数y=f(x)在区间[a,b]上的图象为一条连续不断的曲线,则下列说法正确的是( )
A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0
B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0
C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0
D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=0
3.若函数f(x)=ax+b(a≠0)有一个零点为2,那么函数g(x)=bx2-ax的零点是( )
A.0,- B.0,
C.0,2 D.2,-
4.函数f(x)=ex+x-2的零点所在的一个区间是( )
A.(-2,-1) B.(-1,0)
C.(0,1) D.(1,2)
5.函数f(x)=零点的个数为( )
A.0 B.1
C.2 D.3
6.已知函数y=ax3+bx2+cx+d的图象如图所示,则实数b的取值范围是( )
A.(-∞,0)
B.(0,1)
C.(1,2)
D.(2,+∞)
题 号
1
2
3
4
5
6
答 案
二、填空题
7.已知函数f(x)是定义域为R的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有______个零点,这几个零点的和等于______.
8.函数f(x)=ln x-x+2的零点个数为________.
9.根据表格中的数据,可以判定方程ex-x-2=0的一个实根所在的区间为(k,k+1)(k∈N),则k的值为________.
x
-1
0
1
2
3
ex
0.37
1
2.72
7.39
20.09
x+2
1
2
3
4
5
三、解答题
10.证明:方程x4-4x-2=0在区间[-1,2]内至少有两个实数解.
11.关于x的方程mx2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m的取值范围.
能力提升
12.设函数f(x)=若f(-4)=f(0),f(-2)=-2,则方程f(x)=x的
解的个数是( )
A.1 B.2
C.3 D.4
13.若方程x2+(k-2)x+2k-1=0的两根中,一根在0和1之间,另一根在1和2之间,求k的取值范围.
1.方程的根与方程所对应函数的零点的关系
(1)函数的零点是一个实数,当自变量取该值时,其函数值等于零.
(2)根据函数零点定义可知,函数f(x)的零点就是方程f(x)=0的根,因此判断一个函数是否有零点,有几个零点,就是判断方程f(x)=0是否有实根,有几个实根.
(3)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的实数根,也就是函数y=f(x)的图象与y=g(x)的图象交点的横坐标.
2.并不是所有的函数都有零点,如函数y=.
3.对于任意的一个函数,即使它的图象是连续不断的,当它通过零点时,函数值也不一定变号.如函数y=x2有零点x0=0,但显然当它通过零点时函数值没有变号.
第三章 函数的应用
§3.1 函数与方程
3.1.1 方程的根与函数的零点
知识梳理
1.2 1 0 2 1 2.使f(x)=0的实数x 3.有实数根 与x轴有交点 有零点 4.连续不断 f(a)·f(b)<0 有零点 f(c)=0
作业设计
1.C [方程ax2+bx+c=0中,∵ac<0,∴a≠0,
∴Δ=b2-4ac>0,
即方程ax2+bx+c=0有2个不同实数根,
则对应函数的零点个数为2个.]
2.C [对于选项A,可能存在根;
对于选项B,必存在但不一定唯一;
选项D显然不成立.]
3.A [∵a≠0,2a+b=0,
∴b≠0,=-.
令bx2-ax=0,得x=0或x==-.]
4.C [∵f(x)=ex+x-2,
f(0)=e0-2=-1<0,
f(1)=e1+1-2=e-1>0,
∴f(0)·f(1)<0,
∴f(x)在区间(0,1)上存在零点.]
5.C [x≤0时,令x2+2x-3=0,解得x=-3.
x>0时,f(x)=ln x-2在(0,+∞)上递增,
f(1)=-2<0,f(e3)=1>0,∵f(1)f(e3)<0
∴f(x)在(0,+∞)上有且只有一个零点.
总之,f(x)在R上有2个零点.]
6.A [设f(x)=ax3+bx2+cx+d,则由f(0)=0可得d=0,f(x)=x(ax2+bx+c)=ax(x-1)(x-2)?b=-3a,又由x∈(0,1)时f(x)>0,可得a>0,∴b<0.]
7.3 0
解析 ∵f(x)是R上的奇函数,∴f(0)=0,又∵f(x)在(0,+∞)上是增函数,由奇函数的对称性可知,f(x)在(-∞,0)上也单调递增,由f(2)=-f(-2)=0.因此在(0,+∞)上只有一个零点,综上f(x)在R上共有3个零点,其和为-2+0+2=0.
8.2
解析 该函数零点的个数就是函数y=ln x与y=x-2图象的交点个数.在同一坐标系中作出y=ln x与y=x-2的图象如下图:
由图象可知,两个函数图象有2个交点,即函数f(x)=ln x-x+2有2个零点.
9.1
解析 设f(x)=e2-(x+2),由题意知f(-1)<0,f(0)<0,f(1)<0,f(2)>0,所以方程的一个实根在区间(1,2)内,即k=1.
10.证明 设f(x)=x4-4x-2,其图象是连续曲线.
因为f(-1)=3>0,f(0)=-2<0,f(2)=6>0.
所以在(-1,0),(0,2)内都有实数解.
从而证明该方程在给定的区间内至少有两个实数解.
11.解 令f(x)=mx2+2(m+3)x+2m+14.
依题意得或,
即或,解得-
12.C [由已知得
∴f(x)=
当x≤0时,方程为x2+4x+2=x,
即x2+3x+2=0,
∴x=-1或x=-2;
当x>0时,方程为x=2,
∴方程f(x)=x有3个解.]
13.解 设f(x)=x2+(k-2)x+2k-1.
∵方程f(x)=0的两根中,一根在(0,1)内,一根在(1,2)内,
∴,即
∴
方程的根与函数的零点教案
【教学目标】
1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;
2. 掌握零点存在的判定条件.
【教学重难点】
教学重点:方程的根与函数的零点的关系。
教学难点:求函数零点的个数问题。
【教学过程】
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标。
探究任务一:函数零点与方程的根的关系
问题:
① 方程的解为 ,函数的图象与x轴有 个交点,坐标为 .
② 方程的解为 ,函数的图象与x轴有 个交点,坐标为 .
③ 方程的解为 ,函数的图象与x轴有 个交点,坐标为 .
根据以上结论,可以得到:
一元二次方程的根就是相应二次函数的图象与x轴交点的 .
你能将结论进一步推广到吗?
已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。
新知:对于函数,我们把使的实数x叫做函数的零点(zero point).
反思:
函数的零点、方程的实数根、函数 的图象与x轴交点的横坐标,三者有什么关系?
试试:
(1)函数的零点为 ; (2)函数的零点为 .
小结:方程有实数根函数的图象与x轴有交点函数有零点.
探究任务二:零点存在性定理
问题:
① 作出的图象,求的值,观察和的符号
② 观察下面函数的图象,
在区间上 零点; 0;
在区间上 零点; 0;
在区间上 零点; 0.
新知:如果函数在区间上的图象是连续不断的一条曲线,并且有<0,那么,函数在区间内有零点,即存在,使得,这个c也就是方程的根.
讨论:零点个数一定是一个吗? 逆定理成立吗?试结合图形来分析.
(三)典型例题
例1求函数的零点的个数.
解析:引导学生借助计算机画函数图像,缩小解的范围。
解:用计算器或计算机做出的对应值表和图像(见课本88页)
知则,这说明函数在区间内有零点。由于函数在定于域内是增函数,所以它仅有一个零点。
点评:注意计算机与函数的单调性在本题中的应用。
变式训练1:求函数的零点所在区间.
小结:函数零点的求法.
① 代数法:求方程的实数根;
② 几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
例2求函数的零点大致所在区间.
分析;方程的根与函数的零点的应用,学生小组讨论自主完成。
变式训练2
求下列函数的零点:
(1);
(2).
(四)小结:今天的学习内容和方法有哪些?你有哪些收获和经验?课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
【板书设计】
一、函数零点与方程的根的关系
二、例题
例1
变式1
例2
变式2
【作业布置】课本88页1,2
3.1.1 方程的根与函数的零点导学案
课前预习学案
一、预习目标
预习方程的根与函数零点的关系。
二、预习内容
(预习教材P86~ P88,找出疑惑之处)
复习1:一元二次方程+bx+c=0 (a0)的解法.
判别式= .
当 0,方程有两根,为 ;
当 0,方程有一根,为 ;
当 0,方程无实数.
复习2:方程+bx+c=0 (a0)的根与二次函数y=ax+bx+c (a0)的图象之间有什么关系?
判别式
一元二次方程
二次函数图象
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标
1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;
2. 掌握零点存在的判定条件.
学习重难点:方程的根与函数的零点的关系,求函数零点的个数问题
二、学习过程
探究任务一:函数零点与方程的根的关系
问题:
① 方程的解为 ,函数的图象与x轴有 个交点,坐标为 .
② 方程的解为 ,函数的图象与x轴有 个交点,坐标为 .
③ 方程的解为 ,函数的图象与x轴有 个交点,坐标为 .
根据以上结论,可以得到:
一元二次方程的根就是相应二次函数的图象与x轴交点的 .
你能将结论进一步推广到吗?
新知:对于函数,我们把使的实数x叫做函数的零点(zero point).
反思:
函数的零点、方程的实数根、函数 的图象与x轴交点的横坐标,三者有什么关系?
试试:
(1)函数的零点为 ; (2)函数的零点为 .
小结:方程有实数根函数的图象与x轴有交点函数有零点.
探究任务二:零点存在性定理
问题:
① 作出的图象,求的值,观察和的符号
② 观察下面函数的图象,
在区间上 零点; 0;
在区间上 零点; 0;
在区间上 零点; 0.
新知:如果函数在区间上的图象是连续不断的一条曲线,并且有<0,那么,函数在区间内有零点,即存在,使得,这个c也就是方程的根.
讨论:零点个数一定是一个吗? 逆定理成立吗?试结合图形来分析.
三、 典型例题
例1求函数的零点的个数.
变式一:求函数的零点所在区间.
小结:函数零点的求法.
① 代数法:求方程的实数根;
② 几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
例2求函数的零点大致所在区间.
变式训练二
求下列函数的零点:
(1);
(2).
四、反思总结
图像连续的函数的零点的性质:
(1)函数的图像是连续的,当它通过零点时(非偶次零点),函数值变号.
推论:函数在区间上的图像是连续的,且,那么函数在区间上至少有一个零点.
(2)相邻两个零点之间的函数值保持同号.
五、当堂达标
1. 求函数的零点所在区间,并画出它的大致图象.
课后练习与提高
1. 函数的零点个数为( ).
A. 1 B. 2 C. 3 D. 4
2.若函数在上连续,且有.则函数在上( ).
A. 一定没有零点 B. 至少有一个零点
C. 只有一个零点 D. 零点情况不确定
3. 函数的零点所在区间为( ).
A. B. C. D.
4. 函数的零点为 .
5. 若函数为定义域是R的奇函数,且在上有一个零点.则的零点个数为 .
6. 已知函数.
(1)为何值时,函数的图象与轴有两个零点;
(2)若函数至少有一个零点在原点右侧,求值.
课件36张PPT。3.1.1方程的根与
函数的零点(一)观察下列三组方程与相应的二次函数 复 习 引 入练习1. 利用函数图象判断下列方程有没
有根,有几个根:(1) -x2+3x+5=0;
(2) 2x(x+2)=-3;
(3) x2=4x-4;
(4) 5x2+2x=3x2+5.讲 授 新 课函数零点的概念:讲 授 新 课 对于函数y=f(x),我们把使f(x)=0
的实数x叫做函数y=f(x)的零点.函数零点的概念:探究1 如何求函数的零点?探究2 零点与函数图象的关系怎样?探究1 如何求函数的零点?方程f (x)=0有实数根
?函数y=f (x)的图象与x轴有交点
?函数y=f (x)有零点探究2 零点与函数图象的关系怎样?探究1 如何求函数的零点?探究3 二次函数的零点如何判定?对于二次函数y=ax2+bx+c与二次方程
ax2+bx+c=0 ,其判别式?=b2-4ac.探究3 二次函数的零点如何判定?对于二次函数y=ax2+bx+c与二次方程
ax2+bx+c=0 ,其判别式?=b2-4ac.探究3 二次函数的零点如何判定?探究3 二次函数的零点如何判定?对于二次函数y=ax2+bx+c与二次方程
ax2+bx+c=0 ,其判别式?=b2-4ac.探究3 二次函数的零点如何判定?对于二次函数y=ax2+bx+c与二次方程
ax2+bx+c=0 ,其判别式?=b2-4ac.探究3 二次函数的零点如何判定?对于二次函数y=ax2+bx+c与二次方程
ax2+bx+c=0 ,其判别式?=b2-4ac.探究3 二次函数的零点如何判定?对于二次函数y=ax2+bx+c与二次方程
ax2+bx+c=0 ,其判别式?=b2-4ac.探究3 二次函数的零点如何判定?对于二次函数y=ax2+bx+c与二次方程
ax2+bx+c=0 ,其判别式?=b2-4ac.探究3 二次函数的零点如何判定?对于二次函数y=ax2+bx+c与二次方程
ax2+bx+c=0 ,其判别式?=b2-4ac.2. 求函数y=-x2-2x+3的零点. 练习2. 求函数y=-x2-2x+3的零点. 练习零点为-3,1.3. 判断下列函数有几个零点练习练习4. 求函数y=x3-2x2-x+2
的零点,并画出它的图象.练习4. 求函数y=x3-2x2-x+2
的零点,并画出它的图象.零点为-1,1,2.-2-4-22B2xyO4. 求函数y=x3-2x2-x+2
的零点,并画出它的图象.练习4零点为-1,1,2.4-2-4-22B2xyO4. 求函数y=x3-2x2-x+2
的零点,并画出它的图象.练习零点为-1,1,2.考察函数
①y=lgx ②y=log2(x+1)
③y=2x ④y=2x-2
的零点.拓 展x探究4yO结 论 如果函数y=f(x)在区间[a, b]上的
图象是连续不断的一条曲线,并且有
f(a)·f(b)<0,那么,函数y=f(x)在区
间(a, b)内有零点,即存在c∈(a, b),
使得f(c)=0, 这个c也就是方程f(x)=0
的根.例 求函数f(x)=lnx+2x-6的零点个数.播放几何画板练习5. 若方程2ax2-x-1=0在(0,1)内恰有一
解,则a的取值范围是 ( B )A. a<-1 B. a>1
C. -1<a<1 D. 0<a<1 练习5. 若方程2ax2-x-1=0在(0,1)内恰有一
解,则a的取值范围是 ( B )A. a<-1 B. a>1
C. -1<a<1 D. 0<a<1 课 堂 小 结1. 知识方面:
零点的概念、求法、判定;
课 堂 小 结1. 知识方面:
零点的概念、求法、判定;
2. 数学思想方面:
函数与方程的相互转化,即转化思想
借助图象探寻规律,即数形结合思想.课 后 作 业2. 《习案》3.1第一课时.1. 阅读教材P.86~ P.88.播放几何画板 若函数f(x)=x2-ax-b的两个零点是
2和3,求loga25+b2.思考题OyxCAB课件12张PPT。3.1.1方程的根与
函数的零点(二)练习1. 若方程2ax2-x-1=0在(0,1)内恰有一
解,则a的取值范围是 ( B )A. a<-1 B. a>1
C. -1<a<1 D. 0<a<1 练习1. 若方程2ax2-x-1=0在(0,1)内恰有一
解,则a的取值范围是 ( B )A. a<-1 B. a>1
C. -1<a<1 D. 0<a<1 2.函数y=f(x)在区间[a, b]上的图象是
连续不断的曲线,且f(a) f(b)<0,则函
数y=f(x)在区间(a, b)内 ( A )A. 至少有一个零点
B. 至多有一个零点
C. 只有一个零点
D. 有两个零点练习2.函数y=f(x)在区间[a, b]上的图象是
连续不断的曲线,且f(a) f(b)<0,则函
数y=f(x)在区间(a, b)内 ( A )A. 至少有一个零点
B. 至多有一个零点
C. 只有一个零点
D. 有两个零点练习3.若函数f(x)的图象是连续不断的,
且f(0)>0, f(1)f(2)f(4)<0,则下列
命题正确的是 ( D )A. 函数f(x)在区间(0,1)内有零点
B. 函数f(x)在区间(1,2)内有零点
C. 函数f(x)在区间(0,2)内有零点
D. 函数f(x)在区间(0,4)内有零点练习A. 函数f(x)在区间(0,1)内有零点
B. 函数f(x)在区间(1,2)内有零点
C. 函数f(x)在区间(0,2)内有零点
D. 函数f(x)在区间(0,4)内有零点练习3.若函数f(x)的图象是连续不断的,
且f(0)>0, f(1)f(2)f(4)<0,则下列
命题正确的是 ( D )练习播放动画4. 教材P.88练习第2题练习4. 教材P.88练习第2题5. 《习案》P.203作业二十九第6题课 堂 小 结1. 知识方面:
零点的概念、求法、判定;
课 堂 小 结1. 知识方面:
零点的概念、求法、判定;
2. 数学思想方面:
函数与方程的相互转化,即转化思想
借助图象探寻规律,即数形结合思想.课 后 作 业2. 《习案》作业二十九.1. 预习教材P.89~ P.90.课件15张PPT。3.1.1方程的根与函数的零点先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:无实根无交点一般一元二次方程与相应二次函数的关系x1,x2(x1,0),(x2,0)x1=x2(x1,0)无实根无交点 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。函数零点的定义:注意:零点指的是一个实数;方程f(x)=0有实数根012345-1-212345-1-2-3-4xy探究结论例例1:求函数f(x)=lnx+2x-6 的零点的个数-4.0-1.31.13.45.67.89.912.114.2练习4. 求函数y=x3-2x2-x+2
的零点,并画出它的图象.练习4. 求函数y=x3-2x2-x+2
的零点,并画出它的图象.零点为-1,1,2.-2-4-222xyO4. 求函数y=x3-2x2-x+2
的零点,并画出它的图象.练习4零点为-1,1,2.4-2-4-222xyO4. 求函数y=x3-2x2-x+2
的零点,并画出它的图象.练习零点为-1,1,2.考察函数
①y=lgx ②y=log2(x+1)
③y=2x ④y=2x-2
的零点.拓 展练习:
1.二次函数 ,
则函数的零点个数是( )2.求下列函数的零点个数例2:2.若方程 在(0,1)内恰有一解,求实数a的取值范围。3. 方程在 (-1,1)上有实根,求k的取值范围.作业:P92 A组 2,
作业本A本P28 4.51.若函数 f(x)=ax+b有一个零点2,求函数
g(x)=bx2-ax的零点2. 已知关于x的方程 的一个根在(-2,0)内,另一根在(1,3)内,求实数a的取值范围. 3.1.2 函数零点的存在性定理
(一)教学目标
1.知识与技能
体验零点存在性定理的形成过程,理解零点存在性定理,并能应用它探究零点的个数及存在的区间.
2.过程与方法
经历由特殊到一般的过程,在由了解零点存在性定理到理解零点存在性定理,从而掌握零点存在性定理的过程中,养成研究问题的良好的思维习惯.
3.情感、态度与价值观
经历知识发现、生成、发展、掌握、理解的过程,学会观察问题,发现问题,从而解决问题;养成良好的科学态度,享受探究数学知识的乐趣.
(二)教学重点与难点
重点:掌握零点存在性定理并能应用.
难点:零点存在性定理的理解
(三)教学方法
通过问题发现生疑,通过问题解决析疑,从而获取知识形成能力;应用引导与动手尝试结合教学法,即学生自主探究与教师启发,引导相结合.
(四)教学过程
教学环节
教学内容
师生互动
设计意图
复习回顾提出问题
1.函数零点的概念
2.函数零点与方程根的关系
3.实例探究
已知函数y= x2+4x– 5,则其零点有几个?分别为多少?
生:口答零点的定义,零点与根的关系
师:回顾零点的求法
生:函数y= x2+4x– 5的零点有2个,分别为–5,1
回顾旧知,
引入新知
示例探究引入课题
1.探究函数y = x2 + 4x – 5的零点所在区间及零点存在区间的端点函数值的正负情况的关系
师:引导学生利用图象观察零点的所在区间,说明区间端一般取整数.
生:零点–5∈(–6,–4)
零点1∈(0,2)
且f (–6)·f (–4)<0
f (0)·f (2)<0
师:其它函数的零点是否具有相同规律呢?观察下列函数的零点及零点所在区间.
①f (x) = 2x – 1,
②f (x) = log2(x – 1)
生:函数f (x) = 2x – 1的零点为且f (0) f (1)<0.
函数f (x) = log2(x – 1)的零点为2∈(1,3)且f (1) f (3)<0
由特殊到一般,归纳一般结论,引入零点存在性定理
发现定理
零点存在性定理
如果函数y = f (x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f (a)·f (b)<0那么,函数y = f (x)在区间[a,b]内有零点,即存在c∈(a,b),使得f (c) = 0这个c也就是方程f (x) = 0的根
师生合作分析,并剖析定理中的关键词
①连续不断
②f (a)·f (b)<0
师:由于图象连续不断,
若f (a)>0,f (b)<0,则y = f (x)的图象将从x轴上方变化到下方,这样必通过x轴,即与x轴有交点
形成定理,分析关键词,了解定理.
深化理解
定理的理解
(1)函数在区间[a,b]上的图象连续不断,又它在区间[a,b]端点的函数值异号,则函数在[a,b]上一定存在零点
(2)函数值在区间[a,b]上连续且存在零点,则它在区间[a,b]端点的函数值可能异号也可能同号
(3)定理只能判定零点的存在性,不能判断零点的个数
师:函数y = f (x) = x2 – ax + 2在(0,3)内,①有2个零点.
②有1个零点,分别求a的取值范围.
生:①f(x)在(0,1)内有2个零点,则其图象如下
则
②f(x)在(0,3)内有1个零点
则
通过实例
分析,从而进一步理解
定理,深化
定理.
应用举例
例1 求函数f (x) = lnx + 2x – 6的零点的个数.
师生合作探求解题思路,老师板书解答过程
例1 解:用计算器或计算机作出x,f (x)的对应值表和图象.
x
1
2
3
4
5
f (x)
–4
–1.0369
1.0986
3.3863
5.6094
x
6
7
8
9
f (x)
7.7918
9.9459
12.0794
14.1972
由表和图可知,f (2)<0,f (3)>0,则f (2)· f (3)<0,这说明函数f (x)在区间(2,3)内有零点.由于函数f (x)在定义域内是增函数,所以它仅有一个零点.
师生合作交流,体会定理的应用
练习巩固
练习1.利用信息技术作出函数的图象,并指出下列函数零点所在的大致区间:
(1)f (x) = –x3 –3x + 5;
(2)f (x) = 2x·ln(x – 2) – 3;
(3)f (x) =ex–1 + 4x – 4;
(4)f (x) = 3 (x + 2) (x – 3) (x + 4) + x.
学生尝试动手练习,老师借助计算机作图,师生合作交流分析,求解问题.
练习1解:(1)作出函数图象,因为f (1) = 1>0,f (1,5 ) = –2.875<0所以f (x) = –x3 –3x + 5在区间(1,1.5)上有一个零点.
又因为 f(x)是上的减函数,所以f(x) = –x3 –3x + 5在区间(1,1.5)上有且只有一个零点.
(2)作出函数图象,因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x–2) –3在区间(3,4)上有一个零点.
又因为f(x)=2x·ln(x–2) –3在上是增函数,所以f(x) 在上有且仅有一个(3,4)上的零点
(3)作出函数图象,因为f(0)<0,f(1)>0,所以f (x) =ex–1 + 4x – 4在区间(0,1)上有一个零点
又因为f(x) =ex–1 + 4x – 4在上是增函数,所以f(x)在上有且仅有一个零点.
(4)作出函数图象,因为f (–4)<0,f (–3)>0,f (–2)<0,f (2)<0,f (3)>0,所以f (x) = 3 (x + 2) (x – 3) (x + 4) + x在(–4,–3),(–3, –2),(2,3)上各有一个零点
.
尝试学生动手模仿练习,老师引导、启发,师生合作完成问题求解,从而固化知识与方法,提升思维能力.
归纳总结
1.数形结合探究函数零点
2.应用定理探究零点及存在区间.
3.定理应用的题型:判定零点的存在性及存在区间.
学生总结师生完善补充
学会整理知识,培养自我归纳知识的能力
课后练习
3.1第二课时 习案
学生自主完成
整合知识,提升能力
备选例题
例1 已知集合A = {x∈R|x2 – 4ax + 2a + 6 = 0},B = { x∈R|x<0},若A∩B≠,求实数a的取值范围.
【解析】设全集U = {a|△= (–4a)2 – 4 (2a + 6)≥0}
=
=
若方程x2 – 4ax + 2a + 6 = 0的两根x1,x2均非负,则
因为在全集U中集合的补集为{a|a≤–1},所以实数a的取值范围是{a|a≤–1}.
例2 设集合A = {x | x2 + 4x = 0,x∈R},B = {x | x2 + 2 (a + 1) x + a2 – 1 = 0, x∈R},若A∪B = A,求实数a的值.
【解析】∵A = {x | x2 + 4x = 0,x∈R},∴A = {–4,0}.
∵A∪B=A,∴BA.
1°当B = A,即B = {–4,0}时,由一元二次方程根与系数的关系得
2°当B=,即方程x2 + 2 (a + 1)x + a2 –1 = 0无实解.
∴△= 4 (a + 1)2 – 4 (a2 – 1) = 8a + 8<0.
解得,a<–1.
3°当B = {0},即方程x2 + 2(a + 1)x + a2 – 1 = 0有两个相等的实数根且为零时,
4°当B = {–4}时,即需
无解.
综上所述,若A∪B=A,则a≤–1或a = 1.
§3.1 习题课
课时目标 1.进一步了解函数的零点与方程根的联系.2.进一步熟悉用“二分法”求方程的近似解.3.初步建立用函数与方程思想解决问题的思维方式.
1.函数f(x)在区间(0,2)内有零点,则( )
A.f(0)>0,f(2)<0
B.f(0)·f(2)<0
C.在区间(0,2)内,存在x1,x2使f(x1)·f(x2)<0
D.以上说法都不正确
2.函数f(x)=x2+2x+b的图象与两条坐标轴共有两个交点,那么函数y=f(x)的零点个数是( )
A.0 B.1
C.2 D.1或2
3.设函数f(x)=log3-a在区间(1,2)内有零点,则实数a的取值范围是( )
A.(-1,-log32) B.(0,log32)
C.(log32,1) D.(1,log34)
4.方程2x-x-2=0在实数范围内的解的个数是________________________________.
5.函数y=()x与函数y=lg x的图象的交点的横坐标是________.(精确到0.1)
6.方程4x2-6x-1=0位于区间(-1,2)内的解有__________个.
一、选择题
1.已知某函数f(x)的图象如图所示,则函数f(x)有零点的区间大致是( )
A.(0,0.5)
B.(0.5,1)
C.(1,1.5)
D.(1.5,2)
2.函数f(x)=x5-x-1的一个零点所在的区间可能是( )
A.[0,1] B.[1,2]
C.[2,3] D.[3,4]
3.若x0是方程lg x+x=2的解,则x0属于区间( )
A.(0,1) B.(1,1.25)
C.(1.25,1.75) D.(1.75,2)
4.用二分法求函数f(x)=x3+5的零点可以取的初始区间是( )
A.[-2,1] B.[-1,0]
C.[0,1] D.[1,2]
5.已知函数f(x)=(x-a)(x-b)+2(aA.a<α<βC.α题 号
1
2
3
4
5
答 案
二、填空题
6.用二分法求方程x2-5=0在区间(2,3)的近似解经过________次二分后精确度能达到0.01.
7.已知偶函数y=f(x)有四个零点,则方程f(x)=0的所有实数根之和为________.
8.若关于x的二次方程x2-2x+p+1=0的两根α,β满足0<α<1<β<2,则实数p的取值范围为___________________.
9.已知函数f(x)=ax2+2x+1(a∈R),若方程f(x)=0至少有一正根,则a的取值范围为________.
三、解答题
10.若函数f(x)=x3+x2-2x-2的一个零点附近的函数值的参考数据如下表:
f(1)=-2
f(1.5)=0.625
f(1.25)≈-0.984
f(1.375)≈-0.260
f(1.437 5)≈0.162
f(1.406 25)≈-0.054
求方程x3+x2-2x-2=0的一个近似根(精确度0.1).
11.分别求实数m的范围,使关于x的方程x2+2x+m+1=0,
(1)有两个负根;
(2)有两个实根,且一根比2大,另一根比2小;
(3)有两个实根,且都比1大.
能力提升
12.已知函数f(x)=x|x-4|.
(1)画出函数f(x)=x|x-4|的图象;
(2)求函数f(x)在区间[1,5]上的最大值和最小值;
(3)当实数a为何值时,方程f(x)=a有三个解?
13.当a取何值时,方程ax2-2x+1=0的一个根在(0,1)上,另一个根在(1,2)上.
1.函数与方程存在着内在的联系,如函数y=f(x)的图象与x轴的交点的横坐标就是方程f(x)=0的解;两个函数y=f(x)与y=g(x)的图象交点的横坐标就是方程f(x)=g(x)的解等.根据这些联系,一方面,可通过构造函数来研究方程的解的情况;另一方面,也可通过构造方程来研究函数的相关问题.利用函数与方程的相互转化去解决问题,这是一种重要的数学思想方法.
2.对于二次方程f(x)=ax2+bx+c=0根的问题,从函数角度解决有时比较简洁.一般地,这类问题可从四个方面考虑:①开口方向;②判别式;③对称轴x=-与区间端点的关系;④区间端点函数值的正负.
§3.1 习题课
双基演练
1.D [函数y=f(x)在区间(a,b)内存在零点,我们并不一定能找到x1,x2∈(a,b),满足f(x1)·f(x2)<0,故A、B、C都是错误的,正确的为D.]
2.D [当f(x)的图象和x轴相切与y轴相交时,函数f(x)的零点个数为1,当f(x)的图象与y轴交于原点与x轴的另一交点在x轴负半轴上时,函数f(x)有2个零点.]
3.C [f(x)=log3(1+)-a在(1,2)上是减函数,由题设有f(1)>0,f(2)<0,解得a∈(log32,1).]
4.2
解析 作出函数y=2x及y=x+2的图象,它们有两个不同的交点,因此原方程有两个不同的根.
5.1.9(答案不唯一)
解析 令f(x)=()x-lg x,则f(1)=>0,f(3)=-lg 3<0,∴f(x)=0在(1,3)内有一解,利用二分法借助计算器可得近似解为1.9.
6.2
解析 设f(x)=4x2-6x-1,由f(-1)>0,f(2)>0,且f(0)<0,知方程4x2-6x-1=0在
(-1,0)和(0,2)内各有一解,因此在区间(-1,2)内有两个解.
作业设计
1.B
2.B [因为f(0)<0,f(1)<0,f(2)>0,
所以存在一个零点x∈[1,2].]
3.D [构造函数f(x)=lg x+x-2,由f(1.75)=f()=lg-<0,f(2)=lg 2>0,知x0属于区间(1.75,2).]
4.A [由于f(-2)=-3<0,f(1)=6>0,故可以取区间[-2,1]作为计算的初始区间,用二分法逐次计算.]
5.A [函数g(x)=(x-a)(x-b)的两个零点是a,b.
由于y=f(x)的图象可看作是由y=g(x)的图象向上平移2个单位而得到的,所以a<α<β6.7
解析 区间(2,3)的长度为1,当7次二分后区间长度为
=<=0.01.
7.0
解析 不妨设它的两个正零点分别为x1,x2.
由f(-x)=f(x)可知它的两个负零点分别是-x1,-x2,
于是x1+x2-x1-x2=0.
8.(-1,0)
解析 设f(x)=x2-2x+p+1,根据题意得f(0)=p+1>0,
且f(1)=p<0,f(2)=p+1>0,解得-19.a<0
解析 对ax2+2x+1=0,当a=0时,x=-,不符题意;
当a≠0,Δ=4-4a=0时,得x=-1(舍去).
当a≠0时,由Δ=4-4a>0,得a<1,
又当x=0时,f(0)=1,即f(x)的图象过(0,1)点,
f(x)图象的对称轴方程为x=-=-,
当->0,即a<0时,
方程f(x)=0有一正根(结合f(x)的图象);
当-<0,即a>0时,由f(x)的图象知f(x)=0有两负根,
不符题意.故a<0.
10.解 ∵f(1.375)·f(1.437 5)<0,
且|1.437 5-1.375|=0.062 5<0.1,
∴方程x3+x2-2x-2=0的一个近似根可取为区间(1.375,1.437 5)中任意一个值,通常我们取区间端点值,比如1.437 5.
11.解 (1)方法一 (方程思想)
设方程的两个根为x1,x2,
则有两个负根的条件是
解得-1方法二 (函数思想)
设函数f(x)=x2+2x+m+1,则原问题转化为函数f(x)与x轴的两个交点均在y轴左侧,结合函数的图象,有
解得-1(2)方法一 (方程思想)
设方程的两个根为x1,x2,则令y1=x1-2>0,y2=x2-2<0,问题转化为求方程(y+2)2+2(y+2)+m+1=0,即方程y2+6y+m+9=0有两个异号实根的条件,故有y1y2=m+9<0,解得m<-9.
方法二 (函数思想)
设函数f(x)=x2+2x+m+1,则原问题转化为函数f(x)与x轴的两个交点分别在2的两侧,结合函数的图象,
有f(2)=m+9<0,解得m<-9.
(3)由题意知,(方程思想),
或(函数思想),
因为两方程组无解,故解集为空集.
12.解 (1)f(x)=x|x-4|=
图象如右图所示.
(2)当x∈[1,5]时,f(x)≥0且当x=4时f(x)=0,故f(x)min=0;
又f(2)=4,f(5)=5,故f(x)max=5.
(3)由图象可知,当0方程f(x)=a有三个解.
13.解 ①当a=0时,方程即为-2x+1=0,只有一根,不符合题意.
②当a>0时,设f(x)=ax2-2x+1,
∵方程的根分别在区间(0,1),(1,2)上,
∴,即,解得③当a<0时,设方程的两根为x1,x2,
则x1x2=<0,x1,x2一正一负不符合题意.
综上,a的取值范围为3.1.1方程的根与函数的零点 同步练习
一、选择题
1.函数的零点为( )
A、 B、 C、 D、不存在
2.函数的零点个数为( )
A、0 B、1 C、2 D、3
3.三次方程在下列那些连续整数之间有根( )
1)-2与-1之间 2)-1与0之间 3)0与1之间
4)1与2之间 5)2与3之间
A、1)2)3) B、1)2)4) C、1)2)5) D、2)3)4)
4.若函数f(x)唯一的一个零点在区间(0,16),(0,8),(0,4),(0,2)内,那么下列命题中正确的是( )
A、函数f(x)在区间(0,1)内有零点
B、函数f(x)在区间(0,1)或(1,2)内有零点
C、函数f(x)在区间(2,16)内有零点
D、函数f(x)在区间(1,16)内无零点
5、方程的一个正零点的存在区间可能是( )
A、[0,1] B、[1,2] C、[2,3] D、[3,4]
6、已知 ( )
A、至少有一实数根 B、至少有一实根 C、无实根 D、有唯一实数根
二、填空题
7.方程在区间[-1,3内至少有_____________个实数解。
8、已知y=x(x-1)(x+1)。令f(x)=x(x-1)(x+1)+0.01则对于f(x)=0的叙述正确的序号是___________。
1)有三个实根 2)x>1时恰有一实根 3)当04)当-19、已知关于x的方程3x2+(m-5)x+7=0的一个根大于4,而另一个根小于4,求实数m的取值范围_____________。
三、解答题
10、求函数零点的个数。
11、判断方程的解的存在。
12、求证:方程的根一个在区间(-1,0)上,另一个在区间(1,2)上。
13、试找出一个长度为1的区间,在这个区间上函数至少有一个零点。
14、已知关于x的方程x2+2mx+2m+3=0的两个不等实根都在区间(0,2)内,求实数m的取值范围.
15、国家购买某种农产品的价格为120元/担,其中征税标准为100元征8元(叫做税率为8个百分点,即8%),计划可收购万担。为了减轻农民负担,决定税率降低个百分点,预计收购量可增加2个百分点。
(1)写出税收(万元)与的函数关系式;
(2)要使此项税收在税率调节后达到计划的78%,试求此时的的值。
答案:
一、选择题
C;2、D;3、B;4、C;5、B;6、D
二、填空题
7、2
8、1)5)
9、
三、解答题
10、解:用计算器或计算机作出、的对应值表(如下表)和图象(如下图)。
-1.5
-1
-0.5
0
0.5
1
1.5
-1.25
2
2.25
1
-0.25
0
3.25
由上表和上图可知,,,即,说明这个函数在区间内有零点。同量,它在区间(0,0.5)内也有零点。另外,,所以1也是它的零点。由于函数在定义域和(1,)内是增函数,所以它共有3个零点。
11、解:考察函数f(x)=知图像为抛物线,容易看出f(0)=-6<0,f(4)=6>0,f(-4)=14>0
由于函数f(x)的图像是连续曲线,因此,点B(0,-6)与点C(4,6)之间的那部分曲线必然穿过x轴,即在区间(0,4)内必有一个点,使f()=0;同样在区间
(-4,0)内也有一个点使f()=0。
所以方程有两个实数解。
12、证明:设,则f(-1)f(0)=。
而二次函数是连续的。所以f(x)在(-1,0)和(1,2)上分别有零点。即方程的根一个在(-1,0)上,另一个在(1,2)上。
13、解:的定义域为。取区间。则易证:,,所以,所以在区间内函数f(x)至少有一个零点。区间符合条件。
14、解:令有图像特征可知方程f(x)=0的两根都在(0,2)内需满足的条件是
解得。
15、解:(1)由题设,调节税率后税率为%,预计可收购万担,总金额为120万元,所以
。
即。
(2)计划税收为120万元,由题设,有
,
即,解得。
试用函数的图象指出方程的根,即函数的零点所在的大致区间。