课件9张PPT。§2.2.4平面与平面平行的性质复习:直线和平面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。?ba?注意:1、定理三个条件缺一不可。 问题3:若两个平面平行,则一个平面内的直线a与另一个平面内的直线有什么位置关系? a异面、平行问题探究:证明:{ 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 即:二、平面和平面平行的性质定理例3. 求证: 夹在两个平行平面间的两条平行线段相等.证明:定理应用:P63习题3证明:过A作直线AH//DF,连结AD,GE,HF(如图).课堂练习:直线与直线平行直线与平面平行平面与平面平行课堂小结【例1】如图,设平面α∥平面β,AB、CD是两异面直线,M、N分别是AB、CD的中点,且A、C∈α,B、D∈β. 求证:MN∥α. 证明:连接BC,取BC的中点E,分别连接ME、NE,
则ME∥AC,∴ ME∥平面α,
又 NE∥BD, ∴ NE∥β,
又ME∩NE=E,∴平面MEN∥平面α,
∵ MN平面MEN,∴MN∥α. 平面与平面平行的性质教案
【教学目标】
1、通过图形探究平面与平面平行的性质定理;
2、熟练掌握平面与平面平行的性质定理的应用;
3、进一步培养学生的空间想象能力,以及逻辑思维能力.
【教学重难点】
重点:通过直观感知,操作确认,概括并证明平面和平面平行的性质定理。
难点:平面和平面平行的性质定理的证明和应用。
【教学过程】
1、 教师引导学生借助长方体模型思考、交流得出课前预习学案中的结论
结论:<1>结合长方体模型,可知:或平行或异面;
<2>直线与平面平行的性质定理用文字语言表示为:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;
<3>文字语言:如果两个平行平面同时和第三个平面相交,那么它们的交线平行;符号语言:;图形语言如图所示:
<4>应用面面平行的性质定理的难点是:过某些点或直线作一个平面.应用线面平行性质定理的口诀:“见到面面平行,先过某些直线作两个平面的交线.”
2、思考:如果平面,那么平面内的直线a和平面内的哪些直线平行?怎么找出这些直线?
(教师引导学生借助长方体模型思考、交流得出结论)
结论:过直线a做平面与平面相交,则交线和a平行.
(在教师的启发下,师生共同概括完成上述结论及证明过程,从而得到两个平面平行的性质定理)。
3、平面和平面平行平行的性质定理
定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
符号表示:
证明:
教师指出:可以由平面与平面平行得出直线与直线平行
4、平面和平面平行的性质定理应用
例1:求证:夹在两个平行平面间的平行线段相等.
(学生交流讨论形成结果)
→首先要将文字语言转化为符号语言和图形语言:
已知:,,,
求证:。
解析:利用什么定理?(平面与平面平行性质定理)关键是如何得到第三个相交平面。证明:因为AB∥CD,
所以过AB、CD可作平面γ,且平面γ与平面α、平面β分别交于AD和BC,
因为α∥β,所以AD∥BC
所以四边形ABCD是平行四边形
所以
点评:
变式训练1:
判断下列结论是否成立:
① 过平面外一点,有且仅有一个平面与已知平面平行;( )
② ;( )
③ 平行于同一个平面的两条直线平行;( )
④ 两个平面都与一条直线平行,则这两个平面平行;( )
⑤ 一条直线与两个平行平面中的一个相交,则必与另一个相交。( )
例题2:已知:如下图,四棱锥S-ABCD底面为平行四边形,E、F分别为边AD、SB中点
求证:EF∥平面SDC。
解析:证线面平行,需证线线平行
证明:方法一
5、课堂小结:
面面平行的性质定理及其它性质();转化思想.
【板书设计】
一、平面与平面平行的性质定理
二、例题
例1
变式1
例2
变式2
【作业布置】
习题2.2A组第6、7、题,B组第2题;
2、2、4平面与平面平行的性质
课前预习学案
一、预习目标:
通过图形探究平面与平面平行的性质定理
二、预习内容:
阅读教材第66—67页内容,然后回答问题
(1)利用空间模型探究:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么位置关系?
(2)请同学们回忆线面平行的性质定理,然后结合模型探究面面平行的性质定理;
(3)用三种语言描述平面与平面平行的性质定理;
(4)应用面面平行的性质定理的难点在哪里?应用面面平行的性质定理口诀是什么?
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
?
?
?
?
?
?
课内探究学案
一、 学习目标
1、通过图形探究平面与平面平行的性质定理;
2、熟练掌握平面与平面平行的性质定理的应用;
3、进一步培养学生的空间想象能力,以及逻辑思维能力.
学习重点:通过直观感知,操作确认,概括并证明平面和平面平行的性质定理。
学习难点:平面和平面平行的性质定理的证明和应用。
二、学习过程
1、 教师引导学生借助长方体模型思考、交流得出课前预习学案中的结论
结论:<1>结合长方体模型,可知:或平行或异面;
<2>直线与平面平行的性质定理用文字语言表示为:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;
<3>文字语言:如果两个平行平面同时和第三个平面相交,那么它们的交线平行;符号语言:;图形语言如图所示:
<4>应用面面平行的性质定理的难点是:过某些点或直线作一个平面.应用线面平行性质定理的口诀:“见到面面平行,先过某些直线作两个平面的交线.”
2、思考:如果平面,那么平面内的直线a和平面内的哪些直线平行?怎么找出这些直线?
(教师引导学生借助长方体模型思考、交流得出结论)
结论:过直线a做平面与平面相交,则交线和a平行.
(在教师的启发下,师生共同概括完成上述结论及证明过程,从而得到两个平面平行的性质定理)。
3、平面与平面平行性质定理:
讨论:
① 两个平面平行,其中一个平面内的直线与另一个平面有什么位置关系?
符号语言表示:
。
② 当第三个平面和两个平行平面都相交,两条交线有什么关系?为什么?
猜想:
证明:学生独立完成
通过讨论猜想并证明得到:
平面与平面平行性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
用符号语言表示性质定理:
4、平面和平面平行的性质定理应用
例1:求证:夹在两个平行平面间的平行线段相等.
(学生交流讨论形成结果)
→首先要将文字语言转化为符号语言和图形语言:
已知:,,,
求证:。
分析:利用什么定理?(平面与平面平行性质定理)关键是如何得到第三个相交平面。证明:
变式训练1:
判断下列结论是否成立:
① 过平面外一点,有且仅有一个平面与已知平面平行;( )
② ;( )
③ 平行于同一个平面的两条直线平行;( )
④ 两个平面都与一条直线平行,则这两个平面平行;( )
⑤ 一条直线与两个平行平面中的一个相交,则必与另一个相交。( )
例题2:
已知:如下图,四棱锥S-ABCD底面为平行四边形,E、F分别为边AD、SB中点
求证:EF∥平面SDC。
证明:方法一
方法二:
变式训练2:
5、课堂小结:
6、当堂检测:
(1)习题2.2A组 1、2
(2)、已知平面α∥平面β直线a∥α,a(β,求证:a∥β.
课后练习与提高
一、选择题
1.“α内存在着不共线的三点到平面β的距离均相等”是“α∥β”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要的条件
2.平面α∥平面β,直线a(α,P∈β,则过点P的直线中( )
A.不存在与α平行的直线 B.不一定存在与α平行的直线
C.有且只有—条直线与a平行 D.有无数条与a平行的直线
3.下列命题中为真命题的是( )
A.平行于同一条直线的两个平面平行
B.垂直于同一条直线的两个平面平行
C.若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行.
D.若三直线a、b、c两两平行,则在过直线a的平面中,有且只有—个平面与b,c均平行.
二、填空题
4.过两平行平面α、β外的点P两条直线AB与CD,它们分别交α于A、C两点,交β于B、D两点,若PA=6,AC=9,PB=8,则BD的长为__________.
5.已知点A、B到平面α的距离分别为d与3d,则A、B的中点到平面α的距离为________.
三、解答题
6、如图,平面α∥平面β,A、C∈α,B、D∈β,点E、F分别在线段AB、CD上,且,求证:EF∥平面β.
?
参考答案
平面与平面平行的性质
一、教学目标:
1、知识与技能
掌握两个平面平行的性质定理及其应用
2、过程与方法
学生通过观察与类比,借助实物模型理解及其应用
3、情感、态度与价值观
(1)进一步提高学生空间想象能力、思维能力;
(2)进一步体会类比的作用;
(3)进一步渗透等价转化的思想。
二、教学重点、难点
重点:平面与平面平等的性质定理
难点:平面与平面平等的运用
三、教学方法
讲录结合
教学过程
教学内容
师生互动
设计意图
新课导入
1.直线和平面平行的性质
2.平面和平面平行的性质
3.线线平等线面平行→面面平行
师生共同复习. 教师点出主题.
复习巩固
探索新知
平面和平面平行的性质
1.思考:(1)两个平面平行,那么其中一个平面内的直线与另一个面具有什么关系?
(2)两个平面平行,其中一个平面内的直线与另一个平面内的直线具有什么关系?
(2)两个平面平行,其中一个平面内的直线与另一平面内的直线在什么条件下不平行?
2.例1 如图,已知平面,,满足,,,证:a∥b.
证明:因为,
,
所以,.
又因为,
所以a、b没有公共点,
又因为a、b同在平面内,
所以a∥b.
3.定理
如果两个平行平面同时和第三个平面相交,那么它们的交线平行.
上述定理告诉我们,可以由平面与平面平行得出直线与直线平行.
师:请同学们思考:两个平面平行,那么其中一个平面内的直线与另一面具有什么关系?
生:借助长方体模型可以发现,若平面AC和平面A′C′ 平行,则两面无公共点,那么出就意味着平面AC内任一直线BD和平面A′C′ 也无公共点,即直线BD和平面A′C′ 平行.
师:用式子可表示为,.
用语言表述就是:
如果两个平面平行,那么其中一个平面内的直线平行于另一平面.(板书)
生:由问题知直线BD与平面A′C′ 平行. BD与平面A′C′ 没有公共点. 也就是说,BD 与平面A′C′ 内的所有直线没有公共点. 因此,直线BD 与平面A′C′ 内的所有直线要么是异面直线,要么是平行直线.
生:由问题2知要两条直线平行,只要他们共面即可.
师:我们把刚才这个结论用符号表示,即是例5的证明.
师生共同完成并得出性质定理.
师引导学生得出结论:两个平行平面的判定定理与性质定理的作用,要害都集中在“平行”二字上,判定定理解决的问题是:在什么样的条件下两个平面平行.性质定理说明的问题是:在什么样的条件下两条直线平行,前者给出了判定两个平面平行的一种方法,后者给出了判定两条直线平行的一种方法.
师下面以例题说明性质定理在解决问题时作用.
新教材常常要将面面平行转化为线面平行讨论,但没有给出结论,故补充,只是不作太多强调.
加深对知识的理解
典例分析
例2 夹在两个平行平面间的平行线段相等,如图∥,AB∥CD,且A∈,C∈,B∈,D∈,求证:AB = CD.
证明:如图,AB∥CD,AB、CD确定一个平面
,
例3如图,已知平面,AB、CD是异面直线,且AB分别交于A、B两点,CD分别交于C、D两点.M、N分别在AB、CD上,且.
求证:MN∥
证明:如图,过点A作AD′∥CD,交于D′,再在平面AB D′内作ME∥B D′,交AD′于E.则,
又
∴.
连结EN、AC、D′D,平行线AD′与CD确定的平面与、的交线分别是AC、D′D.
∵,∴AC∥D′D
又
∴EN∥AC∥D′D
∵,
∴EN∥,又MN∥.
∴平面MEN∥
∴MN∥.
师投影例2并读题,学生写出已知求证并作图(师投影)师生共同讨论,边分析边板书.
师:要证两线段相等,已知给的条件又是平行关系,那么证两线段所在四边形是平行四边形,进而说明两线段相等是解决问题常选用的一条途径.
师投影例3并读题
分析:满足怎样的条件的直线与平面平行(线线平行或面面平),我们能在平面内找到一条直线与MN平行吗?能找一个过MN且与平行的平面吗?这样的直线和平面有何特征!
证明二:利用过MN的平面AMN在平面找与MN平行的直线(如图)
连AN设交于E,连结DE,AC为相交直线AE、DC确定的平面与、的交线.
∵
∴AC∥DE
∴
又
∴
∴在△ABC中MN∥BE
又,
∴MN∥
证明三:利用过MN的平面CMN在平面中找出MN平行的直线.
巩固所学知识,培养学生书写表达能力和分析问题解决问题的能力.
构建知识体系,培养学生思维的灵活性.
随堂练习
1.判断下列命题是否正确,正确的在括号内画“√”号,错误的画“×”号.
(1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面. ( )
(2)如果直线a和平面满足a∥,那么a与内的任何直线平行. ( )
(3)如果直线a,b和平面满足a∥,b∥,那么a∥b.
( )
(4)如果直线a,b和平面满足a∥b,a∥,,那么b∥. ( )
2.如图,正方体ABCD – A′B′C′D′中,AE = A1E1,AF =A1F1,求证EF∥E1F1,且EF = E1F1.
学生独立完成
参考答案:
(1)×(2)×
(3)×(4)√
提示:连结E E1, FF1,证明四边形EFF1E1为平行四边形即可.
巩固所学知识
归纳总结
1.平面和平面平行的性质
2.线线平行线面平行面面平行
学生先归纳,教师给予补充完善
回顾、反思、归纳知识,提高自我整合知识能力.
课后作业
2.2 第三课时 习案
学生独立完成
固化知识
提升能力
备选例题
例1 如图,设平面a∥平面,AB、CD是两异面直线,M、N分别是AB、CD的中点,且A、C,B、D.求证:MN∥ .
【证明】连接BC,取BC的中点E,分别连接ME、NE,
则MN∥AC,∴ME∥平面,
又NE∥BD,∴NE∥,
又ME∩NE = E,∴平面MEN∥平面,
∵MN平面MEN.∴MN∥.
【评析】要证“面面平面”只要证“线面平面”,要证“线面平行”,只要证“线线平面”,故问题最终转化为证线与线的平行.
例2 ABCD是矩形,四个顶点在平面内的射影分别为A′、B′、C′、D′,直线A′B′与C′D′不重合,求证:A′B′C′D′是平行四边形.
【证明】如图.
∵A′、B′、C′、D′分别是A、B、C、D在平面内的射影.
∴BB′⊥,CC′⊥,
∴BB′∥CC′.
∵CC′ 平面CC′D′D,BB′ 平面CC′D′D,
∴BB′∥平面CC′D′D.
又∵ABCD是矩形,
∴AB∥CD,CD 平面CC′D′D,
∴AB∥平面CC′D′D
∵AB,BB′是平面ABB′A′ 内的两条相交直线,
∴平面ABB′A′∥平面CC′D′D.
又∩平面ABB′A′=A′B′,∩平面CC′D′D = C′D′,∴A′B′∥C′D′.
同理,B′C′∥A′D′,∴A′B′C′D′是平行四边形.
【评析】在熟知线面平行、面面平行的判定与性质之后,空间平等问题的证明,紧紧抓住“线线平行线面平行面面平行”之间的互相转化而完成证明.
课件20张PPT。2.2.4平面与平面
平行的性质复习引入1. 提问:线面平行、面面平行判定定理的
符号语言?线面平行性质定理的符号语言?复习引入1. 提问:线面平行、面面平行判定定理的
符号语言?线面平行性质定理的符号语言?2. 讨论:两个平面平行,那么一个平面内
的直线与另一个平面内的直线有什么关系?讲授新课两个平面平行,其中一个平面内的直线
与另一个平面有什么位置关系?
讨论:讲授新课两个平面平行,其中一个平面内的直线
与另一个平面有什么位置关系?
两个平面内的直线有什么位置关系?
讨论:讲授新课两个平面平行,其中一个平面内的直线
与另一个平面有什么位置关系?
两个平面内的直线有什么位置关系?
当第三个平面和两个平行平面都相交,
两条交线有什么关系?为什么?讨论: 定理:两个平行平面同时和第三个
平面相交,那么它们的交线平行. 定理:两个平行平面同时和第三个
平面相交,那么它们的交线平行. 符号语言:BACD例1 求证:夹在两个平行平面间的两条
平行线段相等.已知:求证:AB=CD.BACD例1 求证:夹在两个平行平面间的两条
平行线段相等.已知:求证:AB=CD.BACD例1 求证:夹在两个平行平面间的两条
平行线段相等.例2 已知: l, m是两条异面直线,l∥平面?,
l∥平面?,m∥面?,m∥平面?,
求证: ?∥?.1. 若?∥?,?∥?,求证: ?∥? .练习???1. 若?∥?,?∥?,求证: ?∥? .练习ab???1. 若?∥?,?∥?,求证: ?∥? .练习ab???b'a'??1. 若?∥?,?∥?,求证: ?∥? .练习ab???b'a'anbn??1. 若?∥?,?∥?,求证: ?∥? .练习ab???b'a'anbn??2. 教材P.61练习.课堂小结1. 面面平行的性质定理及其它性质;2. 转化思想. 课后作业1. 复习本节课内容,理清脉络;
2. 《习案》第十三课时.2.2.4 平面与平面平行的性质
【课时目标】 1.会用图形语言、文字语言、符号语言准确地描述平面与平面平行的性质定理.2.能运用平面与平面平行的性质定理,证明一些空间面面平行关系的简单命题.
1.平面与平面平行的性质定理
如果两个平行平面同时和第三个平面相交,________________________________.
(1)符号表示为:________________?a∥b.
(2)性质定理的作用:
利用性质定理可证________________,也可用来作空间中的平行线.
2.面面平行的其他性质
(1)两平面平行,其中一个平面内的任一直线平行于____________________,即?________,可用来证明线面平行;
(2)夹在两个平行平面间的平行线段________;
(3)平行于同一平面的两个平面________.
一、选择题
1.下列说法正确的是( )
A.如果两个平面有三个公共点,那么它们重合
B.过两条异面直线中的一条可以作无数个平面与另一条直线平行
C.在两个平行平面中,一个平面内的任何直线都与另一个平面平行
D.如果两个平面平行,那么分别在两个平面中的两条直线平行
2.设平面α∥平面β,直线a?α,点B∈β,则在β内过点B的所有直线中( )
A.不一定存在与a平行的直线
B.只有两条与a平行的直线
C.存在无数条与a平行的直线
D.存在惟一一条与a平行的直线
3.如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA、PB、PC于A′、B′、C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于( )
A.2∶25 B.4∶25
C.2∶5 D.4∶5
4.α,β,γ为三个不重合的平面,a,b,c为三条不同的直线,则有下列命题,不正确的是( )
①?a∥b; ②?a∥b;
③?α∥β; ④?α∥β;
⑤?α∥a; ⑥?a∥α.
A.④⑥ B.②③⑥
C.②③⑤⑥ D.②③
5.设α∥β,A∈α,B∈β,C是AB的中点,当A、B分别在平面α、β内运动时,那么所有的动点C( )
A.不共面
B.当且仅当A、B分别在两条直线上移动时才共面
C.当且仅当A、B分别在两条给定的异面直线上移动时才共面
D.不论A、B如何移动,都共面
6.已知平面α∥平面β,P是α,β外一点,过点P的直线M与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD的长为( )
A.16 B.24或
C.14 D.20
二、填空题
7.分别在两个平行平面的两个三角形,
(1)若对应顶点的连线共点,那么这两个三角形具有______关系;
(2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.
8.过正方体ABCD-A1B1C1D1的三个顶点A1、C1、B的平面与底面ABCD所在平面的交线为l,则l与A1C1的位置关系是________.
9.已知平面α∥β∥γ,两条直线l、M分别与平面α、β、γ相交于点A、B、C与D、E、F.已知AB=6,=,则AC=________.
三、解答题
10.如图所示,已知正方体ABCD-A1B1C1D1中,面对角线AB1、BC1上分别有两点E、F,且B1E=C1F.求证:EF∥平面ABCD.
11.如图,在三棱柱ABC-A1B1C1中,M是A1C1的中点,平面AB1M∥平面BC1N,AC∩平面BC1N=N.
求证:N为AC的中点.
能力提升
12.如图所示,在底面是平行四边形的四棱锥P-ABCD中,点E在PD上,且PE∶ED=2∶1,在棱PC上是否存在一点F,使BF∥平面AEC?并证明你的结论.
13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.
1.在空间平行的判断与证明时要注意线线、线面、面面平行关系的转化过程:
2.强调两个问题
(1)一条直线平行于一个平面,就平行于这个平面内的一切直线,这种说法是不对的,但可以认为这条直线与平面内的无数条直线平行.
(2)两个平面平行,其中一个平面内的直线必定平行于另一个平面,但这两个平面内的直线不一定相互平行,也有可能异面.
2.2.4 平面与平面平行的性质 答案
知识梳理
1.那么它们的交线平行
(1) (2)线线平行
2.(1)另一个平面 a∥β (2)相等 (3)平行
作业设计
1.C [由两平面平行的定义知:一平面内的任何直线与另一平面均无交点,所以选C.]
2.D [直线a与B可确定一个平面γ,
∵B∈β∩γ,∴β与γ有一条公共直线b.
由线面平行的性质定理知b∥a,所以存在性成立.
因为过点B有且只有一条直线与已知直线a平行,
所以b惟一.]
3.B [面α∥面ABC,面PAB与它们的交线分别为A′B′,AB,∴AB∥A′B′,
同理B′C′∥BC,
易得△ABC∽△A′B′C′,
S△A′B′C′∶S△ABC=()2=()2=.]
4.C [由公理4及平行平面的传递性知①④正确.举反例知②③⑤⑥不正确.②中a,b可以相交,还可以异面;③中α,β可以相交;⑤中a可以在α内;⑥中a可以在α内.]
5.D [
如图所示,A′、B′分别是A、B两点在α、β上运动后的两点,此时AB中点变成A′B′中点C′,连接A′B,取A′B中点E.连接CE、C′E、AA′、BB′、CC′.
则CE∥AA′,∴CE∥α.
C′E∥BB′,∴C′E∥β.
又∵α∥β,∴C′E∥α.
∵C′E∩CE=E.
∴平面CC′E∥平面α.
∴CC′∥α.所以不论A、B如何移动,所有的动点C都在过C点且与α、β平行的平面上.]
6.B [当P点在平面α和平面β之间时,由三角形相似可求得BD=24,当平面α和平面β在点P同侧时可求得BD=.]
7.(1)相似 (2)全等
8.平行 [由面面平行的性质可知第三平面与两平行平面的交线是平行的.]
9.15 [由题可知=?AC=·AB=×6=15.]
10.证明 方法一 过E、F分别作AB、BC的垂线,EM、FN分别交AB、BC于M、N,连接MN.
∵BB1⊥平面ABCD,
∴BB1⊥AB,BB1⊥BC,
∴EM∥BB1,FN∥BB1,
∴EM∥FN,
∵AB1=BC1,B1E=C1F,
∴AE=BF,又∠B1AB=∠C1BC=45°,
∴Rt△AME≌Rt△BNF,
∴EM=FN.
∴四边形MNFE是平行四边形,
∴EF∥MN.
又MN?平面ABCD,EF?平面ABCD,
∴EF∥平面ABCD.
方法二
过E作EG∥AB交BB1于G,连接GF,
∴=,B1E=C1F,B1A=C1B,∴=,
∴FG∥B1C1∥BC.
又∵EG∩FG=G,AB∩BC=B,
∴平面EFG∥平面ABCD.
又EF?平面EFG,
∴EF∥平面ABCD.
11.证明 ∵平面AB1M∥平面BC1N,
平面ACC1A1∩平面AB1M=AM,
平面BC1N∩平面ACC1A1=C1N,
∴C1N∥AM,又AC∥A1C1,
∴四边形ANC1M为平行四边形,
∴AN綊C1M=A1C1=AC,
∴N为AC的中点.
12.解
当F是棱PC的中点时,BF∥平面AEC,证明如下:
取PE的中点M,连接FM,则FM∥CE, ①
由EM=PE=ED,知E是MD的中点,设BD∩AC=O,则O为BD的中点,连接OE,则BM∥OE, ②
由①②可知,平面BFM∥平面AEC,又BF?平面BFM,
∴BF∥平面AEC.
13.解 能.取AB,C1D1的中点M,N,连接A1M,MC,CN,NA1,
∵A1N∥PC1且A1N=PC1,
PC1∥MC,PC1=MC,
∴四边形A1MCN是平行四边形,
又∵A1N∥PC1,A1M∥BP,
A1N∩A1M=A1,C1P∩PB=P,
∴平面A1MCN∥平面PBC1,
因此,过点A1与截面PBC1平行的截面是平行四边形.
连接MN,作A1H⊥MN于点H,
∵A1M=A1N=,MN=2,
∴A1H=.
∴S△A1MN=×2×=.
故S?A1MCN=2S△A1MN=2.
2.2.4 平面与平面平行的性质
一、基础过关
1.已知平面α∥平面β,过平面α内的一条直线a的平面γ,与平面β相交,交线为直线b,则a、b的位置关系是 ( )
A.平行 B.相交 C.异面 D.不确定
2.已知a、b表示直线,α、β表示平面,下列推理正确的是 ( )
A.α∩β=a,b?α?a∥b
B.α∩β=a,a∥b?b∥α且b∥β
C.a∥β,b∥β,a?α,b?α?α∥β
D.α∥β,α∩γ=a,β∩γ=b?a∥b
3. 如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA、PB、PC于A′、B′、C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于 ( )
A.2∶25 B.4∶25
C.2∶5 D.4∶5
4.α,β,γ为三个不重合的平面,a,b,c为三条不同的直线,则有下列命题,不正确的是( )
①?a∥b; ②?a∥b;
③?α∥β; ④?α∥β;
⑤?α∥a; ⑥?a∥α.
A.④⑥ B.②③⑥ C.②③⑤⑥ D.②③
5.分别在两个平行平面的两个三角形.(填“相似”“全等”)
(1)若对应顶点的连线共点,那么这两个三角形具有______关系;
(2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.
6.已知平面α∥β∥γ,两条直线l、m分别与平面α、β、γ相交于点A、B、C与D、E、F.已知AB=6,=,则AC=______.
7.如图,在三棱柱ABC-A1B1C1中,M是A1C1的中点,平面AB1M∥平面BC1N,AC∩平面BC1N=N.
求证:N为AC的中点.
8. 如图所示,在底面是平行四边形的四棱锥P-ABCD中,点E在PD上,且PE∶ED=2∶1,在棱PC上是否存在一点F,使BF∥平面AEC?并证明你的结论.
二、能力提升
9.设α∥β,A∈α,B∈β,C是AB的中点,当A、B分别在平面α、β内运动时,得到无数个AB的中点C,那么所有的动点C ( )
A.不共面
B.当且仅当A、B分别在两条直线上移动时才共面
C.当且仅当A、B分别在两条给定的异面直线上移动时才共面
D.不论A、B如何移动,都共面
10.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD的长为( )
A.16 B.24或 C.14 D.20
11.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,m,使得l∥α,l∥β,m∥α,m∥β.其中可以判断两个平面α与β平行的条件有________个.
12. 如图所示,平面α∥平面β,△ABC、△A′B′C′分别在α、β内,线段AA′、BB′、CC′共点于O,O在α、β之间,若AB=2,AC=1,∠BAC=90°,OA∶OA′=3∶2.
求△A′B′C′的面积.
三、探究与拓展
13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.
答案
1.A 2.D 3.B 4.C
5.(1)相似 (2)全等
6.15
7.证明 ∵平面AB1M∥平面BC1N,
平面ACC1A1∩平面AB1M=AM,
平面BC1N∩平面ACC1A1=C1N,
∴C1N∥AM,又AC∥A1C1,
∴四边形ANC1M为平行四边形,
∴AN=C1M=A1C1=AC,
∴N为AC的中点.
8. 解 当F是棱PC的中点时,BF∥平面AEC,
证明如下:
取PE的中点M,连接FM,则FM∥CE,①
由EM=PE=ED,知E是MD的中点,设BD∩AC=O,则O为BD的中点,连接OE,则BM∥OE,②
由①②可知,平面BFM∥平面AEC,又BF?平面BFM,
∴BF∥平面AEC.
9.D 10.B
11.2
12.解 相交直线AA′,BB′所在平面和两平行平面α、β分别相交于AB、A′B′,
由面面平行的性质定理可得AB∥A′B′.
同理相交直线BB′、CC′确定的平面和平行平面α、β分别相交于BC、B′C′,从而BC∥B′C′.同理易证AC∥A′C′.
∴∠BAC与∠B′A′C′的两边对应平行且方向相反.
∴∠BAC=∠B′A′C′.
同理∠ABC=∠A′B′C′,∠BCA=∠B′C′A′.
∴△ABC与△A′B′C′的三内角分别相等,
∴△ABC∽△A′B′C′,∵AB∥A′B′,AA′∩BB′=O,
∴在平面ABA′B′中,△AOB∽△A′OB′.
∴==.而S△ABC=AB·AC=×2×1=1.
∴=()2,
∴S△A′B′C′=S△ABC=×1=.
13.解 能.取AB,C1D1的中点M,N,连接A1M,MC,CN,NA1,
∵A1N∥PC1且A1N=PC1,PC1∥MC,PC1=MC,
∴四边形A1MCN是平行四边形,
又∵A1N∥PC1,A1M∥BP,A1N∩A1M=A1,C1P∩PB=P,
∴平面A1MCN∥平面PBC1,
因此,过点A1与截面PBC1平行的截面是平行四边形.
连接MN,作A1H⊥MN于点H,
∵A1M=A1N=,
MN=BC1=2,
∴A1H=.
∴S△A1MN=×2×=.
故S?A1MCN=2S△A1MN=2.